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Abstract

The objective of this paper is to analyze the per-
formance of wavelet-based voice activity detection al-
gorithms (VAD) and to contrast it with that of the
VAD standardized for the AMR-WB (Adaptive Multi-
Rate Wideband) speech codec. Experimental results
in clean, noisy and reverberant environments show that
wavelet approaches lead to good results with respect to
speech clipping and offer a much lower computational
complexity. Integration of these algorithms into a Hidden
Markov model (HMM) speech recognizer shows that the
recognition performance using the AMR VAD can also be
obtained or improved upon by wavelet based approaches,
again at a notably reduced computational effort.

Introduction

Voice activity detectors (VAD) are common algorithms
in digital speech processing and offer a wide variety of
applications. The main fields of application are the
use in speech transmission systems with discontinuous
transmission to reduce the activity on the channel and
for noise estimation techniques applied to noise reduction
and dereverberation. In this contribution we also investi-
gate these algorithms to improve systems for automatic
speech recognition (ASR). Due to the special demands
of ASR, the VAD should be able to detect all speech
frames correctly and should be very robust even in
environmentally difficult conditions. The experiments
described in this paper are based on speech recognition
using Hidden Markov models (HMM) and mel-frequency
cepstral coefficients (MFCC).

Wavelet Transform

Fundamental parameters of a signal are given by its
distribution over time and frequency which are obtained
by the short-time Fourier transform (STFT). For this
purpose the signal f(t) is multiplied by a window function
w(t), then, the Fourier transform of this product is
computed. This process is repeated by shifting the
window over the signal and computing the Fourier
transform for every windowed block:

F (t, ω) =

∫
∞

−∞

f(τ)w(τ − t)e−jωτdτ (1)

=

∫
∞

−∞

f(τ)wt,ω(τ)∗e−jωτdτ, (2)

assuming w(t) to be centered at t = 0. The resulting
spectrogram provides an estimation of the frequency
components within a certain time interval. However, the

time resolution is the same for all frequency bands. A
central advantage of wavelet analysis is the opportunity
to obtain variable sized time-frequency regions. For this
purpose, the continuous wavelet transform (CWT) is
defined as the integral over the signal multiplied by scaled
and shifted versions of a wavelet function

γ(s, τ) =

∫
∞

−∞

f(t)ψ∗

s,τ (t)dt, (3)

where ∗ denotes complex conjugation. The wavelets
ψs,τ (t) are generated from a mother wavelet ψ(t) by

ψs,τ (t) =
1
√
s
ψ

(
t− τ

s

)
(4)

with the scaling and translation factors s and τ . The
resulting coefficients are functions of scale and position.
A low scale (detail part) indicates a compressed wavelet
which detects rapidly changing details or high frequen-
cies, whereas a high scale (approximation part) stretches
the wavelet, showing slow changes or low frequencies.

A very efficient method to use the discrete wavelet
transform (DWT) for digital signals was developed by
Mallat in [1]. Based on multiresolution analysis, it
can be shown that the DWT can be obtained using a
simple digital filter-bank. The downsampled outputs
of the specific highpass and lowpass filters are named
detail coefficients c1(p) and approximation coefficients
d1(p) respectively. A multi-level decomposition can be
achieved by an iterated filter-bank or so-called wavelet
decomposition tree.

Voice Activity Detection

In this section, an overview of wavelet-based voice activ-
ity detectors and the AMR-WB VAD, used for compar-
ison in the experiments, are presented. Early studies
on voice activity detection where carried out e.g. in
[2] and demonstrated the difficulties and challenges in
adverse environments. Classical VAD algorithms extract
parameters (e.g. short-term energy, zero crossing rate,
autocorrelation coefficients, LPC distance features) for
segments of fixed length. This leads to a limited
flexibility in the time-frequency resolution. In contrast,
the wavelet transform shows a low frequency but high
time resolution at high frequencies and low time but high
frequency resolution at low frequencies. These features
of the time-scale analysis of the wavelet-decomposition
are well suited for speech analysis and have already been
utilized in many applications.
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Wavelet-based VAD

In recent years, several authors have investigated the
advantages of the wavelet transform for voice activity
detection. Most of these methods are based on com-
puting the wavelet decomposition of the input speech
and extracting features from the wavelet decomposition.
In [3], four different energy-based parameters are com-
puted which are basically difference measures between
the detail coefficients or between the detail and the
approximation coefficients. [4] uses a similar coeffi-
cient comparison and introduces the nonlinear Teager
energy operator (TEO) [5] to expand the differences
between specific coefficients. Furthermore, [6] applies
several different functions to enhance the features (e.g.
sigmodial function, hyperbolic tangent function). The
cross-correlation between different decomposition stages
is used in [7]. In [8, 9], the signal is divided into 17 critical
subbands by using the wavelet packet transform. The
following two approaches have been identified to be the
most promising candidates and are used in the upcoming
experiments.

Wavelet VAD by Shaojun et al.

The first algorithm we explain in detail is based on [10]
with modifications in terms of different parameters and
wavelet bases. These adjustments lead to considerably
better results compared to the original implementation.
Since for large scales, the detail coefficients are mainly
determined by speech and usually show smaller values
for noise [1], at a proper scale, the average energy of
speech is greater than the one of noise. This relation can
be written as

1

N

N∑

p=1

c
y
j (p)2 > α

1

N

N∑

p=1

cwj (p)2, (5)

where N and α represent the number of wavelet coef-
ficients and a scaling factor α > 1. Moreover c

y
j (p)

and cwj (p) denote the detail coefficients of noisy speech
and noise at scale j. The algorithm uses the DWT to
decompose the signal into subbands and compares the
energy of detail coefficients at scales j = 3 and j = 4.
During the first 5 frames (m = 1, .., 5), which are assumed
to contain noise only, the root-mean square (RMS) is
calculated by

c w
j =

√√√√ 1

5N

N∑

p=1

5∑

m=1

cwj (p,m)2, (6)

where cwj (p,m) represents cwj (p) of frame m. For each

of the following frames, c y
j = RMS

{
c
y
j (p)

}
is calculated

and c w
j is updated during silence periods. The VAD flag

is set if (cy3 + c
y
4) > (α cw3 + β cw4 ). We propose the use

of 1st order Daubechies wavelets (DB1) and the scaling
factors α = 0.8 and β = 0.6.

Wavelet VAD by Pham et al.

The second wavelet VAD algorithm under consideration
is based on [4, 11]. It uses the TEO and several further
enhancement mechanisms. The wavelet coefficients cj(p)
and dj(p) are obtained by the use of a 3-stage wavelet

decomposition tree with DB3 wavelets. To improve
the discrimination of speech classes under severely noisy
conditions, the TEO coefficients c̃j(p) and d̃j(p) are
calculated by

c̃j(p) = µ(c 2
j (p) − cj(p+ 1) · cj(p− 1)) (7)

d̃j(p) = µ(d 2
j (p) − dj(p+ 1) · dj(p− 1)) (8)

with the scaling factor µ = 10. From these enhanced
coefficients, the power ratio λ and power difference δ are
extracted, i.e.,

λ =
1

Nc1

∑Nc1

p=1
c̃j(p)

2

1

Nd

∑Nd

p=1
d̃j(p)2

(9)

δ =
1

Nd

Nd∑

p=1

d̃j(p)
2 −

1

Nc

Nc∑

p=1

c̃j(p)
2 (10)

where Nd, Nc, Nc1 are the total numbers of approxi-
mation, detail coefficients and detail coefficients at scale
j = 1. The feature enhancement consists of two steps.
First, a nonlinear scaling is applied to λ and δ and
secondly, the Savitzky-Golay polynomial filter is applied
for smoothing. The scaled and filtered features λ′ and
δ′ are compared against the thresholds θ = Q33(λ

′) and
ϑ = Q50(δ

′) where Qx denotes the x-quantile. Silence
is detected when the frame is neither classified as voiced
nor as unvoiced. A similar approach in [6] reduces the
classification problem to the power difference feature. As
in the description above, δ is calculated after wavelet
transform and Teager energy computation. The feature
enhancement shows better results if a sigmoidal function
is applied to δ′ as

δ′s =
1 − e−2δ′

1 + e−2δ′
(11)

and smoothed by median filtering over the duration of
five frames. The adaptive threshold is computed by the
quantile Q50(δ

′

s) of the enhanced and median filtered
power difference. Additionally, a hangover scheme is
adopted to smooth the results and prevent detection
faults. Pauses smaller than 200ms are relabeled as
speech and short talk-spurts (< 100ms) are excluded. In
our experiments, replacing the median filter by a mean
filter of four frames and shortening the minimum pause
duration to 100ms has notably improved the results.

Adaptive Multi-rate Codec VAD

The AMR-WB VAD [12] is based upon spectral estima-
tion and periodicity detection. It uses the short-time
energy levels of different frequency bands to distinguish
whether a frame of 20ms contains speech or not. More
precisely, the speech frame is divided into 12 subbands
using a critically decimated IIR-filter-bank consisting of
allpass filters. For each of these bands, the background
noise level is estimated based on the level of previous
frames, the last VAD decisions and the signal stationarity
as well as a tone-flag. The tone detection indicates
strongly periodical signals (e.g. signaling tones, voiced
speech), which are calculated using the open-loop pitch
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AMR Shaojun Pham

Noise SNR SAN VAR SAN VAR SAN VAR

20 0.0 100 0.0 98.3 1.7 92.5
Babble 10 0.0 100 0.8 97.5 3.0 91.7

0 0.0 100 1.7 96.7 5.0 91.7

Reverb 20 0.0 100 0.0 98.3 0.0 89.2
and 10 0.0 100 0.0 98.3 0.0 89.2

Babble 0 0.0 100 0.0 98.3 1.7 90.0

20 0.0 86.0 0.8 82.5 0.3 94.2
Car 10 0.0 94 2.2 77.5 0.8 93.3

0 0.0 100 4.5 74.2 2.5 89.2

Clean speech 0.0 65.3 0.2 87.5 0.0 94.2

Table 1: VAD performance under various conditions.

gain parameter of the speech encoder. A signal-to-noise
ratio is obtained for every frame, dividing the calculated
sub-band levels by the estimated background noise levels.
Finally, this SNR is compared with an adaptive threshold
to determine an intermediate VAD decision subsequently
augmented by a hangover addition.

Experiments and Results

In the first experiment, we evaluate the detection per-
formance as well as the computational complexity of the
VAD algorithms. The second one evaluates the VAD in
conjunction with a speech recognition system.

VAD Evaluation

The implemented VADs are evaluated on speech files
from the GRID database [13]. The test is performed
using 100 sentences by four different speakers (female
and male). The speech signals are artificially corrupted
by additive car and babble noise out of the NOISEX-92
database and convolved with a measured room impulse
response of an office room (R60 = 0.37 s) [14]. The
reference voice activity labels from the database are
compared with the labels computed by each algorithm.
The measurements are the missed detection rate or
speech-as-noise (SAN) defined by SAN = Nsn

N
× 100 [%]

and the voice-activity-rate (VAR) VAR = Ns

N
× 100 [%],

where Nsn, Ns and N are the numbers of speech frames
detected as noise, all frames detected as speech and
the overall frame count. The SAN measurement is
an important indicator for the subjective quality of a
speech signal and determines the performance of a speech
recognition system. This parameter is usually required
to be zero or very low. Table 1 shows the performance
characteristics. It is evident from the experiments that
the AMR algorithm shows the best performance in terms
of a low SAN rate, which is higher for the tested wavelet
VADs. Nevertheless, the VAR values increase very fast
with decreasing SNR for all methods and reach the
100% bound very rapidly so that the entire segment is
detected as speech. It can further be seen that in the
reverberant case, the SAN values become lower since
room reverberation smears the signal energy into the
silence periods and prevents from clipping in low energy
regions. We conclude that the wavelet methods are
favorable for non-stationary noise if a low degree of
false detections is acceptable. As a second performance
measure, the computational effort of the three VAD

AMR Shaojun Pham

real time factor 0.41 0.05 0.06

Table 2: Computational effort to perform VAD, measured
as real time factor on 20min of 16kHz speech for a standard
Linux PC running Matlab on a dual core 2.4GHz processor.

clean 15 dB 10 dB 5 dB 0 dB

no VAD 1.3% 8.2% 22.0% 51.8 % 85.1%

AMR 1.5% 7.9% 17.6% 39.9% 74.2%

Shaojun 1.6% 8.0% 19.4% 44.1% 77.7%

Pham 1.7% 7.6% 17.5% 37.2% 66.1%

Table 3: Word error rate WER for clean training (purely
additive noise), bold face indicates best performance

algorithms is also determined. As Table 2 shows, the
effort is significantly reduced when a wavelet-based VAD
is applied. It must however be said that the AMR
algorithm requires around 45% of the computing time
for the linear prediction and open-loop pitch analysis.

ASR Evaluation

Speech recognition is performed by means of word-
based HMMs, consisting each of 16 states in a left to
right model. The silence model is equipped with three
states in the form of a Bakis model. The models are
trained on 13 mel-frequency cepstral coefficients with
first and second derivatives, which are obtained after
first-order preemphasis and an STFT with a window size
of 32ms. Utterance-wise cepstral mean subtraction is
performed to improve robustness. The output densities
of the HMMs are modelled as 39-dimensional mixture
of Gaussian distributions with 4 mixtures each. The
training of the HMMs is carried out using the Hidden
Markov Model Toolkit (HTK) [15] and recognition takes
place using a Matlab-based Viterbi decoder developed at
TU Berlin [16]. In order to analyze the application of
VAD for speech recognition, the AURORA-5 database is
used. It is a downsampled version of the TI-DIGITS
impaired by partly non-stationary background noise
and artificially convolved with impulse responses with
reverberation times R60 between 0.3 and 0.5 seconds.Two
tests are conducted, one with matched and one with clean
condition training. In both cases, the SNR is varied
between 0dB and clean, and 8700 utterances of adult
speakers are used for each test case. The resulting word
error rate is determined by WER = D+I+S

N
· 100%, with

N as the number of reference labels, D the deletions, S
the substitutions and I the insertions.

Clean Training

When training is carried out on clean data and tests
are performed on distorted data, the use of appropriate
noise reduction techniques would be required as seen
from the baseline performance in Table 3. However,
in order to assess the performance of VAD in itself,
the tests here were carried out without additional signal
preprocessing. Among the tested VAD algorithms, best
performance is obtained by the AMR standard VAD for
clean speech, but the performance of the algorithm by
Pham et al. significantly exceeds that of the standardized
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clean 15 dB 10 dB 5 dB 0 dB

no VAD 4.6 % 6.3 % 10.9 % 21.0% 41.1%

AMR 4.0% 5.9% 10.1% 20.1% 40.9%

Shaojun 4.0% 5.9% 10.2% 19.7% 39.6%

Pham 5.3% 6.9% 11.1 % 21.1% 41.6%

Table 4: Word error rate WER for matched training (office
room and living room, mean R60 = 0.4s )

VAD especially at low signal to noise ratios.

Matched Training

The recognizer is trained on the noisy, convolved training
set of the Aurora 5 database, which is preprocessed by
the VAD under investigation before training. Results
are shown in Table 4. Again, VAD is helpful to
improve recognition results, but when matched training
is performed, much of the VAD can also be performed
implicitly by the silence model of the HMMs. However,
there remains a performance improvement throughout
the range of tested SNRs, for both the AMR VAD and
the algorithm proposed by Shaojun et al. Here, this
first of the presented wavelet based VADs outperforms
all other strategies, but the margin of improvement
is not large, giving a relative error rate reduction of
5.4% compared to no VAD and 2.0% compared to the
AMR VAD. Moreover, it can be seen that the VAD by
Pham, while superior for clean training, is not a good
candidate for matched training. This may be due to
its large speech as noise count under instationary noise
conditions, precluding a reliable training of the HMM
silence model. Overall, for matched training the wavelet
VAD by Shaojun is clearly the superior algorithm both in
terms of computational effort and recognition accuracy.

Conclusions

In this paper, the application of wavelet-based voice
activity detectors was studied. Two wavelet-based detec-
tors were compared to the standardized AMR-WB VAD
in terms of error rates, computational effort and recogni-
tion error rate. The performed experiments show that
the VAD algorithms differ in their robustness against
background noise and reverberation. While the wavelet
based algorithms show good performance in terms of a
low voice-activity-rate, they detect more speech frames
as silence than the AMR VAD. From the implementation
perspective, the wavelet transform has a relatively low
computational complexity, about 15% of the AMR VAD,
due to the efficient filter-bank integration. Concerning
speech recognition, VAD algorithms are most helpful
when training is performed on clean data, whereas for
matched training, the performance gains by VAD are
modest. However, in all cases, performance can be gained
by applying a VAD, and in each case, wavelet based voice
activity detection can outperform the AMR VAD if the
appropriate algorithm is chosen. Thus, we see wavelet-
based VAD as a useful enhancement of automatic speech
recognition systems. Taking the computational effort
into consideration, its behavior can be preferable to that
of AMR-specified VAD, especially when it is needed to
be used under mismatched conditions.
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