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ABSTRACT
This paper discusses the application of noise reduction algorithms
for dual-microphone mobile phones. An analysis of the acoustical
environment based on recordings with a dual-microphone mock-up
phone mounted on a dummy head is given. Motivated by the record-
ings, a novel dual-channel noise reduction algorithm is proposed.
The key components are a noise PSD estimator and an improved
spectral weighting rule which both explicitly exploit the Power Level
Differences (PLD) of the desired speech signal between the micro-
phones. Experiments with recorded data show that this low complex-
ity system has a good performance and is bene cial for an integration
into future mobile communication devices.

Index Terms— Noise reduction, noise estimation, speech en-
hancement, dual-channel, power level difference.

1. INTRODUCTION
Mobile phone conversations can take place in nearly every acousti-
cal situation. Since the listener at the far-end usually suffers from
unwanted background noise if the talker is located in an adverse
acoustical situation, most mobile phones have integrated algorithms
to enhance the speech quality, cf. [1]. The algorithms aim to re-
duce unwanted background noise while ensuring that the occurring
speech distortions are inaudible to the greatest possible extent. For
such algorithms, the computational complexity and algorithmic de-
lay is of signi cant importance. Besides, the algorithm should be
able to converge fast in changing noise conditions.

In this contribution, we discuss the application of noise reduc-
tion algorithms for dual-microphone mobile phones. In order to em-
ploy such algorithms, a secondary microphone can be placed either
next to the common primary microphone on the bottom of the de-
vice or on top of the device (see Fig.1). In the rst part of this paper,
an analysis of the acoustical environment is given, which is entirely
based on recordings taken with a dual-microphone mock-up phone
in typical acoustical situations. Based on these observations, in the
second part, a novel algorithm is proposed which exploits the Power
Level Differences (PLD) of the different signal components and has
a very low computational complexity.

2. ANALYSIS OF THE ACOUSTICAL ENVIRONMENT
Common mobile phones use a single microphone for capturing the
speech signal. This primary microphone is usually mounted on the
bottom of the device in order to allow for a short acoustic path be-
tween mouth and microphone, which ensures a high direct path en-
ergy and less reverberation. Depending on the phone design, a sec-
ondary microphone can be placed either on the bottom next to the
primary microphone, or on top of the device in order to capture the
speech signal with a lower sound pressure level (SPL).
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Fig. 1. Illustration of mobile phone with the considered microphone
position. (left) front side , (right) rear side.
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Fig. 2. Dual-channel signal model.

In the remainder of this paper, the dual-channel microphone con-
guration according to Fig.1 is considered. A primary microphone
is placed at the bottom and a secondary microphone on the top rear
side of the device. The two microphone signals x1(k) and x2(k)
are related to clean speech s(k) and additive background noise sig-
nals nm(k) by the signal model shown in Fig 2, withm = 1, 2 and
discrete time index k. The acoustic transfer function of the desired
speech signal between the two microphones is denoted byH12(e

jΩ).

The following background noise analysis is based on measure-
ments inside an acoustic chamber using the standardized multi-
loudspeaker procedure described in [2] to generate realistic noise
elds. Here, we restrict the analysis to two important noise types:
car and babble noise from [2]. The recording system consists of a
HEAD acoustics HMS II.3 arti cial head which includes a mouth
simulator. A mock-up phone was mounted on the arti cial head in
the at handset position. This procedure allows to record speech
(taken from [3]) and noise separately which is usually not possible
in real acoustic environments.
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Fig. 3. PSD of babble noise captured by the two microphones.
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Fig. 4. PSD of speech signal from arti cial mouth captured by the
two microphones.

2.1. Analysis of Background Noise
Important acoustical quantities are the power spectral densities
(PSD) recorded at the positions of the two microphones for both,
speech and noise. Figure 3 shows exemplarily the PSD of babble
noise for the two microphones. It can be seen that both signals have
roughly the same PSD and hence, a homogeneous noise eld exists
as con rmed by the investigation of further noise types.

A further coherence evaluation of the background noise showed
a good match between the theoretical coherence using the free- eld
diffuse model, cf. [4], with the corresponding inter-microphone dis-
tances and the recorded data. All experiments with noise-only con-
ditions have also been veri ed with the same mock-up phone, which
was placed outside in crowded places and a busy street.

2.2. Analysis of Speech
The attenuation of the desired speech signal from the mouth to the
possible microphone locations is of signi cant importance. Figure 4
shows the PSD of the speech signals picked up by the two micro-
phones (noise-free case) where a power level difference of ≈ 10 dB
is measured between the bottom and top microphone for all frequen-
cies.

3. NOISE REDUCTION SYSTEM
The novel speech enhancement system which operates in the short-
time Fourier domain is depicted in Fig. 5. The system can be di-
vided into two novel components: a dual-channel noise PSD estima-
tor as well as a dual-channel spectral weighting rule. Each of the two
components works independently and can be incorporated in any re-
lated speech enhancement system. The enhanced spectrum Ŝ(λ, μ)
is given by multiplying the primary inputX1(λ, μ) with the spectral
weighting gains G(λ, μ). Discrete frequency bin and frame index
are denoted by μ and λ. The required estimate of the noise PSD is
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Fig. 5. Block diagram of the proposed dual-channel noise reduction
system.

denoted by Φ̂nn(λ, μ). The enhanced time domain signal ŝ(k) is
obtained by using the IFFT and overlap-add.

3.1. Noise PSD Estimation (PLDNE Algorithm)
The motivation for the novel PLD-based noise PSD estimator, which
is termed as Power Level Difference Noise Estimator (PLDNE), is
given by the preceding measurements. Two important assump-
tions are the existence of a homogeneous diffuse noise eld, i.e.,
Φn1n1

(λ, μ) = Φn2n2
(λ, μ) = Φnn(λ, μ), as well as a suf cient

attenuation of the desired speech signal between the two micro-
phones of, e.g., 10 dB.

In a rst step, the normalized difference of the power spectral
density 0 ≤ ΔΦPLDNE(λ, μ) ≤ 1 of the noisy input is calculated
for every frequency bin μ by

ΔΦPLDNE(λ, μ) =

∣∣∣∣Φx1x1
(λ, μ)− Φx2x2

(λ, μ)

Φx1x1
(λ, μ) + Φx2x2

(λ, μ)

∣∣∣∣ , (1)

where Φx1x1
(λ, μ) and Φx2x2

(λ, μ) represent the auto-PSD of
x1(k) and x2(k) respectively. The cross-PSD is denoted by
Φx1x2

(λ, μ). All PSD values are calculated by recursive smoothing
over time with constant α1.

The idea behind the subsequent noise PSD estimation is as fol-
lows. In case of background noise-only periods, ΔΦPLDNE(λ, μ)
will be close to zero as the input power levels are almost equal. If
the value lies below a threshold φmin, the noise PSD estimate is de-
termined directly from the input signal x1(k) by

Φ̂nn(λ, μ) =α2 · Φ̂nn(λ− 1, μ) + (1− α2) · |X1(λ, μ)|
2,

if ΔΦPLDNE(λ, μ) < φmin.
(2)

Regarding the noise-free case, the auto-PSD at x1(k) will be
larger than at x2(k) according to Fig. 4 and thus, the value of
ΔΦPLDNE(λ, μ) will be close to one. As a consequence, the updat-
ing of the noise estimate will be stopped if the difference is larger
than a threshold φmax, i.e.,

Φ̂nn(λ, μ) = Φ̂nn(λ− 1, μ)

if ΔΦPLDNE(λ, μ) > φmax.
(3)

In between these two extremes, a noise estimation using x2(k) is
used as approximation according to

Φ̂nn(λ, μ) = α3 · Φ̂nn(λ− 1, μ) + (1− α3) · |X2(λ, μ)|
2, (4)
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since the highly attenuated speech components in x2(k) can be ne-
glected. In situations with babble noise, it is bene cial to com-
bine the PLDNE algorithm with further single- or dual-channel noise
PSD estimators, e.g., [5, 6, 7] instead of keeping the last estimate in
Eq.(3).

3.2. Noise Reduction (PLD Algorithm)
The second component of the novel noise reduction system com-
prises the calculation of the spectral weighting gains G(λ, μ). The
method is motivated by the PLD algorithm initially proposed in [8].
Here, an alternative calculation of the spectral gains and an addi-
tional smoothing is proposed.

It is again assumed that the power levels are equal for noise
whereas speech results in a higher PSD at microphone x1(k). The
auto-PSDs of the inputs are given by

Φx1x1
(λ, μ) = Φs1s1(λ, μ) + Φn1n1

(λ, μ), (5)
Φx2x2

(λ, μ) = Φs2s2(λ, μ) + Φn2n2
(λ, μ). (6)

By introducing a transfer function of the desired speech signal be-
tween the microphones (see Fig. 2), the auto-PSD at the secondary
microphone can be expressed by

Φx2x2
(λ, μ) = |H12(λ, μ)|

2 · Φs1s1(λ, μ) + Φn2n2
(λ, μ). (7)

Two difference equations for the auto-PSD of the noisy input and the
noise-only signals are introduced as

ΔΦPLD(λ, μ) = Φx1x1
(λ, μ)− Φx2x2

(λ, μ), (8)
ΔΦnn(λ, μ) = Φn1n1

(λ, μ)− Φn2n2
(λ, μ). (9)

The power level difference of the noisy input signal can thus be ex-
pressed as

ΔΦPLD(λ, μ) = Φs1s1(λ, μ)(1− |H12(λ, μ)|
2) + ΔΦnn(λ, μ).

(10)
Due to the assumption of a homogeneous noise eld the difference
ΔΦnn(λ, μ) can be neglected, i.e., ΔΦnn(λ, μ) ≈ 0. Hence, the
equation for the PLD reads

ΔΦPLD(λ, μ) = (1− |H12(λ, μ)|
2) · Φs1s1(λ, μ). (11)

The nal spectral weighing rule is the Wiener lter equation

G(λ, μ) =
Φs1s1(λ, μ)

Φs1s1(λ, μ) + Φn1n1
(λ, μ)

. (12)

By expanding both nominator and denominator by 1−|H12(λ, μ)|
2

as in [8] and by inserting Eq.(11), the weighting rule reads

G(λ, μ) =
ΔΦPLD(λ, μ)

ΔΦPLD(λ, μ) + γ(1− |H12(λ, μ)|2) · Φnn(λ, μ)
,

(13)
with a noise overestimation factor denoted by γ. In the case of
speech absenceΔΦPLD(λ, μ) will be zero and hence, the gains will
be zero, too. When there is pure speech the right part of the denom-
inator of Eq.(13) will be zero. Thus the gains G(λ, μ) will turn to
one. The required transfer function H12(λ, μ) is derived from the
cross-PSD of the noisy input Φx1x2

(λ, μ). In [8], the cross-PSD is
expressed by

Φx1x2
(λ, μ) = H12(λ, μ) · Φx1x1

(λ, μ) + Φn1n2
(λ, μ), (14)

and the transfer function is given by

H12(λ, μ) =
Φx1x2

(λ, μ)− Φn1n2
(λ, μ)

Φx1x1
(λ, μ)− Φnn(λ, μ)

. (15)

Table 1. Main simulation parameters.
Sampling frequency fs = 16 kHz
Frame length L = 320 (20ms)
FFT length M = 512 (including zero-padding)
Frame overlap 50% (Hann window)
Smoothing factors α1 = 0.9, α2 = 0.9, α1 = 0.8, αnn = 0.9
Smoothing threshold f0 = 1 kHz
PLDNE thresholds φmin = 0.2, φmax = 0.8
Overestimation factor γ = 4

The required cross-PSD of the background noiseΦn1n2
(λ, μ) is cal-

culated in [8] from the rst 400ms where no speech activity is as-
sumed. In contrast to Eq.(14), in our implementation the cross-PSD
is correctly expressed by

Φx1x2
(λ, μ) = H12(λ, μ) · Φs1s1(λ, μ) + Φn1n2

(λ, μ). (16)

By incorporating the coherence of the noise eld Γn1n2
(μ), the

cross-PSD reads with Φs1s1(λ, μ) = Φx1x1
(λ, μ)− Φnn(λ, μ)

Φx1x2
(λ, μ) = H12(λ, μ) · (Φx1x1

(λ, μ)− Φnn(λ, μ))

+ Γn1n2
(μ) · Φnn(λ, μ).

(17)

Hence, the proposed transfer function is given by

H12(λ, μ) =
Φx1x2

(λ, μ)− Γn1n2
(μ) · Φnn(λ, μ)

Φx1x1
(λ, μ)− Φnn(λ, μ)

. (18)

With Eq.(18), the computation of the transfer function does not re-
quire an additional calculation of the noise cross-PSD anymore and
allows the algorithm to cope with non-stationary noise and changing
SNR conditions compared to [8]. In the practical implementation,
the power level difference is proposed to be calculated by

ΔΦPLD(λ, μ) = max (Φx1x1(λ, μ)− Φx2x2(λ, μ), 0) , (19)

which prevents speech distortions if the assumption of a homoge-
neous noise eld is violated, e.g., due to an interfering talker.

In order to reduce the amount of musical tones, a smoothing
over frequency using the approach of [9] is employed for frequencies
above f0.

4. PERFORMANCE EVALUATION
The experiment section is separated into an evaluation of the pro-
posed noise estimator as well as the complete noise reduction sys-
tem using PLDNE and the PLD-based weighting rule. The input
signals are taken from recordings using the same experimental setup
with a dual-microphone mock-up phone used for the acoustical anal-
ysis carried out in Section 2. Speech and noise were recorded sep-
arately and mixed together with different SNR conditions, ensuring
the same power level difference of the speech signal. We investigate
the PLD algorithm assuming an ideal diffuse noise eld and use the
following coherence model in Eq.(18)

Γn1n2
(f) = sinc (2πfdmic/c) , (20)

with distance dmic = 0.1m and sound velocity c = 340m/s. Further
simulation parameters are listed in Tbl.1.

4.1. Noise Estimation Accuracy
The PLDNE algorithm (Proposed) is compared to the generalized
dual-channel coherence-based noise PSD estimator [7] (GCoh). It
has to be mentioned that the estimator presented in [7] was mainly
developed for binaural hearing aids with a larger inter-microphone
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Fig. 6. Simulation results: (left) noise estimation accuracy, (middle) noise suppression performance, (right) in uence on intelligibility.
NA-SA: noise attenuation minus speech attenuation, SII: speech intelligibility index.

spacing of 0.15 − 0.2m. Besides, the two single-channel ap-
proaches Minimum Statistics (MS) [5] and MMSE-based noise
tracker (MMSE) [6], which work on the primary signal x1(k) only,
are used as state-of-the art references. The performance is rated
in terms of the symmetric segmental logarithmic estimation error
between the ideal noise PSD Φnn(λ, μ) and the estimated noise
PSD Φ̂nn(λ, μ) by

logErr =
1

K M

K∑
λ=1

M∑
μ=1

∣∣∣∣∣10 log10
[
Φnn(λ, μ)

Φ̂nn(λ, μ)

]∣∣∣∣∣ , (21)

with total number of framesK. The ideal noise PSD is obtained us-
ing the true noise periodograms smoothed over time λ with smooth-
ing factor αnn. The averaged results for babble and traf c noise
are depicted in Fig.6 (left). It can be seen that the novel algorithm
outperforms all related approaches and is nearly independent of the
input SNR.

4.2. Noise Reduction Performance
The performance of the PLD weighting rule (Proposed) using
Eq.(18) is compared with the original implementation by [8] (Orig-
inal) using Eq.(15) and a single-channel (SC) Wiener lter with
decision-directed approach for the a priori SNR calculation. All
algorithms use the PLDNE noise PSD estimator. Besides, a dual-
channel spectral subtraction algorithm [10] (DMSS) is evaluated. In
a rst step, two common spectral subtraction approaches provide a
rough speech and noise estimate for each channel by using the other
channel respectively. In a following step these estimates are used
by a third spectral subtraction stage which results in the enhanced
output. The noise reduction performance is determined by means of
the noise attenuation minus speech attenuation (NA-SA) measure,
where higher values indicate an improvement. Besides, the speech
intelligibility index (SII) [11] was calculated for the noisy as well
as the enhanced signal. An SII higher than 0.75 indicates a good
communication system and values below 0.45 correspond to a poor
system. The averaged results for babble and traf c are shown in
Figs. 6 (middle/right). From the plots, we can conclude that the
proposed noise reduction system outperforms related approaches in
terms of noise suppression performance and increase in speech in-
telligibility. The modi cations on the original PLD implementation
also result in a high performance gain. All results are consistent
with the subjective listening impression where the highest amount
of musical tones was observed for the DMSS algorithm. Since for
babble noise the major frequency components of the noise signal lie

in the same regions as those of the desired speech signal, this sce-
nario can be seen as the most dif cult one. However, all experiments
have also been conducted with train station noise where the same
tendency has been observed.

5. CONCLUSIONS
We propose a noise reduction system which is suitable for speech en-
hancement in dual-microphone mobile phones. A novel noise PSD
estimator as well as a modi ed spectral weighting rule are presented,
which both exploit the power level differences of the desired speech
signal between the microphones. The algorithms require a low com-
putational complexity and can ef ciently be implemented using rst
order IIR lters for the auto- and cross-PSD estimation. Experiments
have shown that the novel system is capable of reducing unwanted
background noise and increase the intelligibility in terms of the SII
measure.
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