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Abstract
In this contribution a modified scheme for linear prediction
analysis is presented which controls the degree of decorrelation
by a parameter α. In consideration of this parameter the signal
to noise ratio of a linear predictive coding scheme is investi-
gated and finally maximized for open loop quantization. Also,
the new parameter can be used to control the spectral shape of
the quantization error in the decoder output. As result the sig-
nal to noise ratio of the reconstructed signal can be increased
for open loop quantization compared to conventional prediction
analysis, and at the same time the perceptual encoding quality
benefits from a moderate spectral shaping of the quantization
noise in the decoded signal.

1. Introduction
Linear predictive coding (LPC) has been used intensively in the
field of waveform coding and has been the basis for speech cod-
ing for many years. There are many standardized codecs relying
on linear prediction, in combination with scalar quantization in
e.g. G.726 [1], but also in combination with vector quantiza-
tion schemes in sophisticated speech codecs for wideband wire-
less telephony such as the Adaptive Multirate Wideband Speech
Codec (G.722.2: AMR-WB, [2]).
Linear prediction can be combined with open or closed loop
quantization of the residual signal. In a closed loop quantization
scheme the redundancy of an input signal can be transformed
into a benefit in signal to noise ratio compared to straight pulse
code modulation (PCM) coding. Closed loop linear predictive
vector quantization is applied for example in Code-Excited Lin-
ear Prediction (CELP) [6]. For open loop quantization, on the
one hand, it is well known that linear predictive coding does
not improve the signal to noise ratio of the decoded signal. The
quantization noise in the decoder output is spectrally shaped ac-
cording to the input signal in this case. On the other hand, linear
predictive coding with open loop quantization, especially for
vector quantization schemes, is much less complex than closed
loop quantization. This makes open loop quantization a pre-
ferred solution for coding schemes with severe complexity con-
straints.
In this contribution we shortly review the principle and method-
ologies of linear predictive coding in closed loop and open loop
coding architectures in Section 2. In Section 3 we propose the
modified LP analysis with the introduction of the additional
analysis parameter. A relation between the signal to noise ra-
tio of the reconstructed signal and the decorrelation property of
the modified linear prediction is derived for a signal generation
and encoding model for closed and open loop quantization in
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n 4. Based on this relation we show that open loop quan-
n benefits from the modified LP analysis in terms of a

r signal to noise ratio and a better control of the spectral
of the quantization noise in the decoder output compared
ventional linear prediction analysis in Section 5. The re-

derived from the model are verified in the context of a real
predictive vector quantization scheme in Section 6.

2. Block Adaptive Linear Prediction
rinciple of linear predictive coding is to exploit correlation
nent to an input signal x(k) � � X(z) by decorrelating
ore quantization. For short-term block adaptive linear pre-
n, a windowed segment of the input signal, Xw(z), is ana-
in order to obtain time variant filter coefficients a1 · · · aN

lter of order N ). Based on these filter coefficients a pre-
n for the input signal is determined, X̂(z), that minimizes
ergy of the difference between original and predicted sig-
(z) = X(z) − X̂(z), in a minimum mean square error

SE) sense on the encoder side, Figure 1. The transfer func-
(z) of the linear prediction analysis filter is

(k) � � H(z) = 1 − A(z), A(z) =

N�

i=1

ai · z−i
. (1)

quantizer Q adds quantization noise N(z) (energy signal
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Figure 1: Open loop LP Encoder.

block processing) to form the input signal of the decoder:

D̃(z) = X(z) · (1 − A(z)) + N(z). (2)

nverse of the LP analysis filter, the synthesis filter, recon-
s from signal D̃(z) the signal X̃(z) in the decoder:

X̃(z) = X(z) +
1

1 − A(z)
· N(z). (3)

ignal to noise ratio (SNR) is

SNR =
E{x2(k)}

E{(x(k) − x̃(k))2} (4)



In the context of block adaptive linear predictive coding, the
linear prediction coefficients must be transmitted in addition to
signal D̃(z).

2.1. Closed Loop Quantization
In comparison to the open loop quantization in Figure 1, in
closed loop quantization the quantizer is part of the linear pre-
diction, also called quantization in the loop, as depicted in Fig-
ure 2. The output signal of the encoder is
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Figure 2: Closed Loop LP Encoder.

D̃(z) = X(z) · (1 − A(z)) + N(z) · (1 − A(z)) (5)

and thus the reconstructed signal on the decoder side is

X̃(z) = X(z) + N(z). (6)

While in the open loop scheme no noise shaping was applied
in the encoder acc. to (2), in the closed loop coding scheme the
noise is shaped with the transfer function of the linear prediction
analysis filter in the encoder, (5). This has different impacts on
the decoder output in terms of signal to noise ratio and spectral
shape of quantization error and will be discussed in the follow-
ing. Moderate noise shaping can also be introduced for closed
loop quantization. This is not considered here due to its high
computational complexity especially for vector quantization.

2.2. Linear Prediction Analysis
In order to obtain the linear prediction coefficients for block
adaptive linear prediction there exist two methodologies, the
covariance- and the autocorrelation method [3]. In practical
applications the autocorrelation method is used as it guaran-
tees stable filters on the decoder side for signal synthesis. For
this method the autocorrelation coefficients must be determined
first. Based on these coefficients the filter coefficients can be
found for example by Levinson Durbin recursion.

2.3. Maximum Prediction Gain
The degree of decorrelation of the input signal due to linear
prediction can be measured as the prediction gain

Gp =
E{x2(k)}
E{d2(k)}

The maximum gain achievable with a linear prediction filter
H(z) of finite order is equivalent to the inverse of the spec-
tral flatness (SF) of the magnitude spectrum of the resulting LP
synthesis filter H−1(z) [3]:

Gp = SF
−1(H−1(z) |z=ejΩ) =

� π

−π
| 1

H(Ω)
|2 dΩ

2π

e
( π

−π
ln(| 1

H(Ω)
|2) dΩ

2π
)

(7)

This filter H(z) has zero mean property due to the applied all-
pole constraint:� π

−π

ln

�
| 1

H(Ω)
|2
�

dΩ

2π
= 0.0. (8)
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3. Modified LP Analysis
e LP analysis the autocorrelation method can be applied in
equency domain instead of calculating the autocorrelation
cients in the time domain. The segmented input signal
) is therefore transformed by a Discrete Fourier Trans-
(DFT) to obtain signal Xw(Ωl) = DFT (xw(k)), Ωl as
iscrete normalized frequency with index l. Zero-padding
lied before the frequency transform to avoid circular con-
on effects. In the frequency domain we calculate from
ort time spectrum the short time periodogram |Xw(Ωl)|2.
forming the periodogram into the time domain will return
tocorrelation coefficients Rx,x. With the autocorrelation
cients LP analysis can proceed with Levinson Durbin.
e modification of the LP analysis we introduce a coeffi-
α as the exponent for each of the magnitudes of the pe-
gram, (|Xw(Ωl)|α)2, before transforming it to autocor-
on coefficients, Rα,x,x, Figure 3. With the coefficient

Zero-

Padding
IDFT

)( lwX Ω ( )2
|.| α xxR ,,α

α

DFT
Levinson

Durbin

)(
~

zA

Figure 3: Modified LPC Analysis.

1.0, the spectrum of the input signal is flattened at first.
wards the approximation of the spectral shape of this flat-
signal is determined in the linear prediction analysis. The
ed linear prediction filter, H̃(z) = 1 − Ã(z), also has
uency response that is flatter than the characteristics of
ear prediction filter obtained with conventional LP analy-
(z). Applying this linear prediction analysis filter to the

signal X(z) only partially decorrelates the signal. Choos-
= 0.0 yields no linear prediction while α = 1.0 realizes
nventional linear prediction analysis. Considering α in

equency domain has the advantage of a clear analytical
iption in the following Section.

4. Signal to Noise Ratio
mpact of the modified LP analysis on the signal to noise
and the spectral shape of the quantization error for open
and closed loop quantization according to Figure 1 and
pectively will be investigated in this Section. Therefore
nsider the model depicted in Figure 4. In that model an

regressive (AR) process generates an input signal. This
l is processed in a linear predictive encoder with closed
en loop quantization first and afterwards reconstructed in
coder: The AR process is based on white noise excitation
) with a constant power σ2

d, and an AR filter Hs(z) that
e expressed as a cascade of two separate filters Hs,1(z)

s,2(z)

1

Hs(z)
=

1

Hs,1(z)
· 1

Hs,2(z)
(9)

correlation to obtain signal

X(z) =
1

Hs(z)
· Ds(z). (10)
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Figure 4: Model for investigations.

In the encoder linear prediction is applied with the additional
parameter α for the LP analysis and the resulting LP analysis
filter H̃lpc(z). The residual signal D(z) is quantized, which
is considered in our model by adding white noise N(z) with
constant power σ2

n. As shown in Section 2, closed and open
loop quantization require completely different predictive
quantization schemes. In order to only consider the impact of
the two schemes in one theoretical noise shaping model, the
quantization noise N(z) filtered with Hns(z) is considered as
follows:

1. For open loop quantization according to (2) noise shap-
ing is not applied:

Hns(Ω) = 1. (11)

2. For closed loop quantization according to (5) the noise
shaping filter is identical to the LP analysis filter:

Hns(Ω) = H̃lpc(Ω) (12)

On the decoder side, the residual quantized signal D̃(z) is in-
verse filtered with the LP synthesis filter, H̃−1

lpc(z), in order to

obtain the reconstruction of the input signal, X̃(z).
The quantization of the residual signal D(z) is assumed to have
a constant signal to noise ratio,

SNRQ =
E{d2(k)}
E{n2(k)} , (13)

for different input signals. This assumption is motivated by
common design constraints for quantizers in linear predictive
coding: First, the complexity to realize the quantizer should be
as low as possible, hence scalar quantization or structured vec-
tor codebooks are mostly applied in linear predictive coding.
Second, constant performance should be available in a wide dy-
namic range, therefore logarithmic quantization [4] is applied.
In the following the impact of the choice of the parameter α on
the overall signal to noise ratio, (4), will be determined in the
spectral domain with z = ejΩ:
The signal energy of X(z) is (Parseval):

E{x2(k)} =

� π

−π

| 1

Hs,1(Ω)
|2 · | 1

Hs,2(Ω)
|2 ·σ

2
d

2π
dΩ (14)

The linear prediction analysis filter, as described in Section 3,
only partially decorrelates the input signal. For the analytical
description we assume that only the correlation introduced by
the second stage of the filter cascade, 1

Hs,2(z)
, is decorrelated

by linear prediction:

H̃lpc(z) = Hs,2(z). (15)
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this the energy of the residual signal D(z) is:

E{d2(k)} =

� π

−π

| 1

Hs,1(Ω)
|2 · σ2

d

2π
dΩ (16)

(13) and (16) the signal to noise ratio of the quantizer can
termined as

SNRQ =

� π

−π
| 1
Hs,1(Ω)

|2 · σ2
d

2π
dΩ

σ2
n

. (17)

ignal D(z) and the introduced quantization error N(z)
e LP synthesis filtered for signal reconstruction in the de-
. Thus with (15) the quantization noise energy in the re-
ructed signal is:

{(x(k) − x̃(k))2} =

� π

−π

|Hns(Ω)

Hs,2(Ω)
|2 · σ2

n

2π
dΩ (18)

this we can now determine the signal to noise ratio on the
er side with (4), (14) and (18):

SNR =

� π

−π
| 1
Hs,1(Ω)

|2 · | 1
Hs,2(Ω)

|2 · σ2
d

2π
dΩ

� π

−π
| Hns(Ω)
Hs,2(Ω)

|2 · σ2
n

2π
dΩ

. (19)

overall SNR of the reconstructed signal depends on two
ectural properties: The base SNRQ of the quantizer and
ansformation of the quantization noise from the quantizer

decoder output due to the linear prediction scheme. We
ocus on the minimization of the noise due to linear pre-
n here. Therefore we introduce a gain GSNR that is an
ssion for the relation between the performance of the base
ization SNRQ and the overall SNR of the decoder with
prediction:

GSNR =
SNR

SNRQ

(20)

(17) and (19) we find

SNR =

� π

−π
| 1
Hs,1(Ω)

|2| 1
Hs,2(Ω)

|2 dΩ
2π� π

−π
| Hns(Ω)
Hs,2(Ω)

|2 dΩ
2π

� π

−π
| 1
Hs,1(Ω)

|2 dΩ
2π

. (21)

this the impact of the choice of the parameter α can be
ed from the quantizer performance SNRQ:
onventional linear prediction analysis the transfer func-
−1
lpc(Ω) is the approximation of the input signal spectrum
Ω) for an AR process. Spectral flattening of signal X(z)

parameter α prior to the LP analysis according to Section
ssumed to also flatten the approximation of the spectral
, that is the transfer function of the linear prediction fil-
ith this we find an analytical expression for the degree of

relation due to the modified linear prediction analysis and

1

Hs,2(Ω)
=

1

H̃lpc(Ω)
=

1

(Hs(Ω))α
, (22)

he constraint in (9) it follows that

Hs,1(Ω) =
Hs(Ω)

Hs,2(Ω)
= (Hs(Ω))(1−α) (23)

losed loop quantization the quantization noise in the de-
output (18) is spectrally flat due to (12) and (15), for open

quantization it is spectrally shaped according to

| X(Ω) − X̃(Ω) | ∼| 1

Hs(Ω)
|α (24)

an therefore be controlled by α.



5. Evaluation with Fixed LP Coefficients
In the previous Section we have derived (21) for the signal to
noise ratio in the decoder output for open loop (acc. to (11))
and closed loop (acc. to (12)) quantization. Together with (22)
and (23), the relation between GSNR and parameter α can be
determined. This relation must be solved analytically in order to
find the best choice for α to minimize the SNR. Due to the com-
plexity of the expression, an exemplary set of linear prediction
coefficients was taken from a real speech codec, obtained for a
voiced speech segment, to model the spectral envelope of the
signal originating from an AR process. This spectral envelope
is approximated in a 512 bin FFT to find a numerical solution.
Figure 5 depicts the curves for the performance gain due to lin-
ear prediction, 10 log(GSNR), over parameter α for the modi-
fied LP analysis and the fixed LP coefficients. The solid curve
is for closed loop and the dashed curve for open loop quantiza-
tion. The performances for α = 0.0 and α = 1.0 are known
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Figure 5: SNR over α according to (21), open and closed loop.

from the literature: For α = 0.0 the codec is equivalent to PCM
coding and both quantization schemes do not benefit from lin-
ear prediction (10 log(GSNR) = 0 dB, point A). For α = 1.0
only the closed loop approach benefits from linear prediction:
GSNR is equivalent to the inverse of the spectral flatness of the
LP synthesis filter, the prediction gain Gp (point B). For open
loop quantization and α = 1.0 there is no increase of the SNR
compared to PCM (point C).
In the range of 0.0 < α < 1.0 the open loop quantiza-
tion scheme benefits from linear prediction with the maximum
GSNR at α = 0.5 (point D, maximum exactly in the middle of
the range due to the symmetric property of (21) in consideration
of α). GSNR for α = 0.5 is

10 log GSNR =

10 log(

� π

−π
| 1
Hs(Ω)

|2 dΩ
2π

� π

−π

�
1√

|Hs(Ω)|

�2
dΩ
2π

·
� π

−π

�
1√

|Hs(Ω)|

�2
dΩ
2π

). (25)

With the definition of the spectral flatness for an all-pole
prediction filter with LP analysis parameter α, SF |H(Ω)(α),
(7) and (8), (25) can be expressed in terms of the spectral flat-
ness as in Figure 5.
For the optimum α = 0.5 with respect to signal SNR, at the
same time the quantization noise in the decoder output is spec-
trally shaped in a moderate way acc. to (24) to improve the
perceptual quality. A related solution was proposed in [5] but in
terms of a frequency domain pre-emphasis filter, not integrated
in the codec.
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urther evaluations a linear predictive vector quantization
e has been used with open and closed loop quantization.
P analysis parameter α has been modified in the range of
· 1.0 in steps of 0.1 and the resulting global SNR has been
ined for an audio example. The used vector quantizer

constant SNRQ = 6.4dB. The result is shown in Figure
confirms those from Figure 5.
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7. Conclusion
dified scheme for linear prediction analysis has been pre-
d that introduces an additional parameter α in the fre-
y domain. The relation between α and the overall signal
ise ratio of a linear predictive coding scheme with open
losed loop quantization has been determined. For open
uantization the found relation was optimized with respect
o maximize the signal to noise ratio. Furthermore it was
n that α controls the spectral shape of the quantization er-
the decoder output for open loop quantization.
= 0.5 the SNR is maximized for open loop quantization,

t the same time a moderate spectral shaping of the overall
ization noise in the decoder output is introduced that im-
s the perceived audio quality. In subjective listening tests
ed out that a similar overall noise shaping effect could be

ved as with conventional closed loop noise shaping. The
s can well be applied in situations where closed loop quan-
n is unavailable, for example for linear predictive vector

ization with low complexity.
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