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ABSTRACT

In this contribution we present an algorithm to produce
wideband speech from bandlimited “telephone speech”.
The narrowband input signal is classified into a limited
number of speech sounds for which the information about
the wideband spectral envelope is taken from a pre-trained
codebook. For the codebook search algorithm a statistical
approach based on a hidden Markov model is used, which
takes different features of the bandlimited speech into ac-
count. Several estimators are presented which take various
amounts of a priori knowledge into consideration. The algo-
rithmic approach inherently guarantees the transparency of
the system in the base-band. The enhanced speech exhibits
a significantly larger quality and transparency than the input
speech without introducing objectionable artifacts.

1. INTRODUCTION

In current public telephone systems the bandwidth of the
transmitted speech is limited due to constraints of the old
analogue telephone system to a frequency range of 300 Hz
to 3.4 kHz. This bandwidth limitation causes the charac-
teristic sound of “telephone speech”. In the age of dig-
ital hands-free communication the demand for improved
speech quality and increased speech intelligibility is ris-
ing. This trend is reflected by ongoing standardizations of
wideband speech codecs (e.g. [1, 2, 7]). Listening experi-
ments have shown, that an improved frequency bandwidth
of speech signals contributes significantly to the perceived
speech quality [10, 18].

True wideband speech communication requires a modi-
fication of the transmission link by enhanced speech codecs
and increased bitrates. Hence, for economical reasons, the
bandwidth limitation is not likely to change on a broad scale
in the near future. An alternative approach towards a higher
(acoustic) bandwidth is the bandwidth extension: missing
low and high frequency components of the speech signal
are recovered at the receiving side of the transmission link
utilizing only the bandlimited speech.

This extension of the bandwidth of speech signals is
only feasible due to redundancies in the frequency bands

of speech signals. One possible concept to explore these re-
dundancies is based on a linear model of the speech produc-
tion process, as it was proposed in [4, 5]: First, the param-
eters of the source model are estimated from the available
bandlimited speech. In a second step, these parameters can
then be used in combination with the source model to esti-
mate and add the missing frequency components. Note, that
there exists an information-theoretic boundary to the quality
of the extended speech due to the limited redundancy with
respect to the missing frequency components (e.g. [13]).

In this paper the extension of the bandwidth towards
higher frequencies is treated, i.e. the input signal is assumed
to contain frequencies lower than 3.4 kHz1 and shall be ex-
tended artificially up to 7 kHz.

2. ALGORITHM

A simple linear source-filter model of the speech produc-
tion process, which is commonly used in speech processing
algorithms, consists of an auto-regressive (AR) filter (corre-
sponding to the vocal tract) which is excited by a spectrally
flat excitation signal. The parameters of the model, i.e. the
coefficients of the AR filter as well as the characteristics of
the excitation signal are time-variant.

According to this model the algorithm for bandwidth ex-
tension can be divided into two tasks, which are to a certain
extent mutually independent: the extension of the spectral
envelope of the speech signal and of its excitation signal
[4]. A block-diagram of a resulting algorithm [9] is shown
in Fig. 1. A distinctive feature of the illustrated algorithm
is, that all modifications of the narrowband signal are per-
formed in one signal path; a special treatment of the base-
band signal is not necessary.

In Fig. 1 it is assumed that the bandlimited input signal
is already sampled at a sampling frequency that is sufficient
to represent the extended wideband speech signal (e.g.fg =

16 kHz). The processing is performed frame by frame with
a frame-size of 20 ms. The frame index will be denoted by
the variablem in the following.

1This frequency band will be defined as thebasebandin the following.
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Figure 1: Block-diagram and main signal flow of
the proposed algorithm for bandwidth extension.

The first step in the bandwidth extension algorithm con-
sists of the estimation of the spectral envelope of the origi-
nal wideband speech signal in the two upper blocks. For this
purpose several approaches have been proposed in the liter-
ature, e.g. codebook based methods [4, 6], algorithms based
on a linear mapping [3], or based on statistical estimation
[5, 14, 9]. The result is a set of coefficients~a of the all-pole
vocal tract filter of the source model. By utilizing these fil-
ter coefficients in an FIR analysis filter~A(z) operating on
the narrowband input signalsnb(k), an estimatêunb(k) of
the bandlimited excitation signal can be derived. Note, that
the frequency response of the analysis filter is the inverse of
the frequency response of the vocal tract (synthesis) filter.
The algorithm for the estimation of the AR coefficients~a is
described in detail in section 3.

The second important block of the bandwidth extension
algorithm uses the estimatêunb(k) of the bandlimited exci-
tation signal and calculates an extended versionûwb(k) of
the excitation. In this step, the advantageous characteristics
of the excitation signal in the model of the speech produc-
tion process — especially its spectral flatness — can be uti-
lized for a very efficient realization (see section 4). Finally,
the estimated wideband excitation signal is fed into the all-
pole synthesis filter1= ~A(z), creating the enhanced output
speech signal̂swb(k).

Unlike previous algorithms for the bandwidth extension
of speech signals, the proposed algorithm uses the same AR
coefficients~a in the analysis filter~A(z) and the synthesis
filter 1= ~A(z). Hence, the transfer functions of these two fil-
ters are exactly mutually inverse. Due to this property of
the algorithm the transparency of the system for the base-
band signal components can be guaranteed — the baseband
of the excitation signal is not modified during the extension
of the excitation signal.

3. SPECTRAL ENVELOPE

The basis of the algorithm for the estimation of the AR
coefficientsa representing the spectral envelope of the
speech signal is the introduction of a Hidden Markov Model
(HMM) for the process of speech generation [9]. The states
of the HMM are defined by the levels of a vector quantizer
(VQ) of the coefficient sets of thewidebandauto-regressive

vocal tract filter: each centroid of the vector quantizer rep-
resents the spectral envelope of a typical speech sound. In
the VQ codebook the AR coefficients are contained as line
spectral frequencies (LSF) due to the advantageous prop-
erties of this representation concerning quantization or av-
eraging (e.g. [16]). One stateSi of the HMM is assigned
to each entrŷai of the vector quantizer codebook such that
there are as many states in the HMM as there are entries
in the codebook. It is further assumed that the state of the
source does only change in-between two frames of the input
signal. The number of codebook entries is denoted byI .

If wideband speech is available, e.g. in the training
phase of the algorithm, thetrue state sequence can be cal-
culated by minimizing the quantization error

Strue = Siopt with iopt = arg
I

min
i=1

jja� âijj
2: (1)

The training of the VQ codebook is performed with a suf-
ficiently large training data set of wideband speech and uti-
lizing the common LBG algorithm [11]. As a result of the
LBG algorithm the codebook entries are the expected values
of the AR coefficient vectors given the state of the source

âi = EfajSig: (2)

Although the training of the codebook with wideband
speech material guarantees that proper representatives of the
different speech sounds are contained in the codebook, it
also raises the challenge, that for the classification of the
input signal into these speech sounds only the bandlimited
signal is available. Therefore, for this case a more sophis-
ticated estimator has to be employed which exploits the
maximal relevant information contained in the narrowband
speech. The proposed estimator can be divided into the fol-
lowing steps as illustrated in Fig. 2:

1. To reduce the dimensionality of the estimation prob-
lem, a limited number of features is extracted from
each frame of the narrowband speech signal.

2. These extracted features are compared with a pre-
trained statistical model of the process of speech pro-
duction. Additional a priori knowledge about the
state sequence can be utilized to calculate a posteriori
probabilities.

3. The current speech frame is then either classified into
one of the trained speech sounds (i.e. HMM states) or
the AR coefficients are estimated directly.

The statistical parameters of the HMM, i.e. observation,
state and transition probabilities provide the a priori know-
ledge that is later-on exploited by the MAP and MMSE esti-
mation rules. In the following subsections each of the steps
is described in detail.
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Figure 2: Steps in the estimation of the spectral
envelope of the wideband speech signal.

3.1. Feature Extraction

For each signal frame anN -dimensional vectorx(m) of
features is extracted from the bandlimited input signal. The
elements of this vector should be selected such that the
resulting feature vector contains the maximal information
about the state of the HMM.

In this work the vector consists of the first eight cepstral
coefficientsc1 : : : c8, the normalized frame energyEn, and
a gradient indexdn of the speech signal as defined in [15]
as a measure for an voiced/unvoiced classification

dn =

PK

k=2	(k) jsnb(k)� snb(k � 1)jq
1
K

PK

k=1 s
2
nb(k)

: (3)

In this equationK is the number of samples per frame and
the variable (k) denotes the sign of the gradientsnb(k) �
snb(k � 1), i.e. (k) 2 f�1; 1g, and	(k) = 1=2 j (k)�

 (k � 1)j.
Whereas the cepstral coefficients carry information de-

scribing the shape of the spectral envelope of the narrow-
band signal, the other two quantities mainly depend on
properties of the excitation of the speech.

Additionally, the derivatives over time of all of the above
ten primary features are included in the feature vector such
that the dimension of the vectorx(m) results inN = 20.
The set of all observed feature vectors up to them-th frame
is defined by the observation sequence

X(m) = fx(1);x(2); : : : ;x(m)g: (4)

3.2. Statistical Model

For each possible stateSi of the Hidden Markov Model the
featuresx which are generated by the speech production
process exhibit different statistical properties. To describe
these properties a statistical model consisting of the follow-
ing three parts is used.

3.2.1. Initial State ProbabilitiesP (Si)

The scalar values�i = P (Si) describe the probabilities,
that the HMM resides in a stateSi without incorporating
knowledge of the feature vectorx or of preceding or fol-
lowing states.

These probabilities can easily be estimated by comput-
ing the true state sequence for the wideband training mate-
rial and evaluating the ratio between the number of occur-
rences of stateSi and the total number of speech frames in
the training set. The resulting probability values are stored
in a table such that the actual bandwidth extension algorithm
can later access the a priori state probabilities by simple ta-
ble lookups.

3.2.2. Transition ProbabilitiesP (Si(m+ 1)jSj(m))

The variable�ij = P (Si(m + 1)jSj(m)) describes the
probability of a transition from stateSj to stateSi from
one frame to the following one. As the initial state prob-
abilities �i, the transition probabilities can be stored in a
table, which is now two-dimensional. In the training proce-
dure the individual entries of this table are estimated (with
knowledge of the true state sequence) as the ratio between
the number of occurrences of the particular transition from
Sj to Si and the total number of occurrences of stateSj .

3.2.3. Observation Probabilitiesp(xjSi)

Due to the high dimension of the feature vectorx the proba-
bility density functions (pdf)p(xjSi) are modeled byGaus-
sian Mixture Models(GMMs): each pdf is approximated as
the sum ofL Gaussian pdfs (e.g. [17])

p(xjSi) �

LX
l=1

PilN (x;�il;�il): (5)

In this equationN (x;�il;�il) denotes thel-th N -dimen-
sional Gauß distribution of the GMM with mean vector�il
and variance matrix�il. Each Gauß distribution is weighted
by a scalar factorPil with

PL

l=1 Pil = 1.
The training of the GMMs, i.e. of the quantitiesPil, �il

and�il, can be performed with the iterative Expectation-
Maximization (EM) algorithm (see e.g. [17]), which is guar-
anteed to converge to a local maximum of the mean log-
likelihood function

U(�; �̂) = Eflog p(x;Si; �) jx; �̂g (6)

in which �̂ denotes the estimated parametersPil, �il and
�il, and� describes the true source parameters. The EM
algorithm needs a starting point for the iterative refinement,
which is determined here by clustering of the training data
with the LBG algorithm [11].

For each state of the hidden Markov model one distinct
GMM has to be trained, using the subset of the complete
training material for which thetruestate is equal to the cur-
rently trained one.



3.3. Classification vs. Estimation

The goal of the codebook search algorithm is to calculate
an estimate~a of the wideband AR coefficients which mini-
mizes the distance to the true coefficientsa. In this process
the statistical model defined in the previous subsection can
be utilized in different ways.

3.3.1. ML Classification

The simplest method is to select that entryâiML of the code-
book, for which the observation probabilityp(x(m)jSi(m))

is maximized (Maximum Likelihood — ML)

~aML = EfajSiML g = âiML (7)

with

iML = arg
I

max
i=1

P (x(m)jSi(m)): (8)

Note, that in this classification rule neither the initial state
probabilities�i nor the transition probabilities�ij are ex-
ploited.

3.3.2. MAP Classification

The Maximum A Posteriori (MAP) classification rule se-
lects that codebook entrŷaiMAP , for which the a posteriori
probabilityP (Si(m)jX(m)) of the occurrence of stateSi
given the observed sequenceX(m) is maximized

~aMAP = EfajSiMAP(m)g = âiMAP (9)

with

iMAP = arg
I

max
i=1

P (Si(m)jX(m)): (10)

For the derivation of this rule it is useful to define a vari-
able�i(m) as the joint probability of the partial observation
sequenceX(m) and the stateSi(m) at frame instantm

�i(m) = P (Si(m);X(m)): (11)

This joint proability density can be expressed in a recur-
sive manner in terms of the joint probabilities�i(m � 1)

at frame instantm � 1 and the observation probability
p(x(m)jSi(m)) as

�i(m) =

0
@ IX

j=1

�ij �j(m� 1)

1
A p(x(m)jSi(m)): (12)

The first term of this equation can be interpreted as the a pri-
ori probability of the occurrence of stateSi at frame instant
m given the past observation sequenceX(m� 1)

IX
j=1

�ij �j(m� 1) = P (Si(m)jX(m� 1)): (13)

Since the preceding observation vectors are unknown for the
first frame, the initial values for�i(1) have to be calculated
from the initial state probabilities�i

�i(1) = �i p(x(1)jSi(1)): (14)

Applying Bayes rule to Eq. (10) and using the helper
variable from Eq. (11) a statement can be found, in which
only known variables occur

iMAP(m) = arg
I

max
i=1

P (Si(m);X(m))

p(X(m))
(15)

= arg
I

max
i=1

�i(m) (16)

3.3.3. MMSE Estimation

This method differs from the previous described classifica-
tion methods in the property that its results are not bound
to the entries of the codebook. The goal of the Minimum
Mean Square Error (MMSE) criterion is to minimize the
mean squared error between the estimated AR coefficients
~a and the true coefficientsa such that the following cost
function is minimized

RMSE(~ajX) =

ZZ
(a� ~a)T (a� ~a) p(ajX) da: (17)

A solution for this optimization problem can be found by
taking the root of the derivative of the cost function

~aMMSE =

ZZ
a p(ajX) da: (18)

Since we don’t have an explicit model of the conditional
probabilityp(ajX), this quantity has to be expressed indi-
rectly in terms of the state probabilities

~aMMSE =

ZZ
a

"
IX
i=1

p(ajSi)P (SijX)

#
da (19)

=

IX
i=1

P (SijX)

ZZ
a p(ajSi) da| {z }

EfajSig = âi

(20)

As shown, the integral at the right hand side of Eq. 20 yields
the expected value ofa given the occurence of stateSi, i.e.
the corresponding codebook vectorâi. Applying Bayes rule
and substituting the helper variable�i, we obtain the follow-
ing estimator

~aMMSE =

PI

i=1 âi �i(m)PI

i=1 �i(m)
: (21)

It is interesting to note, that the conditional probabili-
tiesp(ajSi) can not be utilized by this estimator due to the



indirect modeling ofp(ajX) via the state probabilities. A
superior MMSE estimator can probably be designed by di-
rectly modeling and exploitingp(ajX), however, this is not
a trivial task. Alternatively, the knowledge ofp(ajSi) can
be taken into account during the training procedure of the
codebook vectorŝai.

There is a strong relationship between the MMSE es-
timator and the ML/MAP classificators. If the observation
probability is sufficiently high for one single entry of the
codebook, the a posteriori probability of this entry becomes
dominant and the solution of Eq. (21) approximates the ML
or MAP classificators from Eq. (8) and (16). Only in cases
in which the model of the observation probabilities is not
sufficient to classify the input frame, the result is averaged
from the most probable codebook entries.

4. EXCITATION SIGNAL

According to the simplifying linear model of speech pro-
duction the excitation signal is spectrally flat: in voiced
sounds it contains sinusoids at integral multiples of the fun-
damental (pitch) frequency of the speech segment; all har-
monics have the same amplitude. During unvoiced sounds
the excitation consists of a spectrally flat noise signal.

Due to these properties of the excitation signal its ex-
tension can be performed by a modulation of the estimate
ûnb(k) of the baseband excitation signal with a sinusoid
with the modulation frequency
m [4, 8]

ûhb(k) = ûnb(k) 2 cos(
mk)) (22)

This modulation in time-domain causes the desired spectral
shift of the signal spectrum in frequency-domain

Ûhb(e
j
) = Ûnb(e

j(
�
m)) + Ûnb(e
j(
+
m)) (23)

Note, that by the modulation with a real valued sinusoid
two shifted versions of the baseband spectrum are created.
Hence, to prevent an overlapping of the signal spectrum of
the modulated signal with the baseband input signal, one of
the two shifted spectra must be suppressed by a high-pass
filter prior to combination with the narrowband signal (see
Fig. 3). An alternative would be to calculate the analytic
signal of the baseband excitation prior to modulation, how-
ever, this approach does not yield any advantage concerning
subjective quality, computational complexity or algorithmic
delay.

By selecting the modulation frequency
m one out of
several modulation schemes can be chosen:

� A modulation with theNyquistfrequency, i.e.
m =

�, corresponds to the method ofspectral mirroringas
proposed in [12]. In this special case the two shifted
copies of the baseband spectrum coincide, such that
the high-pass filter from Fig. 3 is not needed. Thus,
this method can be implemented very efficiently.

ûnb(k) ûwb(k)

2 cos(
mk)

high-pass
filter

z�Æ

Figure 3: Extension of the excitation signal by
modulation. The algorithmic delayÆ of the high-
pass filter has to be compensated for in the path of
the baseband signal.

However, due to the cutoff frequency of the narrow-
band input signal, there is a spectral gap inûwb(k)
between 3.4 and 4.6 kHz. Furthermore, the harmonic
structure in the extended frequency band does not
match the low frequency components.

� To prevent the spectral gap, the modulation frequency
can be chosen such that the shifted spectrum starts in
continuation of the baseband spectrum, e.g.


m = 
o with 
o = 2�
3:4 kHz
fg

(24)

The variablefg denotes the sampling rate of the sig-
nal. With this method, there is still a misalignment of
the harmonics in the extended frequency band.

� A further possibility to control
m takes the pitch fre-
quency
p of the current speech frame into account:
the modulation frequency is adapted in such a way
that it is always an integral multiple of the estimated
pitch frequency [8], e.g.


m =

�

o


p

�

p: (25)

By this method it can be guaranteed that the harmon-
ics in the extended frequency band do always match
the harmonic structure of the baseband. Due to the
rounding operation in (25) there is in general a small
spectral gap with a width in the order of the pitch fre-
quency.

It must be emphasized, that the pitch-adaptive modu-
lation method reacts quite sensitive to small errors of
the estimate of the pitch frequency, because these are
significantly enlarged by the factord
o=
pe. There-
fore, a very good pitch estimator is needed.

We have performed many informal listening tests which
have shown that — on the pre-condition that the bandwidth
extension of the spectral envelope works well — the hu-
man ear is amazingly insensitive to distortions of the excita-
tion signal at high frequencies above 3.4 kHz. For example,



spectral gaps of moderate width as produced from band-stop
filters are almost inaudible. Further, distortions of the har-
monic structure of speech at high frequencies do not signifi-
cantly degrade the subjective quality of the enhanced speech
signal.

Due to these properties of the human auditory system,
all of the described methods for the extension of the excita-
tion signal perform well, when a good estimate of the wide-
band spectral envelope is available. A good compromise
between subjective quality of the output signal and com-
putational complexity is given by the modulation with the
fixed modulation frequency of
m = 
o.

5. EVALUATION

For the evaluation of the proposed algorithm, codebooks of
different sizes were trained. When listening to thebestpos-
sible output of the algorithm, i.e. with knowledge of thetrue
state sequence, it was found, that for codebook sizes beyond
I = 64 the enhanced signal is almost indistinguishable from
the original wideband speech. Even for extremely small
codebooks with down toI = 3 entries, acceptable results
can be achieved.

In many informal and comparative listening tests, all of
the described algorithms yielded good results — a signif-
icant extension of the bandwidth is audible. Occasionally,
there are audible artifacts, mainly during unvoiced fricatives
like [s] or [f] , which result from wrong classifications by
the envelope estimation algorithm. However, the more ac-
curate the a priori knowledge is in the algorithm, the less
frequent is the occurence of such artifacts. As expected, the
best results are achieved by the MMSE estimator.

6. COMPLEXITY

The computational complexity of the proposed algorithm
strongly depends on the parameterization: a good quality of
the enhanced speech signal can be achieved with less than
5 WMOPS — the main part of the computational power
is needed for the calculation of the featuresx of the nar-
rowband speech signal. If the algorithm is placed behind a
speech decoder, the complexity can further be reduced by
adopting variables from the decoder.

7. CONCLUSION

The proposed method allows a bandwidth extension of
lowpass-bandlimited speech to a frequency range of up to
7 kHz. The results proove, that there is enough informa-
tion in the low frequency regions to securely estimate the
missing high frequency components – however, for this es-
timation more features of the narrowband speech than only
its spectral envelope should be utilized. For this purpose the
proposed statistical framework turns out to be an appropri-
ate tool.
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