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ABSTRACT

This paper deals with allpass frequency transformations
of uniform filter banks to achieve nonuniform band-
widths. The known transformation with an allpass of
first order [1] [4] [5] [6] is extended to an allpass trans-
formation of order K. Thus the flexibility of the filter
bank design can be increased significantly.

1 INTRODUCTION

In this contribution the polyphase realization of the uni-
form FIR filter bank is generalized towards a nonuni-
form frequency resolution. The proposed approach is
an extension of the well known allpass transformation
of first order [1] [4] [5] by introducing an allpass of order
K. The frequency transformation of the filter charac-
teristics is achieved by replacing the delay elements of
the FIR filter bank by identical recursive allpasses. A
causal allpass of order K would create a filter bank with
multiple images of the original (bandpass) filters, which
can of course be useful e.g. for the design of comb fil-
ters [3]. Here a new phase compensation technique is
introduced which avoids the multiple mapping of the
frequency axis and therefore gives an increased design
flexibility by using an allpass of order K.

2 UNIFORM FILTER BANK

Filter banks with uniform frequency resolution can be
implemented very efficiently using a polyphase network
(PPN) and the Fast Fourier Transformation (e.g. [5]).
There are two equivalent versions which can be de-
scribed by using either complex modulators with uni-
formly spaced frequencies and identical lowpasses or
modulated bandpass filters which have been derived
from a common prototype lowpass. Here, the latter ver-
sion will be considered. If the impulse response of the
FIR prototype lowpass is denoted by wg(n), the com-
plex bandpass impulse responses with the center fre-
quencies Q,, =27u/N (p=0...N — 1) are given by

w,, (n) = wo(n)etIwHn p=0...N—-1 (1)
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The subband signal of the p’th channel of the uniform
filter bank can be described by

Yu(n) = z(n) xw,(n) (2)

where 2 is the input signal and * denotes convolution
(see fig. 1).

x(n) *>[ w(n) e diem pn/j_» Q)

Figure 1: Reference model of the p’th channel of a uniform
bandpass filter bank

For simplicity it is assumed that an N-tap FIR pro-
totype lowpass wg(n) is used!. In this case (eq. 2) reads

N—1

= z(n — v)wo(v) eI NHY (3a)
v=0 x,,(n)
N—1 .

= z,(n)eti N H (3b)
v=0

=IDFT{z,(n)} (3¢)

Thus the set of samples y,(n) (n=fixed, p =
0...N—1) can be calculated efficiently using the Inverse
Fast Fourier Transformation (IFFT). If we introduce the
z—domain version of z,(n) according to

X, (2) = X(2)z Ywo(v) (4)

as shown in fig. 2:

L This approach can easily be extented to prototype filters with
more than N taps.
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Figure 2: IFFT implementation of a uniform filter bank
(N=8)

The effective frequency responses are:

N-—-1

5 wyw)sre
v=0 (6)

H,(z)=Y,(2)/X(2) =

On the unit circle i.e. for z = €/ we obtain the
following transfer functions

N-1
Hy (e = Z wo(v)e " (prototype filter)

v=0 (7)
Hy(e77) = Ho(e 1) ®)

The frequency responses of this uniform prototype fil-
ter bank given by (eq. 8) are shown in fig. 3 by example.
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Figure 3: Uniform filter bank with allpass transformation
of order K =1,a =0 (delay), N =32, =0,4,8,12,16

3 GENERALIZED FILTER BANK

The filter structure of fig. 2 is generalized as shown in
fig. 4 by replacing the delay elements by identical allpass
filters A(z) and by replacing the constant weights wq(v)
by B,(z) (v=0...N—1).
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Figure 4: Generalized filter bank using IDFT (N = 8)

The generalized IDFT (IFFT) filter bank structure is
described by:

Xy (2)etIwm 9)

= 3 X()B () [AG)) et Fm
v=0 (10)

The N outputs (u=0...N — 1) of the filter bank in
fig. 4 are now characterized by their transfer functions:

v 2% Ly

o) = 33 = X Bl AE) %
v=0 (].].)

3.1 Uniform Filter Bank As Special Case

A special case of (eq. 11) is obviously the well known
uniform polyphase filter bank (eq. 8) with the prototype
filter (eq. 7) if we choose

A(z) =271 B,(z) = wo(v) (12)

3.2 Allpass Transformation Of First Order
The substitution of delay elements 2! in (eq. 12) by
the causal and stable allpass of order K = 1 with the
complex parameter a = ae’® with |a| < 1 leads to:

AZ)=Ay(2) = %% B,(2) = wo(»)
e (13)
with
A (eT7?) = etier( @) and (14)

asin() — a)

NH=-0-2 —_
(6) arctan 1—acos(2 — )

(15)



which is the known nonuniform frequency transform-
ation of the uniform filter bank of (eq. 8), describing
the frequency responses:

N-1
gu(em) — wo(v)e +iZFu o +iver (Q)
v=0
Hu(e—wl(ﬂ))
= Hy(e (-1 (=T w) (16)

Generally speaking, the negative phase characteristic
of the allpass describes the frequency transformation of
the uniform prototype filter bank. In fig. 5 the negat-
ive phase of an allpass of first order (¢ = 0.5) and in
fig. 6 the corresponding nonuniform filter bank transfer
functions are plotted.

3.3 Allpass Transformation Of Higher Order
With Multiple Mapping

The substitution of delay elements z~* in (eq. 12) by a
causal and stable allpass of order K with the complex
parameters g, = ape’® with |g;| < 1, k=1...K
and the prototype filter of (eq. 7) leads to:

1

K 1—ape 9%z
A(z) = Ag(2) = el [ ———

k=1

eTivx(Q) B,(z) = wo(v)

z — apelor (17)
AK(GjQ) =

with the phase of this allpass:

¢ () = ap — KQ

ay sin(Q — ay)
-2 t 1
Z_: aretan T ay, cos(Q — ay) (18)

It can be shown that the phase px (eq. 18) of an
causal stable allpass of order K of Ag(z) (eq. 17) is
monotone decreasing [2]. Thus the (27 periodic) fre-
quency interval [—Km; K] of the prototype filter is
mapped to the interval [—m;x]. This is equivalent to
multiple compressed mapping of [—m; 7| of the proto-
type filter to the target range [—m; 7] as proposed in [3]
for the design of comb filters.

3.4 Allpass Transformation Of Higher Order
With Single Mapping

In order to exploit the enhanced flexibility of the allpass
of order K but to avoid multiple mappings, the phase
has to be limited to [—m;7]. This can be achieved by
reducing the linear term K in (eq. 18) to 2, resulting
in a non causal stable allpass f/l\K(z) (eq. 20) with a
phase ¢k (eq. 19):

Pr () = px(Q) + (K —1)Q (19)
Ag(z) = 2" KD Ap(2) (20)

To avoid frequency reversions in the resulting filter
structure, the phase @k () of the non causal allpass
has to be monotone decreasing which leads to the group
delay constraint (eq. 21) of the allpass Ax(z) (eq. 17).

K 2 1

d 1—a !
- — k() = E >K-1
dn ; 1 — 2ay, cos(Q — o) + af (21)

An example of allpass parameters which achieve a de-
creasing phase @ () is shown for K = 2 in fig. 5 in
comparison to the first order transformation character-
istic 1(©2). This demonstrates the enhanced flexibility
in designing the nonuniform frequency transformation.
The allpass of order K = 2 with conjugated complex
parameters can be implemented by a network with real
valued arithmetic.

3.5 Implementation

With (eq. 11) there are non causal implementations
which have the same transfer functions:

Alz) = Ak(2)
non causal

A(z) = Ax(2)  By(z) = 2T E=D () (22b)

causal non causal

v=0,1...N—1

By(z) = wo(v) (22a)

If the non causal part is shifted to B,(z) according
to (eq. 22b), a causal implementation is possible by in-
troducing an additional delay of z=(K=D(N=1) regulting
in:

A(z) = Ak (=) v=0,1...N -1
By (z) = 2z~ K=DWN=1=0)40 (1) (23)

The frequency response of this transformed causal
transformed filter bank now reads:

ﬁu(ejﬂ) — ¢ J(IN-1)(K-1)Q
N-1 R
Y wo(v)et R aretiven(@ (24)
v=0
= e IN-DE-DQpp (e —j@x(ﬂ))

— e IIN=DK-DQ g (o +i(= o (2)- u))

The block diagram is given in fig. 4



4 EXAMPLE AND CONCLUSIONS

The frequency responses of the compensated nonuni-
form filter bank for e.g. K = 2 are shown in fig. 7
revealing the enhanced flexibility of the new approach.
In comparison to the transformation of order K =1 as
shown in fig. 6 the frequency resolution can now be in-
creased e.g. within a bandpass interval. Thus the filter
structure allows more parameters to design nonuniform
filter banks using a common prototype FIR filter.
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Figure 5: Frequency transformation with allpass of order
K =1 (al = 0,al = 0.5) and allpass with order K = 2
with conjugate complex coefficients (al = —0.55, a2 =
+0.55) with compensation of the non causal phase
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Figure 6: Nonuniform filter bank with allpass transforma-
tion of order K =1,a =0.5,N =32, =0,4,8,12,16
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Figure 7: Nonuniform filter bank with allpass transform-
ation of order K = 2 and compensation of the non causal
phase (al = —0.55,a2 = +0.55), N =32, =0,4,8,12,16



