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ABSTRACT

The aim of artificial bandwidth extension (BWE) is to convert
speech signals with “standard telephone” quality (frequencies up
to 3.4 kHz) into 7 kHz wideband speech. The principal key to high
quality BWE is the estimation of the spectral envelope of the wide-
band speech. In general, this estimation of the wideband spectral
envelope is based on a number of features that are extracted from
the narrowband input speech signal.

In this paper we investigate potential features and evaluate
their suitability for the BWE application. The quality of each fea-
ture is quantified in terms of the statistical measures of mutual in-
formation and separability. It turns out that the best BWE results
are obtained by using a large feature “super-vector” (— high mu-
tual information) which is subsequently reduced in dimension by
a linear discriminant analysis (— large separability). This solution
also helps to reduce the computational complexity of the estima-
tion of the wideband spectral envelope.

1. INTRODUCTION

In current public telephone systems the bandwidth of the transmit-
ted speech is limited due to constraints of the old analogue tele-
phone system to a frequency range of up to about 3.4 kHz. This
bandwidth limitation causes the characteristic sound of “telephone
speech”. Establishing true wideband speech communication re-
quires a modification of the transmission link by enhanced speech
codecs. An alternative approach towards a higher (audio) band-
width (typically up to 7 kHz, sampling rate 16 kHz) is the artifi-
cial bandwidth extension: Missing low and high frequency compo-
nents of the speech signal are recovered at the receiving end of the
transmission link utilizing only the bandlimited speech [1, 2, 3].

The vast majority of the adaptive BWE algorithms published
to date are based on the well-known linear source-filter model of
the speech production process: It is assumed that the human vocal
tract can be modeled by an auto-regressive filter 1/A(z), which is
excited by a spectrally flat excitation signal u(k). Accordingly, the
bandwidth extension of the speech signal is commonly performed
separately for the spectral envelope and the excitation of the speech
[1, 2] (cf. Fig. 1). The spectral envelope is particularly important
for the subjective quality of the extended speech, e.g. [2].

In this paper the focus shall be on the feature extraction block
which is preceding the step of estimating the wideband spectral en-
velope. In general, feature extraction and estimation of the wide-
band spectral envelope are performed on a frame-by-frame basis
with frame lengths of about 10-30 ms. The feature extraction re-
duces the dimensionality of each frame of the narrowband signal
snb(k) such that the subsequent estimation of the spectral enve-
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Fig. 1. Signal-flow of an exemplary BWE algorithm (from [4]).
This contribution focuses on the feature extraction block that is
shaded in gray. The subscripts nb and wb denote narrowband
and wideband signals, respectively. Note that the sampling rate
is 16 kHz for all signals in the diagram, i.e. it is assumed that the
input signal sn, (k) has already been interpolated if required.

lope is feasible and computationally efficient. The result is the
feature vector x = [z1,...xp]T with the dimension b = dim x.
Usually, representations of the spectral envelope of the narrow-
band signal sn1, (k) are used as features, e.g. LPC or LSF vectors
or cepstral coefficients. In some contributions additional features
such as voicing criteria are taken into account.

For an efficient BWE algorithm a very compact feature vector
is needed: The dimension of x shall be as low as possible to keep
a low computational complexity but on the other hand the features
shall provide as much usable information on the estimated wide-
band spectral envelope as possible.

A multitude of potential features x can be defined that are ex-
tracted by any linear or non-linear mapping from each frame of
the narrowband speech signal sn1, (k). In this paper the usability of
different features, well-tried and new ones, for the bandwidth ex-
tension problem shall be investigated. The “quality” of the features
is quantified by two instrumental measures:

e Shannon’s mutual information between the feature set x

and the estimated quantity can be regarded as an indication
of the feasibility of the estimation task [5, 6].

o The separability measure is well-known from statistics (e.g.
[7]). It quantifies the discriminative power of a feature set
for a classification task.

Note that the insights and results of this paper are mostly indepen-
dent from the particular approach used for estimating the wideband
spectral envelope.

2. MUTUAL INFORMATION

In an information theoretic perspective, the dependencies between
different signals are described by their mutual information (MI).
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The MI covers all kinds of linear and non-linear dependencies.
Here, we want to investigate the mutual information I(x;y) be-
tween the feature set x and the estimated quantity y, i.e. the pa-
rameters representing the (true) wideband spectral envelope or the
“missing” sub-band thereof’. This is motivated by [6] where it has
been shown that for a specific MI the minimum achievable mean
square estimation error is lower bounded. The larger the MI the
lower is the bound. Hence, high mutual information I(x;y) is
a necessary condition for a high quality estimation of y from the
observations x. Note, however, that the bound is not necessarily
tight such that a large mutual information alone is not sufficient to
guarantee good estimation performance.

2.1. Numerical Approximation

For estimating the mutual information I(x;y) we use a parametric
approach because of the high dimension of the continuous vectors
x and y. The joint probability density function (PDF) p(x,y) is
approximated by a Gaussian mixture model (GMM), i.e. a sum of
L weighted multivariate Gaussian densities A/(-) with mean vec-
tors p; and covariance matrices V;

L
pxy) =Y NGy, %) = p(x,y) . (1)

=1

The scalar weights p; and the parameters y; and V; of the individ-
ual Gaussians are trained by the expectation-maximization (EM)
algorithm. Then, the mutual information is calculated numerically
from the parameters of the GMM [§]

I(X§ y) ~ Eﬁ(x,y) {lOg I%}
S log PEM).Y() @

2
Sis

5

o5}

4
ay
S
=
<
S
N—

where the vector pairs X(v), y(v) are generated synthetically ac-
cording to the model PDF f(x,y). In our investigations we have
used L = 256 Gaussians with full covariance matrices. The nu-
merical evaluation of Eq. (2) was performed with M = 10° syn-
thetic vector pairs.

2.2. Properties

From the definition of mutual information, e.g. [9], a number of
properties of this measure for feature selection can be found:

o If the relation between two different feature vectors is de-
fined by a bijective mapping, the MI is identical for both
feature vectors. In this case, the MI measure does not pro-
vide any hint which feature set shall be preferred.

o If several parameters of the narrowband speech (say x4, B
and x¢) form a Markov chain x4 — B — x¢, €., if x¢
can be calculated from x g, and g is calculated from x 4,
it appears favorable to select the very first element £ 4 of
the chain as a feature. Due to the data processing inequality
[9], MI is maximized by this choice.

e For combined feature vectors the MI cannot be sim-
ply added. In general, the inequality I(xa,xB;y) <
I(xa;y) + I(xB;Yy) applies.

IThe true values of the representation y can be calculated if wideband
speech is available (cf. [6]).
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3. SEPARABILITY

From the field of pattern recognition the separability is known as
a measure for the quality of a particular feature set for a classifi-
cation problem [7]. In the BWE application the class definitions
should best be adopted to the method used to estimate the wide-
band spectral envelope: for example, if codebook mapping is used
[2] the classes should correspond to the correct codebook indices
as computed from true wideband speech. For an HMM-based ap-
proach [4] the classes should be the true HMM state information.

The separability measure can be calculated from a labeled set
of training data, i.e. for each feature vector in the set the corre-
sponding class must be known. Let =Z; denote the set of feature
vectors x assigned to the ¢-th class. The number of feature vec-
tors in the é-th set is Nz, = |&;|. The total number of frames
in the training data is denoted by N,,. From the training data the
within-class covariance matrix

Vi = Nl—mz 3 (= i) (x — i) 3

i=1 x€E;

and the between-class covariance matrix

Ng Ne
Bu=) o (pi—m)(pi — )" @)
i=1 m
are calculated, where
Ns
1 Nz,
B = N, x;'x and p= ; . Wi - 5)

The separability measure shall be larger if the between-class
covariance gets smaller or if the within-class covariance gets
larger. Accordingly, the separability measure is empirically de-
fined by the term Jx = V' By. To obtain a scalar measure for
the separability of the classes a trace criterion is used [7]

((x)=tr Jx = tr (Vi 'Bx) . (6)

The separability depends on the definition of the classes. Compar-
ing ¢(x) for different feature vectors x with the same class defini-
tions, a larger value indicates a better suitability of the correspond-
ing feature vector for classification and estimation.

The separability measure has the following properties:

e The definition of the separability measure is based on the
implicit assumption of a normal distribution of the feature
vectors that are assigned to each class. If this assumption
is not valid, the significance of the separability measure is
reduced.

e By the separability measure all classes are treated alike.
Therefore, the separability of two very similar classes (w.r.t.
the represented speech sound) is rated like the separability
of two very different classes. Hence, a maximization of the
separability not necessarily leads to the optimum achiev-
able estimation performance (in the MMSE sense) of the
subsequent estimation rule.

e In general the values of the separabilities can not be added
up if several features are assembled to a composite feature
vector. In this case the separability of the composite feature
vector must be measured anew.



3.1. Linear Discriminant Analysis

The purpose of the linear discriminant analysis (LDA) is to obtain
a feature vector with maximal compactness [7]: starting from the
high-dimensional “super-vector” xo the dimension of the feature
vector x shall be reduced while the discriminating power shall be
retained or decreased as little as possible. The reduction of dimen-
sion is performed (during BWE) by means of a linear transforma-
tion

x=H 'xg €

where the matrix H is a 8 X b matrix with b = dimx < 8 =
dim x¢. The transformation matrix H shall further be an orthonor-
mal matrix.

The matrix H is optimized such that the separability of x is
maximized [7]

H

¢(x)

The solution to Eq. (8) is achieved by composing the matrix H
from the eigenvectors ®1,®> ... P, that are assigned to the b
largest eigenvalues Ay > A2 > ... > Ap of V;OIBXO. The com-
putationally complex preparation of the transformation matrix H
is performed off-line during the training phase of the BWE algo-
rithm.

The LDA makes it possible to take many primary features
of the bandlimited speech signal into account, using a high-
dimensional super-vector xo. Nevertheless, the dimension of x
can be small — without loosing too much discriminating power
— such that the complexity and memory consumption of the sub-
sequent estimation algorithm are low.

arg max ¢(x), where )

tr (Vi'Bx) = tr (H Vg By H) .
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4. EVALUATION

In this section the typical application of high frequency bandwidth
extension will be considered. That is, the narrowband speech sig-
nal snp, (k) has frequency components in the range of 0.3-3.4 kHz.
By the BWE algorithm a wideband signal sy (k) with frequency
components up to 7 kHz shall be produced.

For measuring mutual information and separability, the speech
signals are subdivided into frames with a length of 20 ms. For each
signal frame the primary features and (from corresponding wide-
band speech) the vector y is determined. The vector y consists
of weighted cepstral coefficients representing the gain and shape
of the spectral envelope within the missing frequency band (3.4—
7 kHz) [6, 4]. All of the measurements were performed using the
BAS? SI100 speech corpus consisting of about 36 hours of clean
German speech spoken by about 100 male and female speakers.

4.1. Primary Features

The following elementary feature vectors and scalar features were
investigated:

e The normalized auto-correlation function (ACF). Both the
ACEF vector consisting of the first ten coefficients as well
as the (scalar) auto-correlation coefficients for the lags of 1
and the pitch period are considered.

e The LPC and LSF coefficients as calculated from the ACF
as well as the LPC-derived cepstrum.

2Bavarian Archive for Speech Signals
(http://www.phonetik.uni-muenchen.de/Bas)

o The cepstrum and the mel frequency cepstral coefficients
(MFCC), both calculated directly from the narrowband
speech frame.

e The normed frame energy (frame index m)

__log E(m) — log Emin(m)

nr = 5 9
Tarp(m) log E(m) — log Emin(m) ©)
with
N-1
E(m) = ) sw(®)
k=0
Nmin
Enin(m) = mig E(m — p)
pre=

Em) = aEm-1)+(1—-a)E(m),

where the forgetting factor is adjusted to o = 0.96, and the
minimum search window has a size of Npmin = 200. The
number of samples per frame is V.

e The gradient index [10]

N

3 L) lsan(®) — sl =D g

K=2 %E(m)

il:gi

The variable 1 (k) denotes the sign of the gradient spp (%) —
snb(k—1),1.e.,1(k) € {—1,1},and ¥(k) = 1/2|¢p(r)—
Y(k = 1)

o The zero crossing rate.

e The pitch period, estimated by the lag in the range of 20 to
130 (sampling rate 8 kHz) for which the ACF is maximal.

e An estimate of the local kurtosis
N-1

1 1
oy = log > sun(k) — 2log NEm). an

k=0
e The spectral centroid

SN [Sun (™)
(5 +1) 220" [Su(e%)

12)

Tse =

The quantity Sap,(e7%) labels the 4-th coefficient of a dis-
crete Fourier transformation of the length M of the input
signal frame.

e The spectral flatness
M-1 i,
I S
sfm =— M— .
i Lico |Sun(ed™)

The reader is refered to [11] for a more detailed description of
these primary features.

2

- (13)

4.2. Mutual Information and Separability

The estimated mutual information between y and the investigated
primary features are listed in Tab. 1. It can be subsumed that the
features describing the spectral envelope of the bandlimited speech
in fact play a major role for the bandwidth extension. Both the
mutual information and the separability measures are maximal for
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these features. It must be taken into account, however, that the di-
mension of the primary features from this group is ten times higher
than those of the scalar features.

feature vector x dim x I(x;y) ¢(x)
[bit/frame] | (16 classes)

ACF 10 2.6089 1.6349
LPC 10 2.3054 1.5295
LSF 10 2.3597 1.5596
LPC-cepstrum 10 2.2401 1.4282
cepstrum 10 2.3075 1.5483
MFCC 10 2.3325 2.2659
ACF (1) 1 0.7514 1.1237
ACEF ( pitch period ) 1 0.4450 0.4058
frame energy 1 0.9285 1.0756
gradient index 1 0.8011 1.2520
zero crossing rate 1 0.7453 1.0795
pitch period 1 0.2451 0.0530
local kurtosis 1 0.2037 0.0225
spectral centroid 1 0.7913 1.0179
spectral flatness 1 0.4387 0.3538

Table 1. Estimates of mutual information I (x;y) and separability
¢(x) for BWE of the high frequency band (3.4-8 kHz) from tele-
phone speech (0.3-3.4 kHz). For calculating the separability the
16 classes were defined by vector quantizing y [4].

To achieve the best results with the BWE algorithm it can fur-
ther be motivated from Tab. 1 to additionally include certain scalar
features in the feature vector. Particularly, the consideration of
the frame energy as well as the gradient index, zero crossing rate
and/or spectral centroid seems to be very promising.

4.3. Linear Discriminant Analysis

To evaluate the impact of the linear discriminant analysis, the esti-
mation quality obtained with the transformed feature vectors was
determined. The HMM-based MMSE estimation rule from [4] was
used with 64 HMM states and 16 mixture components in the state-
specific GMMs. Both speaker-dependent and speaker-independent
models were investigated. The results are expressed in terms of the
root mean square log spectral distortion (RMS LSD) of the esti-
mated spectral envelope within the missing frequency band (3.4—
8 kHz) [6, 4]. The 15-dimensional feature super-vector xo con-
sisted of the first ten normalized auto-correlation coefficients, the
zero crossing rate, the normed frame energy, the gradient index,
the local kurtosis, and the spectral centroid.

In Fig. 2 the mean performances are depicted that were ob-
tained both without and with the application of LDAs for the di-
mensions b = 1...5. As expected, the distortions of the estimates
are decreased by increasing the dimension of the LDA transform.
Remarkably, the achieved performances with a dimension of the
LDA transform of b = 5 are even superior to those of the esti-
mator that uses the original non-transformed feature vectors with
a dimension of 8 = 15. This effect is the result of the improved
compactness of the feature vectors: if the dimension of the fea-
ture vectors x is reduced significantly, the quality of the statistical
modeling is enhanced.

5. CONCLUSIONS

It has been shown that, in addition to the well-tried spectral enve-
lope parameters of the bandlimited speech, characteristics of the

—©— speaker-independent BWE
81 —A— speaker-dependent BWE 1

RMS LSD [dB]

A

5.5 : : ) ;
1 2 3 4 5 15
dimension b of LDA (no LDA)
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Fig. 2. Impact of a linear discriminant analysis on the estimation
performance.

excitation of the input speech, such as gain or voicing, should be
included in the feature vector x. Furthermore, it is found that by
utilizing a linear discriminant analysis the performance and robust-
ness of the bandwidth extension system can be improved, yet si-
multaneously reducing the computational complexity of the esti-
mation algorithm substantially.
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