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ABSTRACT

The aim of the artificial bandwidth extension (BWE) of speech
signals is to recover wideband speech from bandlimited speech.
As the BWE algorithm is supposed to operate without additional
side information on the original wideband speech, it has to exploit
mutual dependencies between the available and missing frequency
bands of the speech signal.

In this paper the BWE is examined from an information theo-
retic perspective. After defining a performance measure, and in-
troducing a few assumptions on a generalized BWE algorithm,
a general relationship between mutual information and the max-
imum achievable estimation performance is formulated, which en-
sues an upper bound on the performance of BWE algorithms. Fi-
nally, some measurements considering a representative BWE sce-
nario are presented.

1. INTRODUCTION

In current public telephone systems the bandwidth of the transmit-
ted speech is limited due to constraints of the old analogue tele-
phone system to a frequency range of up to about 3.4 kHz. This
bandwidth limitation causes the characteristic sound of “telephone
speech”. Listening experiments have shown that an increased fre-
quency bandwidth of speech signals contributes significantly to the
perceived speech quality as well as to intelligibility.

True wideband speech communication requires a modification
of the transmission link by enhanced speech codecs. An alternative
approach towards a higher (audio) bandwidth is the artificial band-
width extension (BWE): missing low and high frequency compo-
nents of the speech signal are recovered at the receiving end of the
transmission link utilizing only the bandlimited speech.

It is plausible that an extension of the bandwidth of speech sig-
nals is only possible, if there are sufficient dependencies between
the available bandlimited speech signal and the missing frequency
components. The fact that the narrowband speech and the missing
signal components are results of the same physical speech pro-
duction process gives rise to the assumption that there are such
dependencies in speech signals. This assumption is supported by
the success of many methods for BWE published throughout the
last decade (e.g. [1] – [7]). There are very few publications so far
which shade some light onto the information theoretic background
of artificial bandwidth extension [8], [9].

In digital signal processing, the linear dependencies between
signals are commonly described in terms of correlation factors.
In an information theoretic perspective, the dependencies between
different signals are described by their mutual information (MI).
In contrast to the correlation measure, the MI covers all kinds of
linear and non-linear dependencies. The aim of this paper is to in-
vestigate the relationship between the maximum achievable qual-
ity of a BWE algorithm on one hand and the mutual information
between representations of the bandlimited speech and of the miss-
ing frequency components on the other hand.

2. ARTIFICIAL BANDWIDTH EXTENSION

Within the scope of this paper, we will concentrate on the exten-
sion of the bandwidth of low-pass filtered speech signals towards
high frequencies. According to the frequency range of typical
telephone speech, we assume that the narrowband speech signal
contains frequency components up to a cutoff frequency of about
3.4 kHz — this frequency band will be called the base-band in the
following. The aim of the bandwidth extension algorithm is the
recovery of signal components up to a cutoff frequency of 7 kHz,
which is the upper band limit of typical wideband speech. The
extended frequency range between 3.5 and 7 kHz will be called
missing or extended frequency band in the following. Note that
the results of this paper can be applied to different BWE scenarios
as well, e.g., to the bandwidth extension toward low frequencies.

The vast majority of the adaptive BWE algorithms published
in literature to date are based on the well-known linear source-
filter model of the speech production process: it is assumed that
the human vocal tract can be modeled by an auto-regressive (AR)
filter (

� � � � � 	
), which is excited by a spectrally flat excitation sig-

nal ( � � � 	
). Consequently, the bandwidth extension of the speech

signal is commonly performed separately for the spectral envelope
and the excitation of the speech [1], [2] (cp. Fig. 1). It has been
found that the spectral envelope is particularly important for the
subjective quality of the extended speech (e.g. [2]).
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Fig. 1. Signal-flow of an exemplary BWE algorithm (from [6]).

2.1. Performance Measure
For evaluating the performance of a BWE algorithm, the distor-
tion of the spectral envelope of the extended speech signal shall
be measured w.r.t. the original wideband speech signal. Since the
base-band speech is readily available in the BWE system, we are
interested in the shape as well as the gain of the spectral envelope
in the missing frequency range only. The gain shall be expressed
with respect to the base-band signal components, i.e., it shall be a
relative gain as specified later (cp. e.g. [8], [7]).

To define the spectral distortion measure, first the wideband
speech signal is split into two sub-band signals, which contain only
the base-band components, or only the extended frequency com-
ponents of the wideband speech respectively. For this purpose the
wideband speech is resampled to a sampling rate of 14 kHz. Then
the two sub-band signals are determined via low-pass filtering (cut-
off frequency 3.4 kHz) and high-pass filtering (cutoff frequency
3.5 kHz) respectively. Finally, the two signals are downsampled
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by a factor of two by omitting every second sample of the sig-
nals. The two resulting sub-band signals are denoted by � bb

� � �
for

the base-band signal, and by � mb
� � �

for the signal containing the
missing frequency band of the wideband speech. Both sub-band
signals are sampled at a sampling rate of 7 kHz.

In the next step, two individual auto-regressive models are fitted
to frames (duration 20 ms) of the two sub-band signals. This is ac-
complished by a conventional LPC analysis, i.e., by calculation
of the auto-correlation coefficients and a subsequent Levinson-
Durbin algorithm [10]. The model used for representing the
missing frequency band spectrum � � mb

� � 	 � � � � is, e.g., given by� �mb � � � mb
� � 	 � � � � (cp. Fig. 2). The results of the LPC analysis are

the coefficient set � mb (of � mb
� � �

) representing the spectral enve-
lope of the missing frequency band, as well as two gain factors �

bb
and �

mb of the base-band and the missing frequency band respec-
tively. Since the relative gain of the extended frequency band shall
be measured, we define �

rel � �
mb � �

bb. The order of � mb is � � .
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Fig. 2. AR modeling of the spectral envelope of the sub-band sig-
nal containing the missing frequency band.

We define the performance of the estimation of the wideband
spectral envelope in terms of the log spectral distortion (LSD) in
the missing frequency band� �LSD � �� � �  "  # � % ' ) + - / �

rel� � mb
� � 	 � � �1 � % ' ) + - / 4�

rel� 4� mb
� � 	 � � � 5 � � 6 7 (1)

where the quantities � mb
� � 	 � �

and �
rel label the modeled fre-

quency spectrum and relative gain of the missing frequency band
of the original wideband speech, and 4� mb

� � 	 � �
and 4�

rel denote
the corresponding estimated parameters as determined by a band-
width extension system1. Note that the LSD measure is evaluated
for the sub-band signal � mb

� � �
containing the missing frequency

band only, such that the integration range of 1 �
to

�
in (1) covers

the missing frequency range of 3.5 to 7 kHz in the original wide-
band speech signal. The unit of

�
LSD is dB.

Using Parseval’s theorem, the LSD can alternatively be ex-
pressed in cepstral domain [11]

� �LSD � # � %' ) + < � % 5 � @ � B / 1 4B / � � D � EG H I - � B H 1 4B H � � K 7
(2)

where the cepstral coefficients
B / 7 B - 7 M M M

are calculated from the
AR coefficients � mb and the relative gain �

rel of the missing fre-
quency band via a recursive formula given in [10]. Only the first� � D �

cepstral coefficients derived in this way are non-redundant,
while the remaining coefficients can be determined from these
foremost coefficients. Note that the 0-th coefficient

B /
is not set

1Estimated quantities are marked with a tilde (as in
�N

rel) in this paper.

to zero here, as it is often the case if only the shape of the spec-
trum shall be evaluated. For a sequence of speech frames, the root
mean-square (RMS) average of the LSD is given by

O�
LSD � P � � %' ) + < � % S UUV W X �� � B / 1 4B / � � D EG H I - � B H 1 4B H � � Z M

(3)

The LSD measure correlates reasonably well with the subjec-
tive speech quality. Therefore, it has found wide acceptance, for
example in the area of speech coding, where it is commonly used
to assess the quality of quantizers of the spectral envelope. As a
rule of thumb, the speech quality is called sufficient (or “transpar-
ent” in the case of (narrowband) speech coding), if the log spectral
distortion is less than 1 dB on the average. Usually, the number of
outliers with a high distortion (e.g. [ �

dB) is also evaluated.

2.2. Assumptions on the BWE Algorithm
The estimation of the shape of the spectral envelope in a BWE
system will be described in the following by the simple function4\ � ] � ^ � 7

with the estimation error ` � \ 1 4\ M
(4)

Because the performance of the BWE algorithm shall be measured
in terms of the LSD measure from the previous section, the quan-
tity \ resembles a weighted cepstral representation of the miss-
ing frequency band, which can be determined from cepstral coef-
ficients

B / 7 B - 7 M M M B a " -
as followsb H � c -e � B H 7

if f � %B H 7
if

� g f h � M (5)

The scalar values b H
constitute the

�
-dimensional vector \ �j b / 7 b - 7 M M M b a " - k m

. Note that the quantity 4\ can be calculated for
any BWE algorithm either from the extended speech signal or di-
rectly from the estimated representation of the wideband spectral
envelope (as e.g. 4� in Fig. 1) if applicable.

For each frame of the input speech signal, the BWE system de-
termines an individual estimate 4\ on the basis of characteristics
of the bandlimited input speech. These characteristics are repre-
sented by a feature vector

^
, which is extracted from each frame

of the input speech. In most BWE systems described in literature
to date, the estimate of the spectral envelope is based on informa-
tion on the spectral envelope of the narrowband speech signal, e.g.,
represented by its power spectral density or cepstral coefficients.

We have to impose the limitation here that the estimator is
memory-less, i.e., the estimate 4\ is calculated deterministically
from the feature vector

^
for each individual signal frame. Note,

however, that we do not assume anything about the particular real-
ization of the estimator: the function ] � ^ �

can be interpreted as a
generalized description of any kind of linear or nonlinear estimator
with arbitrary complexity — including the approaches commonly
used for BWE, e.g., codebook / linear mapping, statistical estima-
tion etc.

3. AN UPPER BOUND ON THE ESTIMATION
PERFORMANCE

In this section a relation is derived between the mutual informationn � ^ o \ �
(between the features

^
of the narrowband speech signal

and the representation \ of the missing frequency band) and the
maximum possible quality of an estimation 4\ of the coefficients \ .
The resulting bound is a generalization of a bound on the predic-
tion gain for stationary scalar stochastic processes as described by
Bernhard in [12]. Bernhard’s bound is reformulated here for the
general scalar estimation problem, and it is extended to describe
the estimation of vector signals.
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3.1. Scalar Estimation
Let’s first consider the case that the signal b to be estimated is a
continuous scalar quantity (cp. [12]). The mutual information be-
tween b and

^
can be expressed with respect to the non-conditional

and conditional differential entropies of b [13]n � ^ o b � � � � b � 1 � � b � ^ � � � � b � 1 � � ] � ^ � D � � ^ � M
(6)

Because the estimate ] � ^ �
is deterministically depending on

^
,

the conditional entropy � � ] � ^ � D � � ^ �
is equal to the conditional

entropy � � � � ^ �
of the error signal due to the shift invariance of

the entropy [12], [13]. In other words, the estimate ] � ^ �
does not

yield any new information, if the vector
^

is already known. Fur-
ther, it is well known that conditioning reduces entropy, i.e., we
have � � � � ^ � g � � � �

. Finally, the entropy of a scalar signal with
the variance � �� is upper bounded by the entropy of a normally dis-
tributed variable with the same variance [13]. Applying the three
statements of this paragraph in the same order yields the inequality

� � ] � ^ � D � � ^ � � � � � � ^ � g � � � � g �� ' ) + � � � � � �� 	 M
(7)

Note that logarithms are always to the base of
�

throughout this
paper unless explicitly stated differently. Then, the unit of the dif-
ferential entropies and mutual information is in nats. Using (7),
Eq. (6) can be transformed ton � ^ o b � � � � b � 1 �� ' ) + � � � � � �� 	 M

(8)

3.2. Vector Estimation
The result from Sec. 3.1 shall now be generalized to the estimation
of vectors. Hence, the variables \ and ` are now

�
-dimensional

vectors. The estimation can be described individually for each
component b H

of the vector \ , such that 4b H � ] H � ^ �
and �

H �b H 1 4b H
. The estimation errors of the individual estimators can be

calculated from (8)' ) + � �� 
 � � � � � b H � 1 n � ^ o b H � 	 1 ' ) + � � � � �
(9)

or, if the � � � operation is applied to both sides of the inequality� �� 
 � �� � � � � � � � � � b H � ^ � � M
(10)

Adding up the inequalities of the individual estimators of all vector
components yields a bound on the overall mean-square error

W � � ` � � � � a " -G H I / � �� 
 � �� � � a " -G H I / � � � � � � � b H � ^ � � M
(11)

The first equality in (11) holds, if the estimate 4\ is without bias,
i.e., if W � ] � ^ � � � W � \ � .

In the next step, we use a relation between the arithmetic
and geometric mean of a sequence: if the numbers of a se-
quence � / 7 � - 7 M M M � � " -

are positive, the arithmetic mean is al-
ways greater than or equal to the geometric mean, i.e.,

-� � � / D� - D M M M D � � " - � � � P � / � - M M M � � " -
. In our case, the values of� � � � � � � b H � ^ � �

are strictly positive and we find

W � � ` � � � � �� � � @ a " - H I / � � � � � � b H � ^ � � K "#

� �� � � � � � @ �� a " -G H I / � � b H � ^ � K M
(12)

This expression contains the sum of the conditional entropies of
the elements of \ . As it is well known, the joint entropy of several
variables is always smaller than or equal to the sum of the indi-
vidual entropies, i.e., $ a " -H I / � � b H � ^ � � � � b / 7 b - 7 M M M b a " - � ^ � �� � \ � ^ �

, and therefore

W � � ` � � � � �� � � � � � # �� � � \ � ^ � 5� �� � � � � � # �� � � � \ � 1 n � ^ o \ � 	 5 M
(13)

Hence, a lower bound on the mean-square estimation error can be
formulated in dependence of the mutual information

n � ^ o \ �
.

3.3. Application to Bandwidth Extension
The derived bound on the estimation performance shall now be
applied to the problem of artificial bandwidth extension. First
the mean-square error of the assumed spectral envelope estimator
from Sec. 2.2 is investigated. Due to the weighting of the represen-
tation \ of the missing frequency band, the MSE W � � ` � � � resem-
bles a truncated version of the cepstral distance within the square
root of (3). Because the truncated elements are non-negative, we
find the inequality O�

LSD
� P � � %' ) + � % & W � � ` � � � M

(14)

Hence, in a first step we can formulate a lower bound on the mean
log spectral distortion of the estimated spectral envelope of the
missing frequency band in dependence of the MSE of 4\ . The MSE
of the estimator is further lower bounded by (13). Accordingly,
inserting (13) into (14) yieldsO�

LSD
� P � � %' ) + � % ( �� � �* + , -.� / a � � � # �� � � � \ � 1 n � ^ o \ � 	 5 7

(15)

which gives a lower bound on the achievable RMS log spectral
distortion in dependence of the mutual information

n � ^ o \ �
and of

the differential entropy � � \ �
. Alternatively, a lower bound on the

mutual information can be formulated, if a particular value of
O�
LSD

is specified n � ^ o \ � � � � \ � 1 � ' ) + O�
LSD/ a M

(16)

Thus, if the actual MI
n � ^ o \ �

is lower than the value on the right
hand side of (16), it is by all means impossible to achieve the de-
sired RMS log spectral distortion

O�
LSD.

4. MEASUREMENTS

In this section, the application of the bandwidth extension to re-
cover frequencies above 3.5 kHz is considered. The missing upper
frequency band between 3.5 and 7 kHz is represented by

� � 0
(weighted) cepstral coefficients which are derived from � � � 2
LPC coefficients � mb and the relative gain �

rel as described in
Sec. 2.1. For this particular application, the lower bound on the
achievable mean log spectral distortion shall be estimated by ap-
proximating the differential entropy � � \ �

.
To define an estimation method for the differential entropy� � \ �

, we start with its integral definition

� � \ � � 1 � 4 4 4 � 7 � \ � ' ) + 7 � \ � � \ � 1 W � ' ) + 7 � \ � � M
(17)
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The
�

-dimensional integral in (17) can be interpreted as an ex-
pectation operation. This expectation operation can be approxi-
mated, if a model of the probability density function (PDF)

7 � \ �
is available. In our investigations, we employed a Gaussian mix-
ture model (GMM) for this purpose, which was constituted from� � � � �

weighted multivariate Gaussian densities � � 4 �
with

mean vectors � � and full covariance matrices 	 �
7 � � \ � �

� " -G
�

I / 
 � � � \ o � � 7 	 � � � 7 � \ � M
(18)

The scalar weights 
 � as well as the parameters � � and 	 � of the
individual Gaussians were trained by the common expectation-
maximization (EM) algorithm [14], [15]. The training data set
consisted of more than 500000 non-overlapping frames of length
20 ms of wideband speech spoken by a number of different speak-
ers in different languages.

With help of the model of the PDF
7 � \ �

, the result of the ex-
pectation operation from (17) can be approximated by numerical
integration [15]

� � \ � � 1 �
� �

� � " -G
�

I / ' ) + 7 � � \ � � � � � M
(19)

The evaluation of the expectation operation is based on “synthetic”
data vectors \ � � � �

,
� � % 7 � 7 M M M � � 1 �

, which are generated by
a random generator according to the model

7 � � \ �
of the PDF of\ . In our evaluation, we have used � � � � % �

synthetic vectors.
In the simulations we found a differential entropy of \ of about

� � \ � � 1 % M � % �
nats. The resulting bound on the achievable mean

log spectral distortion
O�
LSD in dependence of the available mutual

information
n � ^ o \ �

between the feature vector
^

of the bandlim-
ited speech and the cepstral representation \ of the missing fre-
quency band is illustrated in Fig. 3.
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Fig. 3. Lower bound on the RMS log spectral distortion
O�
LSD for

the bandwidth extension towards high frequencies.

In analogy to the estimation of the differential entropy, an ap-
proximation of the MI

n � ^ o \ �
can be determined with help of a

GMM
7 � � ^ 7 \ � � 7 � ^ 7 \ �

of the joint PDF of
^

and \ . The
numerical evaluation is based on the integral definition of the MI
[13], and it can be performed in the same manner as for the differ-
ential entropy with synthetic pairs of data vectors

^ � and \ �
n � ^ o \ � � W � c ' ) + 7 � � ^ � 7 \ � �7 � � ^ � � 7 � � \ � �  M

(20)

The results of estimates of the MI for some conceivable feature
vectors

^
of the bandlimited speech signal are listed in Tab. 4.

It must be emphasized that the accuracy of the approximated
values for the entropy � � \ �

and MI
n � ^ o \ �

as presented in this
section are limited by the accuracy of the constituting GMMs.
Hence, the figures given in the example of this section are by no
means the final answer.

feature vector
^ ! " $ ^ n � \ o ^ �

[bit/vector]

mel freq. cepstral coeff. (MFCC) 10 2.3325
auto-correlation function 10 2.6089
LPC coefficients 10 2.3054
cepstrum (LPC-derived) 10 2.2401

Table 1. Estimates of the MI
n � ^ o \ �

for the BWE of the upper
frequency band with different features of the bandlimited speech.

5. CONCLUSIONS

In this paper we have presented a lower bound on the mean log
spectral distortion of the spectral envelope in the missing fre-
quency band as achievable by any memory-less BWE algorithm.
Since the tightness of the bound has not been proven yet, it is not
known whether effective estimators exist. Also, it is in the nature
of the information theoretic bound that it does not point out a par-
ticular strategy to design optimal estimators.

From the fact that the maximum achievable performance of a
BWE system depends on the MI

n � ^ o \ �
, we can conclude that

it is advantageous to carefully select the elements of the utilized
feature vector

^
such as to maximize the mutual information.
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