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ABSTRACT

In this paper, we propose a novel noise power spectral density
(PSD) estimator which is beneficial for speech enhancement
systems with two microphones in diffuse noise environments.
The algorithm has a low computational complexity and re-
quires low memory usage. The main advantage is that ar-
bitrary models of the noise field coherence can be employed
and a scalable extension of existing single-channel speech
enhancement systems to dual channels is also possible. Ex-
periments demonstrate with simulated and measured data
that the proposed algorithm outperforms related algorithms
in diffuse noise conditions.

1. INTRODUCTION

Algorithms for the reduction of background noise are nowa-
days essential components in many speech communication
systems. Most mobile phones and hearing aids have inte-
grated single- or multi-channel algorithms to enhance the
speech quality in adverse environments. Among such al-
gorithms, a predominant principle is the spectral subtrac-
tion technique which generally requires an estimate of the
power spectral density (PSD) of the unwanted background
noise. During the last decades, different single-channel noise
PSD estimators have been proposed, cf. [1, 2] and the ref-
erences therein. Disadvantages of existing algorithms are a
high computational complexity, memory consumption, and
the difficulties in estimating non-stationary noise. A low
complexity single-channel algorithm that is also capable of
tracking non-stationary noise has recently been proposed in
[3]. Multi-channel noise PSD estimators for systems with
two or more microphones have not been studied very inten-
sively. In [4], a dual-channel spectral subtraction algorithm
is proposed which uses the left and right signals of a binaural
hearing aid system to estimate the noise PSD. However, this
algorithm assumes uncorrelated noise between the different
microphones which results in an underestimation of the noise
PSD in realistic conditions [5]. Recently, a further binaural
estimator based on [4] was proposed in [6] which is explicitly
designed for binaural hearing aids.

In this contribution, we derive a generalized dual-channel
noise PSD estimator which uses knowledge about the noise
field coherence. It turns out that the approach of [4] can be
seen as a special case for an uncorrelated background noise
assumption. The novel algorithm has a low computational
complexity and can be combined with different speech en-
hancement systems.

In contrast to related dual-channel noise reduction sys-
tems such as [7], the new approach allows for a scalable ex-
tension of an existing single-channel noise suppression sys-
tem by exploiting a secondary microphone channel for a more
robust noise estimation.
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2. DUAL-CHANNEL SIGNAL MODEL

The two microphone signals z1 (k) and 2 (k) are the inputs of
the dual-channel speech enhancement system and are related
to clean speech s(k) and additive background noise signals
nm (k) by the signal model shown in Fig.1, with m = 1,2 and
discrete time index k. The noisy signals are termed (k).
The acoustic transfer functions between source and the mi-
crophones are denoted by H,,(e’?). The required noise PSD

Figure 1: Dual-channel signal model.

estimate i),m()\, w) for a frequency domain speech enhance-
ment system is calculated by z1(k) and x2(k). Discrete fre-
quency bin and frame index are denoted by p and A\. Within
the processing, the input signals x,, (k) are first segmented
into overlapping frames of length L. After windowing (e.g.,
applying a Hann window), these frames are transformed via
FFT of length M (M > L) into the short-term spectral do-
main. The corresponding spectra are denoted by X, (A, u).

3. COHERENCE-BASED NOISE PSD
ESTIMATION

For the derivation of the dual-channel noise PSD estimator,
the signal model shown in Fig.1 is considered. For the sake
of brevity, we omit the frame and frequency indices (A and
u) in the following equations.

The derivation is related to the discussions in [8], where
an estimator for the speech PSD based on the noise field co-
herence was derived and incorporated in a Wiener filter rule
for the reduction of diffuse background noise. The main ad-
vantage of our approach is a noise PSD estimate for versatile
application in any spectral noise suppression rule. Through-
out this paper, the complex coherence between the two mi-
crophone signals plays an important role. It is defined in the
frequency domain by

®11z2

——, (1)
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Poiay =

with the auto-power spectral densities ®,,, and ®,q, as
well as the cross-power spectral density ®,,,,. Assuming
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that the noise sources (nm,(k)) are uncorrelated with the
speech signals, the auto- and cross power spectra at the input
of the speech enhancement system (z,(k)) read

q)zl:vl == q)ss + q)nlnl (2)
(I)zgzg = @55 + (I)ngng (3)
q)aclxg = &g + q)nan, (4)

with @, = ®4,5, = Pyys,. If the signal model of Fig.1 ap-
plies strictly, the coherence of the speech signals is I's, s, = 1
In practice, the speech coherence is close to 1 if the source-
microphone distance is smaller than the critical distance.
The critical distance is defined as the distance from the
source at which the sound energy due to the direct-path
component is equal to the sound energy due to reverbera-
tion.

Furthermore, we assume that the noise field can be char-
acterized as diffuse and hence, the coherence of the unwanted
background noise n., (k) is close to zero, except for low fre-
quencies. This was confirmed by measurements, as in [9, 8].
Additionally, we assume a homogeneous diffuse noise field,
ie.,

q>n1n1 = (I)ﬂzn2 = ®pp. (5)

Applying and reordering (1) for the noise signals n., (k)

leads with (5) to

Pring =Ining VPning Prgns = Lnyng + Pon, (6)

with 'y, n, being an arbitrary model for the noise field co-
herence such as (17). By using (5) and (2,3), the auto-power
spectra can thus be formulated as
‘I‘zlzl = ©55 + (I)nn (7)
(I)acgazg - q)ss + q)nn- (8)

It can be shown easily that the cross-power spectrum, which
is obtained using (4) and (6), can be expressed as

(I)aclscg - q)ss + Fn1n2q>nn- (9)

With the geometric mean of the two auto-power spectra

V®a101 Pasar = Pas + Pan (10)

and the reordering of (9) to

(I>ss = (bazla;z - Fn1n2 (Dnny (11)

the following equation can be formulated:

\% Coiay Paszs = Payag + Prn (1 - 1—‘n1nz) . (12)

Finally, the desired real-valued noise PSD estimate reads

® _ V (1)1111 CPIQIQ _ Re{q)ﬁzz}

1—Re{lnn, } ’

where 1 — Re{I',n, } > 0 has to be ensured for the denomi-
nator, e.g., an upper threshold of the coherence I'y,ax = 0.99.
The function Re{-} returns the real part of its argument. It
can be seen that for the special case of an uncorrelated noise
field, i.e., I'n,n, = 0, the estimator reduces to the approach
of [4]. In the practical implementation, the auto- and cross
power spectra terms in (13) are replaced by their discrete
short-time estimates using a recursive periodogram approach
according to

(13)

¢zlx1\x2x2 ()‘7 :U/) = aéxlxﬂxzxz()‘ - 17#’)

+ (1= a)| Xy (A p)?,
(i)zwvz ()‘7 /L) = aél?()‘ - 1a“) (15)
+ (1 =) X1 (N p) - X3 (A, ),

with smoothing factor 0 < a < 1 and periodograms
| X (A, p2)]2. The estimated noise PSD is denoted by ®.,,.

(14)

Table 1: Main simulation parameters.
Parameter Settings
Sampling frequency | fs = 16kHz
Frame length L = 320 (20 ms)
FFT length M = 512 (including zero-padding)
Frame overlap 50% (Hann window)
Smoothing factors a=0.9,app = 0.98, ann = 0.9

4. EXPERIMENTS AND RESULTS

In the experiments, the proposed coherence-based noise PSD
estimator (Proposed) is compared to the reference noise PSD
estimator (Reference) [4] as well as to the two single-channel
noise PSD estimators: Minimum Statistics (MS) [1] and
MMSE-based noise tracker (MMSEFE) [3]. Besides, a compar-
ison to the dual-channel coherence-based Wiener filter rule
(Wiener) [8] is given.

The experiment section is subdivided into three subsec-
tions. First the performance of the four noise PSD estima-
tors in terms of the estimation error is given. Second, we
use the estimators in combination with a noise suppression
system which is evaluated with simulated data (A4) as well
as measured data (B). Besides, the influence of a possible
attenuation of the desired speech signal among the two mi-
crophone channels is discussed followed by a short discussion
on complexity issues in the third subsection. Since the pro-
posed generalized concept of the noise PSD estimator is ca-
pable to employ arbitrary coherence models, we investigate
the algorithm under two special cases assuming

e an uncorrelated noise field (as in [4]):

Tnin, =0 (16)
e an ideal homogeneous spherically isotropic noise field:
. 27 dmic
Fn1n2 = smc (ff) ’ (17)

with distance dmic between two omnidirectional micro-

phones at frequency f and sound velocity c.
The generated dual-channel signals (A) are computed using
the approach of [10], where predefined spatial coherence con-
straints and hence, different microphone distances, can be
employed. Speech samples from the TSP speech database
[11] are summed with babble noise from the ETSI back-
ground noise database [12]. Such simulation ensures repro-
ducible results and the employment of objective evaluation
measures, especially as the coherence of realistic noise fields
such as a cocktail-party or office environment can be mod-
eled by a diffuse noise field. Besides, we use binaural bab-
ble noise recordings (B) from the ETSI background noise
database [12] which were measured with two microphones of
a dummy head at dmic = 0.15m. Even if the evaluation is
performed on babble noise only, it has to be mentioned that
the experiments showed the same tendency for other noise
types. Further simulation parameters are listed in Tab.1.
All upcoming plots use the legend shown in Fig. 2 which is
omitted within the plots for visual clarity.

4.1 Estimation Accuracy

In a first experiment, the estimation error is evaluated. The
signals are generated with a diffuse noise field constraint (A).
The symmetric segmental logarithmic estimation error be-
tween the ideal noise PSD ®,,,,(\, 1) and the estimated noise

PSD &,,,(\, 1) is calculated according to [2] by

10log,, E“E’A\’ Z;] ' , (18)

K M

logErr = ﬁ Z Z

A=1p=1

2305



—— Reference [4]

—&— Proposed
—©— Minimum Statistics [1]

—o— MMSE [2]
—#— Noise reduction with Wiener filter [8]

Noise PSD estimator

Figure 2: Legend for the evaluation plots.
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Figure 3: Noise PSD estimation error: (top) fixed SNR of
5dB (babble noise) over microphone distance, (bottom) fixed
inter-microphone distance of 0.10 m over SNR.

with total number of frames K. The ideal noise PSD is
obtained using the noise periodograms smoothed over time,
ie.,

B (A 1) = i P (A — L, ) + (1= ) IN1 (0, ). (19)

The bottom plot in Fig.3 shows the logErr at a fixed
inter-microphone distance of 0.10 m over a varying signal-to-
noise ratio (SNR). The results in terms of a varying inter-
microphone distance at a fixed SNR of 5 dB are illustrated in
the top plot. Depicted is the approach as in [4] with the un-
correlated noise field assumption and the proposed approach
(proposed) using the diffuse coherence model (17). As a ref-
erence, the results for the single-channel MS and MMSE es-
timators are also plotted. It can clearly be seen that the pro-
posed estimator outperforms the dual-channel estimator [4]
in terms of a lower estimation error. Since the algorithm [4]
assumes uncorrelated noise, the estimation error is reduced
for larger microphone distances where the correlation of the
noise field becomes lower for lower frequencies. However,
even the proposed algorithm requires a microphone distance
larger than a specific minimum which is determined by the
real coherence characteristics.

The proposed algorithm outperforms Minimum Statis-
tics independent of the inter-microphone distance and SNR.
Besides, the curves show similar results as the MMSE ap-
proach for low SNR conditions and a better performance for
high SNR conditions, with the expense of an additional mi-
crophone, but with the additional benefit of a lower compu-
tational complexity. We can also conclude that the estimator
does not work for purely coherent noise sources and shows
a larger estimation variance for lower frequencies. The sce-
nario of mixed coherent and diffuse noise fields can be tack-
led, e.g., by a combination with MS or MMSE noise PSD
estimators controlled by a classification method as proposed
in [13].

4.2 Noise Suppression Performance

In order to demonstrate the noise suppression performance,
the dual-channel speech enhancement system depicted in
Fig.4 is used in the following. It consists of a single-
channel noise reduction algorithm for processing the primary
noisy channel z;(k) only. The required noise PSD estimate

Dy (A, ) is calculated from the primary channel z (k) and
a secondary noisy channel z2(k). For the reference single-
channel estimators (MS) and (MMSE) the processing is per-
formed on z1 (k) only.

For the spectral gain calculation G(X\,pu) we use the
single-channel magnitude DFT estimation procedure under
the generalized gamma-model for the DFT-magnitudes pro-
posed in [14]. The enhanced spectrum S(\,p) is given
by the multiplication of the coefficients Xi(A, p) with the
spectral weighting gains. The enhanced time domain sig-
nal §(k) is obtained by using the IFFT and overlap-add.
The a priori SNR estimation is performed by means of the
decision-directed approach [15] with smoothing factor app
(see Tab.1).

It has to be mentioned that dual-channel spectral weight-
ing rules as well as algorithms with a dual-channel output,
e.g., for binaural hearing aids can also be employed.

For the objective evaluation, the noise attenuation (NA)
minus speech attenuation (SA) measure is used (NA-SA).
Besides, we employ the improvement in Perceptual Evalua-
tion of Speech Quality (PESQ) score [16] for selected simula-
tions. Even though this measure was initially developed for
the evaluation of speech codecs it is also widely used for the
assessment of speech enhancement algorithms. All results
were confirmed by informal listening tests.

4.2.1 Generated Input Signals (A)

The speech enhancement results for generated input sig-
nals are shown in Figs.5 and 6. The same tendency of the
logErr performance in terms of inter-microphone distance as
in Fig.3 can be observed. The proposed algorithm outper-
forms all other noise estimators in terms of the NA-SA for
distances above 0.05m and above 0.12m for the A PESQ
measure. For the special case of a small inter-microphone
distance the high estimation error of the proposed algorithm
reflects in a low noise suppression performance. The fixed
inter-microphone distance of dmic = 0.15m for the SNR vary-
ing plots is used in order to ensure comparability with the
recorded data (see Section 4.2.2).

4.2.2  Recorded Input Signals (B)

In the following experiment, recorded dual-channel (binau-
ral) babble noise from the ETSI database is used. The noise
is added to the anechoic speech signal according to the signal
model shown in Fig.1 at different SNR conditions. Since the
dummy head, which was used for the recording, has an influ-
ence on the noise field coherence, we use a binaural coherence
model [17] for the proposed algorithm.

The results for a fixed inter-microphone distance (deter-
mined by the ETSI recordings) and varying SNR are de-
picted in Fig.7. From these curves we can conclude that the
performance of the proposed estimator is similar to the gen-
erated data (A4) and effects due to recording such as acoustic
measurement noise, self-noise of the microphones and micro-
phone mismatch do no have a significant influence on the
performance, it contrast to the other algorithms. It can also
be seen that the assumption of a homogeneous noise field
with the same noise PSD among the microphones is valid.
For the recorded background noise, the proposed algorithm
outperforms all other approaches.
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Figure 4: Block diagram of the used dual-channel noise reduction system where different estimators for the ”noise estimation”

block are employed.
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Figure 5: Speech enhancement performance in terms of noise
minus speech attenuation (NA-SA): (top) plotted over the
inter-microphone distance at 5db SNR babble noise: (bot-
tom) plotted over SNR at dmic = 0.15m.
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Figure 6: Speech enhancement performance in terms of im-
provements on PESQ score plotted over the microphone dis-
tance at 5dB SNR babble noise.

4.3 Influence of Speech Attenuation among the Mi-
crophones

In order to investigate the influence of the idealized as-
sumption of similar acoustic transfer functions H,, (e’**) (see
Fig.1), simulations with a variable attenuation between the
desired signals s1(k) and s2(k) is investigated.

Such investigation is important since for binaural hearing
aids, where the desired speaker might not be located in front
of the hearing impaired user, or for dual-microphone mobile

NA-SA [dB]

A PESQ [MOS]

10
SNR [dB]

Figure 7: Speech enhancement performance plotted over the
SNR for recorded babble background noise from the ETSI
database: (top) noise minus speech attenuation (NA-SA),
(bottom) improvement in PESQ (A PESQ).

phones, where one microphone can be placed on top of the
device and a high attenuation of the speech by the user can
be expected. Figure 8 shows the influence of a speech atten-
uation between s1(k) and s2(k) from 0 to 10dB. The noise
is assumed to have the same energy at the two microphones.
Hence, for a given fixed SNR of 10dB at the primary mi-
crophone, the attenuation causes an SNR of 10 to 0dB at
the secondary microphone. The NA-SA results indicate that
the proposed noise PSD estimator is robust against a possi-
ble attenuation up to values of 5 — 6 dB. Compared to the
Wiener approach, which results in a significant performance
drop even at a low attenuation factor of 2dB, the proposed
estimator is quite robust. Similar insights are obtained from
PESQ improvements. The MS and MMSE curves are con-
stant since the attenuation factor affects only the secondary
microphone which is not exploited in the latter two algo-
rithms.

4.4 Computational Complexity

The computational effort is compared in terms of the nor-
malized processing time for all four noise PSD estimators in
Matlab. The values are normalized such that the proposed
method has a value of one. From Table 2 it can be seen that
the proposed algorithm does not show a significant increase
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Figure 8: Influence of speech attenuation between the two
microphones at dmic = 0.15m and an SNR of 5dB at the
primary microphone.

Table 2: Normalized processing time.
Algorithm: | Reference | Proposed | MS | MMSE
Time: 0.92 1 1.87 1.16

in complexity compared to the reference approach [4]. Both
coherence-based algorithms can efficiently be implemented
using first order IIR filters for the auto- and cross-PSD esti-
mation. However, for real-time applications, the additional
square-root in (13) has to be taken into account. Regarding
the two single-channel approaches, the MS shows the highest
processing time and memory consumption due to the large
tracking window of 1.5s. The MMSE requires an additional
calculation of the decision-directed approach and the com-
putation of an incomplete gamma function, which however
could be avoided by incorporating suitable look-up tables.
A long-term memory for minimum tracking in the MMSE
approach causes a high computational load as well as a large
amount of memory. However, a realization based on subwin-
dows can be employed to significantly reduce both.

5. CONCLUSIONS

In this contribution, we have derived a generalized expression
for the coherence-based noise PSD estimator first proposed
in [4]. We have shown that by exploiting a priori knowledge
of the noise field coherence, a dual-channel speech enhance-
ment system using the novel noise PSD estimator can reduce
unwanted background noise in diffuse noise-field conditions.
In comparison to the dual-channel noise PSD estimator [4]
and the single-channel Minimum Statistics estimator, the
novel approach shows a lower estimation error, independent
of inter-microphone distance and SNR. For inter-microphone
distances larger than 0.10—0.15 m, it outperforms the single-
channel MMSE noise tracking algorithm. The same ten-
dency was observed in terms of the noise reduction perfor-
mance. Hence, the novel algorithm is favorable if the design
allows for a specific minimum inter-microphone distance.

The main benefit of the proposed algorithm is the low
complexity and memory consumption compared to related
approaches. Besides, the algorithm can be employed to var-
ious speech enhancement applications. A further improve-
ment can be a combination with MS or MMSE noise PSD
estimators in mixed coherence and diffuse noise fields.
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