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M
odern communication technology facilitates 
communication from anywhere to anywhere. As 
a result, low speech intelligibility has become a 
common problem, which is exacerbated by the 
lack of feedback to the talker about the render-

ing environment. In recent years, a range of algorithms has been 
developed to enhance the intelligibility of speech rendered in a 
noisy environment. We describe methods for intelligibility 
enhancement from a unified vantage point. Before one defines a 
measure of intelligibility, the level of abstraction of the representa-
tion must be selected. For example, intelligibility can be measured 
on the message, the sequence of words spoken, the sequence of 
sounds, or a sequence of states of the auditory system. Natural 
measures of intelligibility defined at the message level are mutual 
information and the hit-or-miss criterion. The direct evaluation of 

high-level measures requires quantitative knowledge of human 
cognitive processing. Lower-level measures can be derived from 
higher-level measures by making restrictive assumptions. We dis-
cuss the implementation and performance of some specific 
enhancement systems in detail, including speech intelligibility 
index (SII)-based systems and systems aimed at enhancing the 
sound-field where it is perceived by the listener. We conclude with a 
discussion of the current state of the field and open problems. 

IntroductIon
Humans adapt their speech to the physical environment. Based on 
the facial expression of a listener, a talker may repeat or reformu-
late the message. A noisy environment gives rise to the Lombard 
effect, e.g., [1], an involuntary change in the speech characteristics 
that makes speech more intelligible. 

In modern communication systems, the speaker often has lit-
tle or no awareness of the physical environment in which the 
speech is rendered. This is perhaps most obvious for current- 
generation speech synthesis, which produces speech without 
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consideration of the rendering environment. It is also a major fac-
tor in human-to-human communications as communication 
technology degrades or severs the auditory and visual links 
between the speaker and the environment. For example, an 
announcer at a railway station generally receives little visual or 
auditory feedback. Similarly, a phone user lacks information about 
the rendering environment, even less so if effective noise-suppres-
sion technology is used. 

The lack of feedback, together with the recent ability to commu-
nicate from anywhere to anywhere, often leads to low intelligibility. 
Phone booths are a relic of the past: 
the mobile phone is expected to func-
tion in any environment, whether it  
is a car, a cafeteria, or a windstorm. 
Thus, there is a strong motivation for 
algorithms that can improve the in-
telligibility of speech rendered in a 
noisy environment. 

Ever since the early work of 
Griffiths [2] and Niederjohn and Gro-
telueschen [3], researchers have 
attempted to create processing meth-
ods that increase the intelligibility of speech in a noisy environ-
ment. Driven by the rapid growth of mobile telephony, research 
efforts on intelligibility in noise have increased significantly in the 
last five years. The result is that it is now possible to significantly 
increase the intelligibility of speech in noise, e.g., [4]– [11]. 
Approaches to intelligibility enhancement are increasingly based 
on the mathematical optimization of quantitative measures that 
are hypothesized to represent intelligibility accurately. First intro-
duced by [2], the optimization approach has been used in numer-
ous recent studies, starting with [12]. The optimization criteria 
vary widely as the signal processing algorithms are derived from 
different viewpoints and with different computational and delay 
constraints. Criteria used include the probability of correct pho-
neme recognition [11], auditory models [6], [13], [14], the articu-
lation index [2], the SII [4], [8], mutual information [15], and 
sound-field distortion [16]. 

In this tutorial, we describe a range of methods for intelligibil-
ity enhancement from a unified vantage point, delineating the 
similarities and dissimilarities between the various approaches. In 
contrast to the broad overview of human and algorithmic modifi-
cations that affect intelligibility in [7], our discussion focuses on 
the definition and use of quantitative measures of intelligibility, 
showing that many of these measures can be derived from the 
same basic principle.  

Measures of IntellIgIbIlIty
In this section, we first discuss how to define a quantitative mea-
sure of intelligibility. We then discuss practical measures of 
intelligibility.

Defining intelligibility
The word intelligibility expresses a qualitative measure of whether 
a conveyed message is interpreted correctly by a human listener. 

To define quantitative instrumental measures of intelligibility, we 
must select a level of abstraction. That is, we must decide if we 
measure intelligibility on the sequence of words spoken, on the 
sequence of sounds, on a sequence of states of the auditory system, 
or on the acoustic signal waveform. A word sequence is an exam-
ple of a description at a high level of abstraction, whereas a signal 
waveform is a description at a low level of abstraction. 

The higher the level of abstraction, the more fundamental the 
measure of intelligibility: the objective of speech is to convey a mes-
sage and not to convey a sequence of sounds. A particular measure 

will be useful for enhancement at its 
own level of abstraction and below. 
Consider an intelligibility measure 
operating at the word sequence level. 
It can be used to evaluate which of a 
set of sentence formulations with 
similar meaning is more intelligible. 
It can also be used to evaluate if a par-
ticular spectral modification (e.g., a 
particular filtering operation) makes 
speech more intelligible. 

The generality of high-level mea-
sures has a cost: we must map the observations into a sequence at 
that high abstraction level. For acoustic observations and a mea-
sure operating at the word-sequence level, this requires a robust 
model of hearing that maps the observed acoustic signal into a 
word sequence. Therefore, although it cannot optimize linguistic 
formulations, an intelligibility measure operating on a sequence of 
auditory states may be attractive when optimizing a spectral modi-
fication of the signal. 

While illusive in practical measurements, the message itself, a 
random variable that we denote as ,M  can be used to define the 
most basic measure of intelligibility. (To aid clarity, we will write 
random variables as bold-face characters and their realizations 
as regular characters.) In the following, we will show how such 
a basic measure can be used to derive measures that have been 
derived earlier on a heuristic basis. To facilitate our reasoning, 
we will be opportunistic and sometimes describe the messages 
as countable, which is consistent with the notion that a mes-
sage is a discrete word sequence, and at other times as continu-
ous, which is consistent with the notion that articulation is 
continuously variable. To avoid confusion, we add a breve, as in 

,M˘  whenever messages are considered countable. 
A natural measure of intelligibility is the mutual informa-

tion between the message conveyed by the talker MT
˘  and the 

message interpreted by the listener :ML
˘  
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where we used the simplified notation p pM MLT L T
˘ ˘=  and 

p p| |L T M M˘ ˘= L T  for the joint and conditional probabilities and use 
the same convention for the marginal probabilities of the con-
veyed and received messages and pT  and .pL  

We can reformulate the criterion (1) as a measure of distor-
tion ( , )D M ML T

˘ ˘  that is a functional of .p |L T  Mutual information 
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is nonnegative and cannot be larger than the entropy .( )H MT
˘  

Thus, the difference ( , ) ( ) ( ; )D H IM M M M ML T T L T
˘ ˘ ˘ ˘ ˘= -  is non-

negative and can be interpreted as a distortion. It can be written 
as a general distortion measure operating on p |L T  for a given 
talker message distribution :pT  

 ( , ) ( ) ( ( | )),D p M d p M MM M |L T T
M

T
M

L T L T
˘ ˘

T L

= { { {
{ {
/ /  (2)

where d  is a nonnegative function of ( | ) .p M M|L T L T
{ {  For the 

mutual information based distortion measure ( ( | ))d p M M|L T L T ={ {  
( | ) ( ( ) / ( , )),logp M M p M p M M| ,L T L T L L L T L T
{ { { { {  where we note that the 

argument of the logarithm can be written in terms of ( | )p M M|L T L T
{ {  

and the given ( )p MT T
{  only. The intelligibility enhancement 

problem is to find the p |L T  that minimizes the distortion (2) 
subject to the constraints set by the scenario. 

An alternative to the mutual information based distortion 
measure can be based on the hit-or-miss distortion, 
( ( | )) ( | ) ( ),d p M M p M M 1| | ,L T L T L T L T M ML Td= -{ { { { { {  where ,M ML Td { {  is a 

Kronecker delta function. In this case (2) becomes 

( , ) ( , ) [ ( | )] .ED p M M p1 1M M M M|LTL T

M
T T T L T T T

˘ ˘ ˘ ˘

T

= - = -{ {
{
/  (3)

The conditional probability ( | )p M M|L T T T
{ {  in (3) corresponds to 

the probability that the message is interpreted correctly. Thus, an 
alternative to maximizing the mutual information of the conveyed 
and received message is to maximize the expected probability of 
correct message interpretation, [ ( | )],pE M M|T L T T T

˘ ˘  where the 
expectation is over the conveyed messages, .MT

˘  We will discuss 
the practical use of this high-level measure in the section “Mea-
sures Operating on a Word Sequence.” 

While the measures (1) and (3) are general, they cannot be 
used directly. Either the description of the message or the 
human cognitive system must be approximated such that the 
measures can be applied to observable signals. The paradigm 
shows where such approximations are made, but it does not 
show their quantitative impact. Thus, experiments must be used 
to verify the validity of the resulting system. 

Next, we consider how to derive a low-level, acoustics-based 
measure from a high-level, message-based measure. For this it is 
convenient to consider the message as a continuous variable. A 
conveyed speech message MT  is rendered in the form of an acous-
tic signal, which we represent by an acoustic sequence aT . The 
sequence aT  can, for example, consist of signal samples or short-
term spectral descriptions, such as cepstral vectors. This sequence 
is rendered in a noisy environment and the listener observes a cor-
rupted sequence ,aL  which is then interpreted as a message .ML  
The communication process thus forms a Markov chain 

.M a a MT T L L" " "  It is natural that environmental noise 
makes the mapping a aT L"  stochastic. 

Upon reflection, it is clear that the mappings M aT T"  and 
a ML L"  are also stochastic: a message is generally not formulated 
and never articulated in precisely the same manner, and the inter-
pretation of the acoustic sequence aL  is subject to random varia-
tions during the human cognitive process. Anticipating the 

discussions in the section “Measures Operating on a Word 
Sequence,” it can be argued that these variations are captured by 
the statistical modeling of modern automatic speech recognition 
(ASR) algorithms. If we assume the message formulation is perfect, 
a simple but effective model of the production and interpretation 
processes is that they are subject to additive noise components [15], 
which we will refer to as, respectively, production noise and inter-
pretation noise. For example, variability in articulation across differ-
ent persons may be approximated as additive noise in a 
representation based on cepstral or log spectral vectors. 

For convenience let us define auxiliary bijective mappings 
M sT T)  and ,M sL L)  where sT  and sL  are realizations of ran-
dom acoustic sequences. We have 

 a s vT T T= +

 a a vL T E= +  (4)
 ,s a vL L L= +

where ,vT  ,vE  and vL  are additive noise processes, modeling the 
production noise, environmental noise, and interpretation noise, 
respectively. Note that the system model differs from the stan-
dard system model in communication theory, which does not 
include production noise and interpretation noise. 

To facilitate analysis, let us assume the sequences ,sT  ,vT  ,vE  
and vL  to be jointly Gaussian processes. Furthermore, we denote 
by sat  the correlation coefficient of (the samples of the) processes 
s  and a  and write .0 s a a st t t=

T T L L
 Let us first consider the case 

where the signals are white. Exploiting that mutual information is 
invariant under reparametrization of the marginal variables, it is 
then easy to see that [15] 

 ( ; ) ( ; )
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,logI I 2
1
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1 1

M M s sL T T L
0
2
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t p
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+
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 (5)

where ( / )2 2
a vp v v= T E  is the signal-to-noise ratio (SNR) of the 

acoustic channel ,a aT L"  and 2
av T  and 2

vv E  are the variances of 
processes aT  and ,vE  respectively. An important and intuitive con-
clusion that can be drawn from (5) is that if the environmental 
noise variance is small compared to the production and interpreta-
tion noise variances, then the mutual information between talker 
and listener is not affected significantly by the environmental noise. 

The spectral coloring of the acoustic content can be accounted 
for by splitting the signal into spectral bands such that each band 
can be approximated as white. If we assume the signals to be sta-
tionary, the frequency bands are independent and the mutual 
information can be written as the sum of the mutual informations 
in the bands 

 ( ; )
( )

,logI 2
1

1
1 1

M M ,
L T

i i

i i0
2

p

t p
=-

+
- +/  (6)

where i  is the band index and where ( / )i
2 2
a vp v v= , ,T i E i  is the SNR 

of the acoustic channel in band .i  Note that the SNR in (6) is com-
puted on whichever representation is used for the acoustic fea-
tures. Also note that the variances 2

av ,T i  and 2
vv ,E i

 are generally 
unknown and must be estimated in practice. For example, if the 
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acoustic features are based on the 
short-time discrete Fourier trans-
form (DFT) coefficients, variance 
estimation can be based on the 
short-time DFT periodogram, i.e., 

| |a ,T i
2 2
av =

,T i
t  having a variance of 

.| |E a 2 2
,T i6 @  The low-level measure 

(6) can then be used directly to opti-
mize speech intelligibility [15]. 

The frequency resolution of the human auditory system 
decreases with frequency, which reduces the mutual information 
from that obtained with (6) for a uniform high resolution. An 
improved model of information transfer is obtained by assuming 
that the signal is represented with one independent component 
per equivalent rectangular bandwidth (ERB), which is consistent 
with studies on intelligibility [17]. We show in the section “Mea-
sures Operating on Spectral Band Powers” that this approach pro-
vides an information-theoretical justification of the well-known 
SII [18], a low-level measure of intelligibility. 

Practical Measures of intelligibility
Existing practical measures of intelligibility generally operate at 
the word-sequence level, at the level of a sequence of auditory 
states, or at the level of short-term spectra. We discuss these 
classes next and end with a discussion of the constraints that must 
be imposed on the optimization. 

MEASURES OPERAtING ON A WORd SEqUENCE
In the section “Defining Intelligibility,” we discussed that the ex-
pected probability of correct interpretation of the message, 

[ ( | )],E p M M|T L T T T
˘ ˘  is a reasonable measure of intelligibility. This 

measure can be approximated as ( | )p M M|L T T T
{ {  on real-world 

data, where the overbar indicates averaging over realizations .MT
{  

If the averaging is done in time, i.e., over segments of a single 
larger message (e.g., words), then this operation assumes ergodic-
ity. The measure is easily evaluated in a test with human test sub-
jects, where ( | )p M M|L T T T

{ {  can be estimated using histograms. A 
machine-based quantitative measure requires a mapping from 
any particular acoustic observation aL  to a message ML

{  that cap-
tures the probabilistic nature of this mapping as performed by 
humans. As will be discussed in the section “Word-Sequence 

Probability-Based Enhancement,” 
the standard approach to ASR com-
putes the probability of the observa-
tions given a message (word, or word 
sequence). The basic assumption for 
machine-based intelligibility en-
hancement is then that the trend of 
ASR word probability in noise tracks 
the trend of human recognition per-

formance in noise sufficiently well for the modification parame-
ters that are optimized. Experiments confirmed this hypothesis 
[11], [19] for a particular set of practical systems. 

MEASURES OPERAtING ON A SEqUENCE  
Of AUdItORy StAtES
It is advantageous to minimize the delay and computational 
requirements of the intelligibility measure, particularly if the 
types of modification are restricted. Let us assume that the modi-
fication is a spectral modification, that the word sequence and 
speaking rate are fixed, and that the highest intelligibility is 
achieved by the original speech without environmental noise. 
(The latter assumption is an additional simplification required for 
this approach.) Then it is natural to use a distortion measure 
operating on the sequence of auditory states as a measure of 
intelligibility. Such measures can exploit that quantitative knowl-
edge of the auditory periphery has increased significantly in the 
last three decades (e.g., [20]). 

The straight comparison of the auditory states of the conveyed 
and received signal ignores the production noise vT  of (4). That is, 
the auditory model does not weigh signal components according to 
their relevance in terms of precision of signal production. However, 
the auditory model precision of a speech component may form a 
reasonable match to the precision of speech production, simplifying 
the introduction of production noise. 

Although auditory models differ in exactly how the inner ear 
representation is obtained, they follow in many cases a similar 
strategy for modeling the auditory system. In Figure 1, we outline 
the basic building blocks of the psychoacoustic model presented in 
[21], which is simple but representative of many other models, 
such as [20]. The first stage of the auditory model consists of a fil-
ter that mimics the frequency characteristics of the outer and 

[fIg1] the basic structure of the auditory model presented in [21].
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middle ear. This filter is cascaded with an auditory filter bank that 
models processing at the level of the basilar membrane in the 
cochlea. Subsequently, the envelope of each of the outputs of the 
auditory filters is obtained, which simulates the transduction of 
the inner hair cells. To model an absolute hearing threshold, a 
constant is added to each envelope. In the current context, this 
threshold corresponds to an interpretation noise. In the final 
stage, a log transform is used to model the loudness dependent 
compression of the auditory filter bank outputs by the outer hair 
cells. An important difference between the model from [21] and 
the more advanced model presented in [20] is the logarithmic 
transform, which is a simplification of the adaptation loops that 
are used in [20]. The simplification particularly affects the output 
near transitions where the gain of adaptation loops changes. 

By applying an auditory model to the acoustic sequences aT  
and aL  and comparing the results, a distortion measure can be 
obtained. Mutual information is a natural measure for this pur-
pose, but, to our best knowledge, it has not been applied to the 
auditory representation for intelligibility enhancement. Note that 
while mutual information is not affected by smooth invertible 
mappings, auditory representations likely are not smooth map-
pings from features such as cepstra, or line spectral frequencies. 
This suggests that it may be essential to consider the detailed 
behavior of more sophisticated auditory models. 

In the literature, various measures have been used to compare 
the auditory representations of aT  and .aL  In [14], it was shown 
that an 1,  criterion leads to a mathematically tractable method 
and to provide good results for intelligibility enhancement. Refer-
ence [13] uses a similar auditory model for the so-called glimpse 
proportion measure of intelligibility: rather than comparing aT  
and aL  directly, it compares the auditory representation of the aT  
with the auditory representation of the environmental noise .vE  
The glimpse proportion approach computes the proportion of sig-
nal blocks where the auditory representation of the signal is 
louder than the noise. In more recent work on the glimpse pro-
portion, a sigmoidal function is applied to the difference of the 
auditory signal and noise representations [6], [22]. The method 
provides good intelligibility enhancement [6], [22], [23]. Both the 

1,  criterion and glimpse proportion approaches do not explicitly 
consider the information conveyed in a particular signal compo-
nent, which should, at least in principle, be a disadvantage com-
pared to mutual information-based approaches. 

MEASURES OPERAtING ON SPECtRAL BANd POWERS
The mutual information between ML  and MT  (6) can be seen to 
correspond to a classic view of intelligibility based on band powers 
of the auditory filter bank [17], [18], [24]–[27], by writing it as 

 ( ; ) ( )I I AM ML T i
i

i ip= u/  (7)

 ( )logI 2
1 1 ,i i0

2t=- -u  (8)

 ( )
( )

( )

.
log

log
A

1
1

1 1

,

,

i i
i

i

i i

0
2

0
2

p
t

p

t p

=
-

+
- +

 (9)

The maximum mutual information is attained at high SNR and is 
.I

i iu/  Defining /II Ii ji j= u u/  and normalizing (7) accordingly, we 
recognize Ii  as the so-called band-importance function and ( )Ai ip  
as the so-called weighting function or band-audibility function. The 
formulation (7) forms the basis of speech intelligibility measures 
such as the SII [18] and the extended SII [27]. These measures are 
descendants of the so-called articulation index [24], [25], a measure 
that predates information theory. In this classic view, Ii  character-
izes the importance of frequency band i  and the factor Ai  is a 
weighting function that indicates what fraction of the information is 
delivered to the listener. The information-theory derived form of Ai  
shown in (9) describes a sigmoidal function that approximates the 
definition of Ai  in the SII. [Equation (9) neglects the threshold of 
hearing, the effect of high loudness, and the self-masking of noise.] 
Our derivation of the band importance function Ii  of (8) makes its 
dependency on the production and interpretation noise explicit. If 
the relative variances of the production and interpretation noise of a 
band are low (high production and interpretation SNR; ,i0t  
approaches one), that band is important for intelligibility. In the SII 
definition, the values of Ii  are set empirically. As is shown in [15], 
the differences between the formulas for the classic approach and 
the aforementioned information-theoretical derivation are well 
within the precision of the original heuristic derivation of the classic 
view. The classic SII has proven to be highly correlated with speech 
intelligibility in many conditions and has been used as a basis for 
speech intelligibility enhancement [4], [8], [12], [28]. It is discussed 
in additional detail in the section “SII-Based Enhancement.” 

CONStRAINtS ON OPtIMIZAtION
In most cases, the optimization must be performed subject to one 
or more constraints. Important constraints are the speech-like 
nature of the output, the signal power, and system delay. Addi-
tional constraints may be required. For instance, for a given mes-
sage MT  (and speaking rate), a longer word sequence will likely be 
more intelligible than a short one, thus making a length con-
straint natural. 

The speech-like nature, or the speech quality, of the enhanced 
output may require an explicit constraint. However, in most prac-
tical systems the speech-like nature is enforced implicitly by either 
the modification strategy, or the optimization criterion, or both. 
Modification strategies such as slowly varying spectral shaping 
facilitate speech-like output only. The maximum probability of 
correct phoneme recognition is an example of a criterion that 
favors signal features that resemble those of clean speech. 

Signal power is a natural constraint. The unconstrained optimi-
zation of signal spectral modifications may lead to an unbounded 
increase of the signal power if the reduction in recognition perfor-
mance of the human auditory system for loud sounds is not consid-
ered. Thus, a power constraint must be applied to prevent hearing 
injuries and loudspeaker damage. Approximations to perceived 
loudness, either in the form of an analytic expression, or in the 
form of an algorithm, may also be used as constraints. 

The system delay must be constrained in real-time systems. 
This may prevent the usage of particular distortion measures 
and modification operators. 
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sIgnal processIng 
approaches
In this section, the focus is on cre-
ating practical enhancement sys-
tems. We start with a discussion of 
various modifications that can be 
made and then discuss three 
approaches to enhancement and 
their performance. Specific applica-
tions are described in “Making Mobile Phones More Intelligi-
ble” and “Making It Work for Hearing Instruments.”

sPeech MoDifications
The basic paradigm of intelligibility enhancement discussed in 
this article is to select a modification operation to be used for 
preprocessing the signal and a measure of intelligibility, and 
then to adjust the parameters of the modification operation to 
maximize the measure. We discuss the classes of modifications 
that have been used or can be used and report on current 
knowledge about their effectiveness. 

Enhancement operators can be classified according to a 
number of criteria. Operators can be classified generically as 
time-varying or time-invariant and as linear or nonlinear. Most 
intelligibility enhancement operators are time-invariant and 
nonlinear. However, low-level operators that use a linear filter-
ing of the signal [8] have been used and perform well (if the fil-
ter is adapted, the operator is nonlinear). 

Additional classifications can be made based on the specific 
processing performed on the message. Depending on the 
abstraction level where a modification takes place, we identify 
lexical (high level), prosodic (midlevel), and spectral and 

temporal (low level) modifications. 
In accordance with the Markov 
chain model of the communication 
process, presented in the section 
“Defining Intelligibility,” a high-
level modification affects the mes-
sage representation at the lower 
levels. The operator can be indepen-
dent or dependent on the environ-

mental disturbance, i.e., it can be nonadaptive or adaptive. 
Finally, depending on the origin of a modification there are 1) 
mimicking strategies, i.e., modifications that attempt to mimic 
modifications used consciously or subconsciously by humans 
producing speech in adverse conditions, and 2) rational strate-
gies based on, e.g., expert insight in the human auditory periph-
ery and in cognition [3] or of the sound field [16], [29]. 

In unpublished work of the Listening Talker (LISTA) project  
(http://listeningtalker.org), 44 possible modifications were iden-
tified. This includes the modification strategies used in essen-
tially all existing intelligibility enhancement systems. The 
effectiveness of some of the listed modifications on the intelligi-
bility in noisy environments is reviewed in [7] and [9].

As is discussed in [7] and [9], mimicking strategies such as 
pitch modification, vowel space adjustment, and uniform speak-
ing rate reduction do not improve intelligibility consistently 
when applied to natural speech. This outcome suggests that 
such modifications may have an auxiliary role or may be the 
result of physical limitations in the speech production mecha-
nism. Other mimicking candidate modifications include chang-
ing the relative duration of phonetic units and shortening units 
that are more sensitive to energetic masking in favor of more 
robust units. As of now, no conclusions can be drawn about the 
benefit from such modifications. In the remainder of this sec-
tion we focus on rational strategies. 

Lexical speech modifications consist of, among others: 1) rep-
etition to provide additional cues and 2) rephrasing to increase 
correct recognition probability as a result of better noise robust-
ness and/or higher predictability. While repetition does not facili-
tate intelligibility optimization, rephrasing provides an intuitive 
and attractive modification class. The section “Measures of Intelli-
gibility” discussed high-level modification measures that can, at 
least in principle, be used for this purpose. A practical rephrasing 
approach is presented in [19]: rather than comparing the mea-
sures directly, the method compares the sensitivity to noise 
addition of each formulation, according to the probability of 
correct recognition. The approach does not consider the pre-
dictability of the formulation, which is a major factor in intelli-
gibility. An indirect indication of the expected gain from 
increasing the predictability of a formulation, e.g., by vocabu-
lary size reduction, can be obtained by comparing the outcomes 
of intelligibility evaluations using closed-set [14] and open-set 
vocabulary bases [9]. The considerably higher intelligibility gain 
for closed-set evaluation suggests that it is feasible to design a 
modification system achieving intelligibility gain by improving 
the predictability of the formulation. 

MakIng MobIle phones More IntellIgIble
Mobile telephony is often conducted in the presence of 
acoustical background noise such as traffic or babble 
noise. In this situation, the listener perceives a mixture 
of clean speech and environmental noise from the 
near-end side, which generally leads to an increased lis-
tening effort and possibly to reduced speech intelligi-
bility. As the noise signal generally cannot be changed, 
the manipulation of the far-end signal is the only way 
to effectively improve speech intelligibility and to ease 
listening effort for the near-end listener. 

In the mobile phone application, the algorithmic delay of 
the processing is crucial since the allowed round-trip delay 
of the communication system is limited. this places a severe 
constraint on the modification operator. furthermore, the 
restrictions of the microloudspeakers of mobile phones 
need to be considered. the maximum thermal load of the 
microloudspeaker constitutes a major limitation, which can 
be taken into account with a constraint on the total audio 
power. finally, the ear of the near-end listener is usually 
next to the loudspeaker and must be protected from dam-
age and pain. this can be ensured by power limitations for 
the critical bands.
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Low-level modifications do not require knowledge of the 
intended message transcription. These can be subdivided into 
spectral, temporal, and spatial signal modifications as well as com-
binations thereof. 

Straightforward spectral shaping is employed in [8] and [12]. 
This modification facilitates both low 
complexity and a high intelligibility 
gain, e.g., [9], making these 
approaches particularly suitable for 
application in mobile telephony. 

Spectrotemporal energy redistri-
bution is considered in [6], where 
the glimpse proportion is opti-
mized. The use of a genetic algo-
rithm to perform the optimization 
makes this method interesting primarily from a theoretical per-
spective. A low-complexity approach with high intelligibility 
gain that performs spectrotemporal energy redistribution by opti-
mizing a perceptual distortion measure is presented in [14]. 

A particular class of spectrotemporal energy redistribution is 
obtained with dynamic range compression. This approach can 
either be nonadaptive or adaptive. In a large-scale subjective evalu-
ation of proposed speech modification systems [9], most of the 
entries that incorporated dynamic range compression, including 
those related to the descriptions in [5], [23], [28], performed well. 

Intelligibility can also be enhanced by controlling the spatial 
sound field near the ear with a multitude of remote loudspeakers. 
As discussed in more detail in the section “Enhancement over 
Multiple Spatial Points,” if users are wearing microphones near 
their ears, reverberation and cross-talk between different messages 
can be reduced by feedback [16]. The goal is that only the desired 
signal is present at the ear of a user. If microphones are further 
from the ears of the listeners, the emerging field of multizone 
audio rendering becomes relevant, e.g., [29]. 

intelligibility enhanceMent systeMs
This section describes three practical methods for intelligibility 
optimization approaches. The described approaches are based on 
different principles. 

SII-BASEd ENHANCEMENt
State-of-the-art systems have been developed based on the decompo-
sition into band-importance and band-audibility functions [4], [8], 
[28]. We provided a recent perspective on this decomposition in the 
section “Measures Operating on Spectral Band Powers.” This section 
describes implementations that closely follow the SII standard. 

The computation of the SII [18] uses a carefully calibrated 
specification of the speech spectrum 2

av ,T i  and the noise spectrum 
2
vv ,E i  (where i  is a critical or third-octave band index) as measured 

over an entire utterance, including minor pauses. The approach 
accounts for both the hearing threshold and the loss of intelligibil-
ity at very high presentation (loudness) levels, using information 
stored in tables. For an acoustic time-domain speech signal ,aT  
the equivalent speech spectrum level in dB, commonly denoted as 

,Ei  is computed as 

 ( ) ( ),log logE f10 10
,

i
i

10

2

10 0
2av
v= -

D

,T i  (10)

where 0
2v  denotes the digital reference power per hertz corre-

sponding to the reference sound pressure of 20 n  Pa and f ,iD  is 
the frequency bandwidth of the ith  
subband in hertz. The equivalent 
disturbance spectrum level, ,Di  is 
computed in three steps: first the 
calibration (10) is applied, and then 
the threshold of hearing and in-
stantaneous masking are account-
ed for. In [4] the threshold of 
 hearing and in [8] both the thresh-
old of hearing and instantaneous 

masking are neglected. 
The band-audibility function of the SII also accounts for the 

decrease in intelligibility at high presentation (loudness) levels, 
which is not accounted for in (9). Consequently, it depends on 
both the SNR in the band and the absolute presentation level .Ei  
The band-audibility function is identical for different bands and 

MakIng It Work for hearIng InstruMents
Hearing instruments aim to compensate for a hearing 
loss. typically, this is done by amplifying a sound 
recording, followed by dynamic range compression to 
ensure the signal remains within the audible and com-
fortable range. Environmental noise degrades intelligi-
bility for hearing instrument users in two ways. A first 
degradation is due to noise recorded by the micro-
phones. to decrease the impact of this noise, noise 
reduction is applied to the recorded signal prior to 
amplification for hearing loss compensation. 

A second degradation depends on the fitting: the user 
may experience direct environmental noise, leaking 
through the hearing instrument vent. this leakage 
degrades the intelligibility and can be overcome by pro-
cessing the signal with the application of a speech intel-
ligibility enhancement algorithm before play-out as 
discussed in the article. 

Adopting the concept of interpretation noise, the 
patient’s hearing loss can be measured and modeled by the 
noise process .vL  the environmental noise that reaches the 
ear through the hearing instrument vent can be modeled 
by the process vE  of (4). dynamic range compression can be 
taken into account by expressing the desired output range 
in terms of (frequency-dependent) absolute power con-
straints. Given this model, the hearing instrument can be 
optimized using one of the measures discussed in 
the section “Measures Operating on Spectral Band Powers” 
in a constrained fashion. the resulting integrated solution 
compares favorably with an ad hoc concatenation of pro-
cessing steps, facilitates a conceptual understanding of the 
hearing impairment, and is likely to lead to an effective 
control of the instrument. 
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we denote it for a band i  as .( , )A E Di i  Let us define the piece-
wise linear sigmoid 

 ( ; , )xS 1 2b b = ( ( , ), ) /max min x 2 1 1b b b-^ h ( ),2 1b b-  

which has a range [ , ]0 1 . The band audibility function of the SII is 
factorized into two factors: the first factor accounts for the instan-
taneous masking and the second factor accounts for high presen-
tation levels: 

 
( , ) ( ; , )

( ; , ),

A E D E D D

E U U

15 15

170 10

S

S

i i i i i

i i i

= - +

- - - - -
 

(11)

where Ui  is the standard speech level at normal voicing effort 
(provided in a table in the standard). The heuristic factor 
( ; , )E D D15 15S i i i- +  assumes that speech signals 15 dB below 

the disturbance level are fully masked, and speech signals 15 dB 
above the disturbance level are not masked, which leads to a curve 
similar to the result derived in (9). 

The SII is a refined and normalized version of (7) that accounts 
for decreased intelligibility at high presentation levels 

 ( , ).I A E DSII i
i

i i=/  (12)

The band-importance function Ii  in the SII is specified by a table 
that is based on fitting to a database. Figure 2 illustrates the com-
putation of the SII. The suppression of the audibility function at 
high presentation levels is clearly shown in the panel showing the 
audibility function (11). 

The measure (12) can be used to optimize a modification oper-
ator that shapes the spectrum. As the intelligibility decreases both 

at high and low presentation levels, the SII criterion can, in princi-
ple, be optimized without constraint. It is seen from (12) that if 
there is no global constraint, each frequency band can be opti-
mized independently. The resulting solutions are not necessarily 
unique because of the form of .S  It is natural to select the solu-
tion that has the lowest power but does not reduce the speech 
power in any band. For low absolute noise levels, where the solu-
tion is not limited by the second factor in (11), the solution for the 
gain is [4] 

 , ,maxg D E E15i i i i= + -^ h  (13)

where the shaping gain gi  for band i  is given in dB. In (13) the 
original equivalent speech spectrum level is Ei  and the modi-
fied speech has equivalent speech spectrum level .g Ei i+

As was discussed in the section “Constraints on Optimization,” 
it is common to constrain the overall loudspeaker signal power in 
practical applications. The optimization of (12) subject to a power 
constraint was studied in [4] and [8]. To facilitate analysis, the two 
approaches use approximations of (12). Although the approxima-
tions are different, both neglect the second factor in (11) and start 
from ( , )A E Di i .  .( ; , )E D D15 15S i i i- +  Reference [4] simpli-
fies ( , )A E Di i  further by removing the lower bound on the sig-
moid and writing ( , )A E Di i . ( / ) ( , ) / .min E D1 2 15 30i i+ -  Ref-
erence [8], on the other hand, makes the approximation 
( , ) / ( ),A E D 10 10 10/ / /

i i
E E D10 10 10i i i. +  which is a differentiable 

function. When writing the above expressions for the modified 
speech, the audibility-function approximations are concave func-
tions of the (linear) spectral gain .10 /g 10i  Optimizing the approxi-
mations subject to linear constraints on 10 /g 10i  form 

[fIg2] the computation of the sII.

aT, 21

aT, 2

aT, 1

Power
E21

E2

E1

A21 (E21, D21)

A2 (E2, D2)

A1 (E1, D1)

I21

I2

I1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Power

Power

vE, 21

vE, 2

vE, 1

Power
D21

D2

D1

.

.

.
.
.
.

.

.

.

Power

Power

F
ilt

er
ba

nk
F

ilt
er

ba
nk

M
as

ki
ng

+
aT

vE

SII

−20 0 20 40 60 80

No
Intelligibility

Full
Intelligibility

Disturbance
Spectrum Level
e.g., Di = 10 dB

Full
Masking

Partial
Masking

No
Masking

Limitation
by Human Ear

Speech Spectrum Level Ei (dB)

A
i (

E
i, 

D
i)



 IEEE SIGNAL PROCESSING MAGAZINE [51] MARCH 2015

straightforward optimization problems that can be solved using the 
Karush–Kuhn–Tucker conditions. The resulting analytic solutions 
are easy to implement. The later work of [8] models ( , )A E Di i  
more accurately at low SNR values and provides improved perfor-
mance over the original work of [4] under low SNR conditions. 

The discussion in this section assumed stationarity. Time varia-
tion can be accounted for by recursive updating of the equivalent 
spectrum levels Ei  and Di  and periodically recomputing the 
gains gi  [4]. This is consistent with the SII update described in 
[27], which uses frequency-dependent temporal windows. 

WORd-SEqUENCE PROBABILIty-BASEd  
ENHANCEMENt
The section “Defining Intelligibility” identified the suitability of the 
expected probability of correct message recognition as a measure for 
optimizing intelligibility at a high level of abstraction. We noted in 
the section “Measures Operating on a Word Sequence” that, under 
an ergodicity assumption, the expectation over messages can be 
approximated by averaging over time. 
Optimizing a measure derived from 
the probability of correct recognition 
under a power constraint has been 
shown to provide significant intelligi-
bility gain assuming that accurate 
sound segmentation information and 
an appropriate acoustic speech model 
are available [11]. We emphasize that 
the method assumes that ASR word probability tracks the human 
recognition performance, which was found to be true in [11] but is 
not guaranteed. Here we provide more detail about this approach. 

To make high-level machine-based optimization feasible in 
practice, we can represent the message at the phoneme level. This 
means we refine our Markov chain to include an intermediate 
level. The chain now becomes ,M u a a u MT T T L L L" " " " "  
where uT  and uL  denote the talker and lister phoneme sequences, 
respectively. By first performing time alignment of a sequence of 
acoustic features vectors aT  and a sequence of phonemes uT  by 
means of an ASR engine, a practical intelligibility enhancement 
approach can be defined. The ASR speech model can then be used 
to provide the probability densities that characterize clean speech 
sounds in the acoustic feature space. 

To enhance intelligibility, we want to find the parameters C*  of 
our speech modification scheme that maximize the average proba-
bility that the listener interpreted phoneme sequence uL  is the 
talker-generated sequence :uT

 | , ,argmax p u uC C*
| T Tu u

C
= L T

^ h  (14)

where the subscripts of the density label the density it repre-
sents. Note that the densities are consistent with the models 
shown in (4). 

Simplifications were introduced in [11] to make the optimiza-
tion tractable. It was tacitly assumed that the message is accu-
rately represented by the phonemes and production noise was not 

formally considered. It was also assumed that vE  (the representa-
tion of the noise) can be approximated as deterministic, which is 
reasonable for typical acoustic signal representations and station-
ary noise. The only remaining uncertainty is due to the interpre-
tation noise in the mapping from aL  to .uL  In an ASR system 
based on an HMM, this is modeled by the observation noise. 
Equation (14) can now be approximated by 

 | ( , )argmax p u a uC C*
| T L Tu a

C
. L L

tt ^ h (15)

 | , ( )argmax p a u p uC| L T Ta u u
C

= L L L
tt ^ h

 
T

( | , ) ( ) ,p a u p uC|u L T T
1

a u u
-

L L L
l l

l
tt` j/  (16)

where we used Bayes’ rule and where ( , ),a u CL Tt  abbreviated to 
,aLt  is the set of acoustic features observed by the listener, which 

is modeled as a deterministic function of the talker phoneme 
sequence uT  and the speech modi-
fication parameters .C  The first 
term of (16) is the likelihood of the 
talker phoneme sequence for the 
observed features ,aLt  the second 
term is the a priori probability that 
the phoneme sequence uT  is 
decoded by the listener, and the 
third term is the inverse a priori 

probability of the listener-observed features. Optimization of the 
likelihood term only reduces complexity and provides good 
results [11]. 

The theory is simplest to implement if the sequences are con-
sidered stationary. The averaging of (16) over long time intervals 
(multiple sentences) is then preferred. In a practical implementa-
tion, shortcuts may have to be made due to requirements on delay 
and complexity and because the stationarity assumption may not 
be sufficiently accurate. 

A system-level perspective of the proposed approach is 
shown in Figure 3. In [11], the approach was validated for a 
combination of two modifications: prosody-affecting phoneme 
gain adjustment and a spectral modification redistributing the 
signal energy across frequency bands. The method compared 
favorably to a method based on the optimization of a measure 
operating on a sequence of auditory states [14], discussed in the 
section “Measures Operating on a Sequence of Auditory States.” 
Results reported in [9] suggest that using the full Bayesian 
approach rather than optimizing only the likelihood component 
of (16) improves performance. 

In text-to-speech applications it may be possible to select 
from a set of phrases to convey a particular message. The mea-
sure given in (16) has also been used to determine the optimal 
phrasing of utterances [19]. This study indicates that maximiz-
ing the probability of correct interpretation of the phoneme 
sequence increases intelligibility. Considering prior information 
on the predictability of various formulations is expected to fur-
ther enhance performance. 
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ENHANCEMENt OVER MULtIPLE 
SPAtIAL POINtS
We have considered preprocessing 
techniques that do not consider the 
spatial aspects of the rendering sce-
nario. In this section, we show that 
spatial aspects can also be exploited to 
enhance intelligibility. In announce-
ment scenarios in public spaces such 
as airports, train stations, or shopping 
malls, environmental noise and rever-
beration contribute to a reduced intelligibility for the listeners. If 
different messages are communicated to different spatial regions, 
acoustic leakage between regions [16] exacerbates the problem. 
The impact on intelligibility is particularly large for hearing-
impaired persons. 

Consider a scenario in a public environment where N  mes-
sages are conveyed via the public address (PA) system to N  lis-
teners wearing a hearing instrument. A possibility is to 
downstream the corresponding signals directly to the listeners, 
but listeners often wear an open fit (nonoccluded) hearing 
instrument, where the direct signal also is mixed in at the ear-
drum. Instead of using direct downlink connections, it is possi-
ble to preprocess all speech signals jointly at the PA system so as 
to minimize the expected distortion at the eardrums of the lis-
teners. The distortion measure can be based on any (mathemat-
ically well-behaved) model for speech quality or intelligibility, 
such as some of the models discussed in the section “Practical 
Measures of Intelligibility.” 

Let [ , , , ] ,a a a a, , ,
T

T T T T N1 2 f=  aTu  and aL  (defined similarly) 
be the (complex-valued) short-time DFT coefficients of the source 
speech signals, enhanced signals (at the PA system), and received 
signals at the listeners, respectively. The signals aL  are captured by 
the microphones of the hearing instruments. For simplicity, we 
neglect production and interpretation noises of the section “Defin-
ing Intelligibility” and assume that degradations are purely acousti-
cal and consist of noise, reverberation, and cross-talk between 
messages. It is easy to see that if we use stacked-vector notation for 
the signals a ,T i  and ,a ,L i  , , , ,i N1 2 f=  upon preprocessing, all 

effects can be included in the affine 
signal model given by [16] 

 ,a H vaL E T E= +u  (17)

where the channel matrix HE  col-
lects all reverberation and cross-talk 
transfer coefficients between produc-
tion and reception points, and vE  is 
additive noise in the environment. 

Consider also a distortion mea-
sure ( , ),d a aT L  smooth (continuously differentiable) as a function 
of aL , which quantifies the distortion between the reference pro-
duced coefficients aT  and what is eventually listened to, .aL  Our 
aim is to find the modification a aT T7 u  that minimizes the 
expected distortion according to ,d jointly for all talker-listener 
points, i.e., we want to solve the optimization problem 

 [ ( , )],H vd a aminimize E T E T E
aT

+u
u

 (18)

where the expectation is taken only over the acoustic disturbances 
,HE  ,vE  since we have direct access to the speech of the talker aT  

and therefore take it to be deterministic. 
Generic necessary conditions can be derived for solving (18) in 

terms of a functional description of the distortion measure .d  The 
conditions are [16] 

 ( , ) ,H H vE
a
d a a 0*
L

T E T E
H
E
2
2 + =u; E  (19)

where ( )H$  is the Hermitian transpose, and / /v 1 2*2 2 /^ ^h h 
/ / /jv v12 2 2 2-0 1^ ^ ^^ h h hh  is a complex differential operator, 

expressed in terms of the real differential operators / v2 2 0^ h and 
/ ,v2 2 1^ h  in Hessian (vertical) notation, with respect to the real 

and imaginary components of the variable ,v  respectively. The 
meaning of (19) is that, for optimality, it is required to choose the 
preprocessed speech aTu  such as to make the complex gradient of 
the distortion measure with respect to the listener DFT bins in all 
zones orthogonal to all columns of the channel matrix .HE
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To demonstrate the use of the 
optimality conditions (19), let us 
consider the simple 2,  distortion 
measure given by 

 ( , ) ,d a a a aT L L T
2= -  (20)

where $  is the 2,  norm. In this 
case, (18) is a convex optimiza-
tion problem, so that (19) are 
also sufficient conditions. By 
using the optimality conditions (19) under the assumption that 
HE  and vE  are uncorrelated, and including the hybrid deter-
ministic-stochastic model for HE  introduced in [16], where the 
early response is described solely by a deterministic direct path 
and the late response is modeled by an exponentially fading sto-
chastic process, the preprocessing algorithm is derived as 

 ,a D D D aH H
T T

1K= +
-u ^ h  (21)

where D  is a matrix collecting direct path responses of the 
channel, and K  is a diagonal matrix collecting diffuse reverber-
ation response channel energies. Note that in the case of low 
reverberation, ,0"K  the scheme (21) reduces to a conven-
tional acoustic cross-talk canceler [30], ,a D aT T

1= -u  which by 
compensating for the direct paths of the channel ,HE  makes 
the cross-signals cancel out at the listeners. We thus conclude 
that optimization-based multipoint preprocessing enhancement 
as formulated in (18) leads to acoustic cross-talk cancelation, 
when applied to the 2,  distortion measure (20).

conclusIons and open probleMs
Modern speech communication often leads to the signal being 
rendered by a machine in a noisy environment. In these circum-
stances, communication benefits from methods that make speech 
more intelligible in noise, particularly if the enhancement can 
adapt to the scenario at hand. This requires quantitative models of 
the communication process and distortion measures. 

The use of a distortion measure facilitates the formulation of 
convergent algorithms and generally reduces the need for ad 
hoc solutions. Measures formulated at a high level of abstrac-
tion, such as (1) and (3) apply, at least in principle, to all com-
munication tasks. However, when these high-level measures are 
applied to specific tasks assumptions must be made, either for 
the signal or for a model of the human cognitive system (e.g., by 
an ASR system), or both. Thus, optimization of any measure can 
never replace the need of extensive real-world testing to verify 
the performance of an intelligibility-enhancement system for 
the task at hand. 

At first sight, the intelligibility-enhancement problem resem-
bles the standard problem of transmission over a noisy channel. 
However, we have shown that the unprecise nature of the human 
production and interpretation must be accounted for. When that 
is done, standardized measures for intelligibility, which have a 

long history and were derived heuristi-
cally, are found to be consistent with 
communication theory. 

While the field of intelligibility 
enhancement has developed rapidly, 
opportunities for significant improve-
ment remain. Careful accounting for 
time-domain masking may improve 
performance. Methods developed for 
scenarios with additive noise only 
must be extended to include reverber-

ation. Refining methods that perform spectral shaping to include 
range compression may increase their performance. For meth-
ods based on mutual information, the effect of time and fre-
quency dependencies must be considered. Studies to determine 
the best representation (e.g., cepstra or DFT coefficients) and 
the determination and usage of appropriate noise distributions 
for the model likely will lead to improvement. The determina-
tion of a word choice for a message that is more robust to noise 
is an essentially unsolved task. 

Although major challenges remain, the field of intelligibility 
enhancement has made major strides in recent years. The tech-
nical outcomes will likely become an integral part of speech-
rendering devices in the near future, leading to improved 
communication among humans and from machines to humans. 
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