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A Semi-Analytical Model for the Binaural
Coherence of Noise Fields
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Abstract—A novel semi-analytical signal processing model for
the binaural coherence of homogeneous isotropic noise fields is
presented in this contribution. This is derived from a simplified ge-
ometrical model of the human head, where the shadowing between
the left and right ear is modeled by two nonreflecting circular
plates. Based on Kirchhoff’s diffraction theory, it is shown how
the corresponding coherence is calculated. This model can be used
as part of various binaural signal processing algorithms, such as
speech enhancement for digital hearing aids or binaural speech
transmission systems. In experiments using an artificial head in a
highly reverberant environment, it is confirmed that the proposed
theoretical model shows a good match with the coherence obtained
from measurements.

Index Terms—Binaural, head shadowing, head-related, Kirch-
hoff diffraction theory, noise field coherence.

I. INTRODUCTION

T HE noise field coherence is an essential acoustical pa-
rameter of multichannel speech enhancement algorithms.

Therefore, it is required to have suitable signal processing
models which accurately describe the acoustical environment.
For homogeneous isotropic noise fields, well-known analyt-
ical models exist. In contrast to that, the influence of head
shadowing on the coherence is usually modeled heuristically.
This applies for binaural hearing aids and binaural speech
transmission systems. Early studies in [1] showed that the
influence of the head has a severe impact on the noise field
coherence and proposed a modified coherence model which is
basically a curve fitting procedure derived from measurements
with an artificial head. The authors in [2] present a model
for binaural sound synthesis which is based on the binaural
cues. However, this model allows to reproduce binaural sound
data with correct interaural time and level difference cues, but
gives no information about the binaural coherence. In [3], the
distance parameter of the free-field coherence model is simply
scaled in order to take the modified coherence into account.
This article is based on [4] and presents a semi-analytical model
for the binaural noise field coherence. The derivation employs
Kirchhoff’s diffraction theory and Babinet’s principle, cf. [5].
The main advantage compared to the previous models is that
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Fig. 1. Simplified geometrical model of the human head with two circular
plates � . Microphones are denoted by � .

arbitrary dimensions for head and microphone distances can
be employed and no acoustic measurements as in [1], [3] are
required. A MATLAB reference implementation is available
online1.

II. FREE-FIELD COHERENCE MODEL

The complex coherence between the signals with dis-
crete time index is defined in the frequency domain as

(1)

where represent the auto-power spectral den-
sities and the cross-power spectral density. The
frequency variable and sampling rate are normalized to
the normalized radian frequency . The frequently
used term magnitude squared coherence (MSC) is referred to
the squared magnitude of (1). The coherence for spherically
isotropic (3-D, diffuse) and cylindrically isotropic (2-D) fields
read for the far-field [6]

(2)

(3)

with distance between two omnidirectional microphones,
the speed of sound and the zero-order Bessel function of first

kind .

III. GEOMETRIC HEAD DIFFRACTION MODEL

A simplified geometric model for the complex head geom-
etry according to Fig. 1 is used in the following. It is assumed

1http://www.ind.rwth-aachen.de/~bib/jeub11
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Fig. 2. Illustration of Kirchhoff’s diffraction theory and Babinet’s principle. (a) Pinhole arrangement with potential � �� � at microphone � , (b) inverse
arrangement with obstacle and corresponding potential � �� �, (c) free-field arrangement with potential � �� � (6) as the sum of � �� � and � �� �. The
surface � corresponds to plate � in Fig. 1.

that the two microphones and are placed at distance
next to the pinna of each side. The resulting shadowing is

modeled by two nonreflecting circular plates ( and ) with
radius and distance . We further define a punctual
sound source by its position vector or angles (azimuth)
and (elevation) in the far-field and and the transfer
functions between and the two microphones and . The
position vector of M is denoted by . The point of origin are
marked with 0 in the figures. Besides, any point on the plate is
given either by position vector or and . All fur-
ther variables will be introduced below successively. Assuming
two omnidirectional microphones, the spherically isotropic co-
herence can be calculated for a homogeneous noise field by the
integration over all possible directions of incident of a direc-
tional sound source. Since this procedure requires knowledge
about the transfer functions , a derivation based on optical
principles will be given in the following.

IV. KIRCHHOFF’S DIFFRACTION THEORY

Kirchhoff’s diffraction theory was initially developed to ex-
plain optical phenomena in terms of diffraction. However, this
general theory can also be applied to sound waves. Consider a
monochromatic wave which propagates from a punctual source

through the opening of a screen (pinhole) as depicted in
Fig. 2(a), where is the point at which the disturbance is to be
determined. The distances between opening and and opening
and are denoted by and respectively. In the following
we assume that the opening is small compared to the distance
of both and from the obstacle and show how the corre-
sponding transfer function between and , i.e., is
derived. Based on the Kirchhoff diffraction theory, the poten-
tial at location can be expressed by the integral theorem of
Helmholtz and Kirchhoff as

(4)
where gives the integration over a nonreflecting sur-
face which encloses the point , denotes differenti-
ation along the inward normal to the surface of integration
and is the distance of the element from .
The wave number is denoted by . The surface is
formed by three partial surfaces which together form a closed
surface, the opening , a portion at the backside of the ob-

stacle and a large sphere, centered at , . This decomposi-
tion allows for some important simplifications as shown later.
So far the wave propagation between and was disturbed
by a pinhole. Now in order to calculate the potential and hence,
the transfer function with an obstacle between and , (4)
could be applied for the case depicted in Fig. 2(b). However,
since this is inherently difficult, the Babinet principle is applied
in the following, cf. [5]. This theorem gives the relation between
the free-field potential [Fig. 2(c)] and a superposition
of the potential for the pinhole arrangement [Fig. 2(a)]
with the potential of the complementary arrangement
[Fig. 2(b)] according to

(5)

Therefore, the potential is calculated first, followed by
the use of (5) to obtain . The corresponding free-field
potential (without obstacle) at the microphone reads [5]:

(6)

with constant . A further difficulty is encountered that the
values of and on the partial surfaces , and
are never known exactly. Therefore, the following approxima-
tions are made which are referred to as the Kirchhoff boundary
conditions. For it is assumed that the rim of the opening
can be neglected and hence, that the potential will not consider-
ably differ from the values obtained in the absence of the plate
(free-field). Hence, it can be written

(7)

(8)

Furthermore, the potential and hence, the derivative vanish on
, i.e., and . Additionally,

the integral over will vanish by letting the radius increase
indefinitely (see [5] for details). With such simplifications and

(9)

the potential for the pinhole arrangement [Fig. 2(a)] can be given
with (4) as



JEUB et al.: A SEMI-ANALYTICAL MODEL FOR THE BINAURAL COHERENCE OF NOISE FIELDS 199

(10)

which is known as the Fresnel-Kirchhoff diffraction formula.
The desired transfer function between and arises from
the potential by means of a normalization as

(11)

where denotes a scaling factor such that holds
in the free-field. Finally, by means of (5), (6), (10), this transfer
function reads

(12)

The geometric interpretation of and will be given in
Section V.

V. BINAURAL COHERENCE MODEL

For each microphone, the transfer function is calculated and,
due to the symmetry, the diffraction at the corresponding nearest
plate is taken into account. First, it is considered that the angle
lies in the range (see Fig. 1). According to (12),
the transfer function between and is given by

(13)

As previously indicates the integration over a sur-
face, here, of plate . and are the position vectors, such
that the distance between source and microphone is given by

. According to Fig. 1, it can be written

(14)

where is the distance from to the point of origin.
This equation holds since the distance from the source is as-
sumed large compared to the distance of the microphones, i.e.,

. The distance in (12) and (13), which corresponds

to the distance of the sound wave from the source to the point
specified by of the plate , reads

(15)

The distance between this specific point on the plate and micro-
phone can be expressed by

(16)

Additionally, the incident and emergent angles in (13) can be
written according to Fig. 1 due to the far-field assumption as

(17)

Besides, the distances and can be replaced by ,
unless for such arguments in the exponential function. Taking
further into account that , the transfer
function can be expressed by means of polar coordinates with

and after rearranging as

(18)

where is dependent on as in (16). The derivation of (12) was
performed by means of Babinet’s principle where the diffrac-
tion at the obstacle was replaced by a pinhole. There it was as-
sumed that the potential field inside the pinhole [surface in
Fig. 2(a)] is equal to the free-field potential, i.e., . How-
ever, this assumption does not hold if the source is located at the
same side as the obstacle (or opening). This can be explained
since in this case, in the inverse arrangement the surfaces
and would block the line-of-sight between source and the
opening. Hence, in our geometrical approximation of the head
as two plates, (12) is valid only for , where for
the special case the equation is also only an approx-
imation. Therefore, (12) cannot be used to calculate the transfer
function between source and for . Since in
this case and are located at the same side of the plate, no
diffraction occurs. Hence, the frequency response corresponds
to the free-field condition for , obtained from
(6), (14) and the same normalization as in (12) by

(19)

For the case , the opposite effect occurs, i.e.,
is blocked by while a free-field condition can be assumed

between source and . Due to symmetry, the transfer func-
tion can be hence formulated as
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(20)

The coherence definition of (1) can, under the assumption of
two omnidirectional microphones, generally be expressed as

(21)

Since and are independent of , the double integral
simplifies to the integration over . With (20), (21) reads

(22)

Finally, with (22), (18), and (19), the coherence can be
calculated. It can be observed that the coherence is indepen-
dent of scaling factor and distance since the prefactor

eliminates. Since a closed-form solu-
tion of the integral in (18) cannot be obtained, the coherence
given by (22) has to be solved numerically. One solution is to
calculate the integral by summation. The intervals and
in (18) have to be chosen such that the corresponding surface
elements are small compared to the sound
wavelength . Here, it is proposed that the maximum length of
every surface element should be one-tenth of the wavelength.
Details are given within the reference implementation. In order
to calculate the binaural coherence for a 2-D noise field, where
the noise sources are distributed in the same horizontal plane
as the head, the -terms in (22) have to be disregarded.

VI. EXPERIMENTS

For the verification of the proposed coherence model, room
impulse responses of a reverberant noise field
are measured with an artificial head

. The two microphones are positioned close to the
pinna at 1 cm from the ear canal, i.e., . The
measurements were repeated in an otherwise unchanged exper-
imental setup after the head was removed to examine the influ-
ence of the head. In order to evaluate the noise field coherence
of the late reverberant part only, we removed the coherent di-
rect and early parts from the impulse response. Fig. 3 shows
the corresponding curves for two microphones at a distance of

(gray). The theoretical curves represent the ideal
3-D and 2-D noise field without head (free-field) by (2) and
(3) respectively (red). The corresponding 3-D and 2-D curves
with head shadowing (22) (with and without the -terms)
are plotted in black. Regarding the figure, we conclude that the
proposed coherence model greatly approximates the measured

Fig. 3. MSC of ideal diffuse noise field and shadowing influence. Plotted are
the theoretical curves and results from measurements in a reverberant environ-
ment �� � ���� ��.

coherence. Especially for hearing-aid algorithms, assuming a
cocktail-party environment, the proposed 2-D model is the most
appropriate one.

VII. CONCLUSIONS

In this letter, a novel binaural coherence model is proposed
which takes shadowing effect of the head into account. This was
derived by using Kirchhoff’s diffraction theory and a simplified
geometrical model of the head. Experiments have shown that
the new model is a good approximation with measurements ob-
tained in a reverberant environment. This coherence model can
be used to investigate the influence of head-shadowing on coher-
ence-based speech enhancement algorithms, in binaural noise
reduction or dereverberation algorithms where the binaural co-
herence is exploited explicitly, e.g., [3], [7]; and to generate re-
alistic binaural noise fields for simulations, e.g., using the ap-
proach of [8].
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