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ABSTRACT 
In previous work, we and others have shown that band- 

pass filtering of temporal trajectories of simple functions of 
the cr.itica1 band spectrum can lead to more robust speech 
recognizers in the presenre of additive and convolutional er- 
ror. In this study we report results on several mechanisms 
for incorporating this analysis technique into training, in 
a way that is consistent with on-line approaches to speech 
recognition. In particular, we show improved robustness 
to these forms of degradation for a system that maps the 
filtered spectral points using a linear regression computed 
from results of the different transformations. 

1. INTRODUCTION 

It has been demonstrated [1][2] that  bandpass fil- 
tering of temporal trajectories of the critical-band 
spectrum (when it has been processed by a nonlin- 
ear tI ansformation) is efficient in alleviating some 
harmful effects of boi h additive and convolutional 
noise While the technique appeared to be effec- 
tive. it raised two new problems: 

The  optimal form of the nonlinearitj is depen- 
dent on the noise level. Thus, the noise power 
needs t o  be estimated for the analjsis. 
Since, depending on the estimated noibe level, 
a different compressive nonhea r i ty  may be 
applied in the andysis, the result is dependent 
on the noise level In a sense this is a trade of a 
deterministic source of variance (the different 
nonlinearities used) for a stochastic one (the 
actual additivcl or convolutive noise). 

I're\ious work [1] simply estimated the noise 
power from the non-speech part of the signal t o  
address the first problem. The second problem 
was addressed by using multiple templates derived 
from the clean speech using a range of nonlinear- 
ities corresponding t o  the range of expected noise 
levels. 

In the current work we estimate noise without 
requiring explicit speech detection. Further, we 
investigate three different techniques for compen- 
sating for the effect of the variable nonlinearity. 
T h e  RASTA models derived for recognition need 
to  match the models derived during training. This 
was always t r w  for the early forms of RASTA in 
which the nonlinearity was fixed (a  logarithm), but 
is nontrivial for a nonlinearity whose value is de- 
pendent on an adaptively determined parameter 
(noise level). 

2. BACKGROUND 

The  basic idea of RASTA processing is t o  filter the 
temporal trajectories of speech parameters (e.g . 
critical band values) after they have been trans- 
formed by a static nonlinearity that  (ideally) con- 
verts the major sources of environmental interfer- 
ence into an additive component. Over the last 
year we have bren experimenting with a parame- 
terized family of functions 

K = log(l4- J X ; )  (1) 
where i is the critical band number. 

For large values of J X i ,  this function is close 
to  logarithmic, while for small values it is close 
to linear. Experiment,s reported in [1][2] showed 
that  the optimal value for J is dependent on the 
instantaneous noise power. To estimate this noise 
power, we use an approach developed by Hirsch[Y] 
which uses the position of the principal mode of 
the histogram of energy in each frequency band as 
the noise power estimate for the band. The sub- 
band estimates are currently combined for a ro- 
bust estimate of the total  noise power. This noise 
estimation technique does not require any speech 
pause detection. 
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rhough the overall ~irocessing has been shown 
to  provide some robus1 ness, a drawback remains: 
the choive of different J values, as required by dif- 
fering noise conditions. generates different spectral 
shapes a.nd dynamics of the spectra. This nieans 
that the training systeiri must contend with a new 
source of' variabi1it.y due to t.he change in process- 
ing strategy that is adaptively determined from 
the data .  The rest of this paper is concerned with 
the solui,ion of this difficulty. 

3. APPROACHES TO HANDLING J 

M.C have been working on t.hree approaches to  han- 
dling this variability: 

VARIABILITY 

1.. Multiple recognizeTs - several systems can be 
trained using a different J value for each one. 
Although clean speech is used for each train- 
ing, t,he differing d factors provide a range to  
include the iionlinc~ar function for cases that 
will be encountered. In t.he recognition phase. 
noisc r,stiniat,ion i i  used to select a .7 value, 
and the corresponding recognimr is used. ..Zs 
will be shown, this works well, but several rec- 
ognizers must ba trained. 

2 .  Multiple J values for one recognizer - given 
enough degrees of freedom in the trained sys- 
tern. training data caii he processed for train- 
ing with a. range of plausibk values for J .  
This only requires training a single system, 
but since this t echniqiie effectively increases 
the size of t,h(, training set, i t  requires more 
computing and possibly also inore parameters 
in tlie classifier to account for the a,dded vari- 
ability. 

3.  Spec.t,ral mappiiig ~ the noise-level dependent 
choice of .I introduces a deterniiriistic source of 
variability into I hr  analysis. which one should 
be ill principle he able to compensate for. To 
this date. however: \c'e have not determined 
a satisfactory analytic solutiori to this prob- 
lem. and therefore we have docided to  apply 
an c,nipirically (lerived linear mapping which 
would transforrii the  spectrum obtained from 
a J value corresponding to noisy speech t,o a 
spectrum processed with a J value for clean 
speech. In ot het- words. wc? finc! a mapping be- 
tween log( l + .J,I ) a.nd log( l f J T e l z i .  For 

this approacli, we ha.ve used a, 1inea.r regres- 
sion within each critical band. In principle: 
this solution reduces the variability due to  1 he 
choice of J ,  and so minimizes the effect on 1 he 
training procc'ss. 

In the nest  section we describe experiimiits to  
test these three niet.hods. 

4. EXPERIMENTS AND RESULTS 

We tested our approxhes with a standard HMM 
recognizer which was built with the HMM-Toolkit 
(HTK)[4]. The  recognizer used 10-state word- 
based HMhIs, with 8 emitting states and output 
probability dist,ril)utioiis based on N-Gaussian di- 
a,gonal covariancr matrices. The varimces were 
tied across all H M M  states of all models (grand 
variances). The  speech was processed using a 
25 ms Hamming window, a.nd then parameterized 
into 9 PLP-cepstral values. The test database con- 
sisted of 13 isohted digits spoken by 200 speak- 
ers over dialed-up telephone lines. All words were 
hand end-pointed. To get enough training data to  
model the HMMF we divided the set of 200 speak- 
ers into 150 speakers for tra,ining and 50 speakers 
for testing. -4 jackknife procedure was used so that  
all speakers' data  could be tested 011. resulting in 
4 iterations (no overlap of testing). To balance 
for the number of parameters, we used -1 mixtures 
per st,ate for all cases but, that  of 4 recognizers; 
for this case we used a single niixture per state (a 
greater nuniber of mixtures actually didn't. sub- 
stantially change performance for an earlier pilot. 
experiment). To simulate additive noise we syn- 
thetically added car noise to the clean (> 20 dB 
SNR) speech to yield a 10 d R  Sh'R level. Convolu- 
tional noise was introduced by filtering the speoch 
with a linear filter simulating the spect,ral ratio 
between an electret and carbon mic,rophonr. l ' h e  
recognition resu1t.s are presented in Table 1. l 'he 
first, row gives the results when the environment 
for tra.in and test, phases are identical. and is in 
some sense a best case scenario for non-R..ZSTA 
processing: often the testing condition is not avail- 
able during training. In  all other rows the training 
c.onditions were irlways "clean". i.e.. t,he additive 
and convolutional errors were only applird to test 
data. The serorid and third row show the results 
obtained wi th  PI,P arid log HAST.4 procrssing. 
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Note that  log RAS'l .4 (called R.L\STA here) rcl- 
duces t.he error rate lor t h r  filtered case but is not 
rffr:ct:iVe for additive noise. In this task, RASTA 
also appears to  slightly improve the discriniinabil- 
i ty  between the word classes in the clean case, as in 
fact oiie-third of the (mors were eliminated witti a 
log RASTtZ front end (with respect t o  a PLP front. 
end) .  

The results using rrrultiple recognizers are shown 
iri  the fourth row i .J-RASTA4-mult). This appears 
t o  work reasoilably well in comparison with PLP 
or log ItASTA. but there is still a noticeable degra- 
dation. In addition. there is a significant perfor- 
mance loss for the clean data .  

The next row (J-R.4STA-uni) uses one recog- 
nizer with da.ta, processed using different values of 
J .  This is an H U M  version of our multi-temp1at.e 
approach [.l] a,nd appears to  work better t1ia.n the 
niultiple recognizer wchnique, both for clean and 
iioisg cases. This cast' only requires a single recog- 
nition step, and so is a fairly straightforward way 
of incorporating J -  RASTA into a recognition sys- 
tem. However. it, does still require training with 
rriultiple processings of the training data,  which 
in c reztses t rai n i ng tin le. 

The final row s h o u s  the results from the linear 
mapping of fibered critical band values. In this 
case? J-RhSTAfilterc,d critical band outputs from 
1 0  speakers' a,rr uscxd t o  train linear regression 
models. We Iiavr used 2 coefficients for each of 
1.5 critical bands. Thus, we map the J-RASTA- 
filtered values for m a l l  J (high noise) t o  the cor- 
responding values f o r  a larger .J (low noise). In 
particular, for each of 3 different values of J (lo-:% 

m d  LO-"). UT compute a mapping 

( 2 )  I[' .. 
iJ ~- C 1  + C 2 1 ; J  

where Z;J is the .J-HASTA-filt~~red output for 
crit ic;rl hand i, and tlie coefficient,s are determilied 
to minimize the meaii-squared error between CV~J 

The recognizer wa4 trained with clean specch 
processed with ,I = and during recogni- 
tion the optinial Lalue of d was determined by a 
local estimate of noise level for the isolated digit. 
l 'hen the J-RASTA-lilt,ered critical band outputs 

a n d  Y-,J,e,+. 

'Nnw of these speakers were independent of the test set; the 
tenth vias one of the 200 s5,eakers in the final testing. 

I rec. enc. 1 no conv noise I1 conv noise I 
j clean I 10 j j  clean I 10 1 

I PLP same env I 95.0 1 90.0 11 92.8 I 89.9 I 
I I 

Table 1. Recognition Performance in % 

were linearly mapped using the regression coeffi- 
cients computed earlier. The  performance of this 
method appear3 to  be quite good. In particular, 
the score for the clean case is essentially the same 
as for RASTA (in this case actua,lly better than 
for PLP).  while the mapping approach for the 
degraded cases are better than for the other ap- 
proaches (roughly equivalent t o  the J- RASTA-uni 
approach). Unlike the other approaches, recog- 
nition and training are both the same as for log 
RASTA: as only a simple deterministic mapping 
is required in tlie front end. 

5.  DISCUSSION 

The  techniques described here permit incorpora- 
tion of J-RASTA processing in an HMM-based 
recognizer, at  least for a small vocabulary isolated 
word recognition task. However, the first two of 
the three increase training time. The  third (lin- 
ear mapping) approach appears preferable from 
the data  shown here (although the train-with-all 
J-RASTA-uni a.pproach gives slightly higher per- 
formance for one condition). However, we do not 
have enough experience with this method to  know 
whether the mapping is task or data-dependent. 

While these techniques do provide significant ro- 
bustness t o additive and convolutional noise, it 
is clear that ,  iii comparison to  the performance 
on clean speech, there is a significant increase in 
error which remains. Aside from the smoothing 
they provide for fast non-speech events, RASTA 
techniques only handle the constant (or slowly- 
varying) components of non-linguistic variation. 

We close with some caveats about, the use of 
RASTA. In the 2 years since we first reported some 
RASTA results on recognition, many sites have 
experimented with related features. Due to  the 
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many different conditions under which these tests 
were done, results varied from woiiderful success 
to dismal failure with many cases falling in be- 
tween. Fort,unately. this variance does not appear 
to have a random cause; we have learned a few 
things about the use of RASTA in recognition of 
speech. Some of t,hese points are: 

RASTA increases the dependence of the dat,a 
on its previous context. Therefore, simple 
context-independent subword-unit recognizers 
can 1)e degraded bv RASTA. We have seen 
that RASTA has worked well in tasks with 
whole word models (,such as the one reported 
here), or in phoneme-based recognizers that  
used triphones or broad temporal input COII- 

text ( the latter being used for our neural- 
network recognizers). 

Log RASTA does not address the problem of 
additive noise. J-R.4STA in one of the forms 
described here appears to be able to  handle 
both additive and convolutional noise reason- 
ably well. 
Some RAST.4 users have had difficulty with 
initial conditions. One needs to  be aware that  
RA4S’L’A incorporates a filter with a signifi- 
cant memory. and thus is different from the 
well-c?stablished short-t,erm spectral analysis of 
speech in which each analysis frame is ent,irely 
independent of its surroundings. To illustrat,e 
this point, we originally had difficulty in the 
experiments reported here when some test files 
Started off with a. non-audio artifact which it- 
self was cut off prior t o  pat.tern matching. but 
whose effect spread well into thci useful part  of 
the speech dat,a due to  the RAST.4 processing, 
degrading the performance, 
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