
An Efficient Codebook for the SCELP Low Delay
Audio Codec
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Abstract— The SCELP (Spherical Code Excited Linear Predic-
tion) audio codec has recently been proposed as a new candidate
for low delay audio coding based on Linear Prediction (LP). The
new codec applies closed-loop vector quantization employing a
spherical code in a gain shape manner. The spherical code is
based on the apple-peeling code construction rule and in general
does not require a codebook table for the encoding and decoding
process.
In this contribution, however, we propose to employ auxiliary
information gathered in advance to reduce the computational
encoding and decoding complexity at runtime significantly. This
auxiliary information can be considered as the SCELP codebook.
Due to the consideration of the characteristics of the apple-
peeling code construction principle, this codebook can be stored
very efficiently in read-only-memory. With the proposed princi-
ple, low computational as well as low memory complexity can be
achieved simultaneously in the SCELP codec.

I. INTRODUCTION

Lossy compression of audio signals can be roughly subdivided
into two principles: Perceptual audio coding is based on
transform coding. The signal to be compressed is firstly
transformed by an analysis filter bank, and the sub band rep-
resentation is quantized in the transform domain. A perceptual
model controls the adaptive bit allocation for the quantization.
The goal is to keep the noise introduced by quantization below
the masking threshold described by the perceptual model.
In general, the algorithmic delay is rather high due to large
transform lengths, e.g. [3]. Parametric audio coding is based
on a source model. One parametric approach is based on linear
prediction (LP), the basis for todays highly efficient speech
coding algorithms for mobile communications, for example
[4]. An all-pole filter models the spectral envelope of the input
signal. Based on the inverse of this filter, the input is filtered to
produce the LP residual signal which is quantized. Often vec-
tor quantization with a sparse codebook is applied according
to the CELP (Code Excited Linear Prediction [2]) analysis-by-
synthesis approach to achieve very high compression. Due to
the sparse codebook and additional modeling of the speaker’s
instantaneous pitch period, speech coders perform well for
speech but cannot compete with perceptual audio coding for
non-speech input. The typical algorithmic delay is around 20
ms.
In a previous contribution [1] we presented a new coding
scheme for low delay parametric audio coding in which the
principle of linear prediction is preserved while a spherical
code is used in a gain-shape manner for the quantization

of the residual signal at a moderate bit rate. This spherical
code is based on the apple-peeling principle introduced in [5]
for the purpose of channel coding and referenced in [6] in
the context of a spherical code analysis. The apple-peeling
code has been revisited in [7] for DPCM. In contrast to that
approach, the SCELP codec employs the spherical code in
a CELP scheme. The sphere construction principle according
to the apple-peeling method in general enables the encoding
and decoding of a signal vector without any codebook. In this
contribution we propose to use auxiliary information which
can be determined in advance during code construction. This
auxiliary information is stored in read-only-memory (ROM)
and can be considered as a compact vector codebook. At
codec runtime it aids the process of transforming the spherical
code vector index, used for signal transmission, into the
reconstructed code vectors on encoder and decoder side. The
compact codebook is based on a representation of the spherical
code as a coding tree combined with a lookup table to store all
required trigonometric function values for spherical coordinate
transformation. Because both parts of this compact codebook
are determined in advance the computational complexity for
signal compression can be drastically reduced.
The properties of the compact codebook can be exploited to
store it with only a small demand for ROM compared to an
approach that stores a lookup table as often applied for trained
codebooks [11].
In this paper, the principle of the SCELP audio coding scheme
will be shortly reviewed in Section II. The construction of
the spherical code according to the apple-peeling method
is described in Section III. A representation of this code
construction principle as spherical coding tree for code vector
decoding is explained in Section IV. In Section V, the principle
to efficiently store the coding tree and the lookup table for
trigonometric function values for code vector reconstruction
is presented. Results considering the reduction of the compu-
tational and memory complexity are given in Section VI.

II. THE SCELP AUDIO CODEC

The SCELP codec as proposed in [1] is based on block
adaptive linear prediction. Linear predictive coding in general
exploits correlation immanent to an input signal x(k) by
decorrelating it before quantization. For short term block
adaptive linear prediction of order N , a windowed segment
of the input signal, xw(k), of length LLPC is analyzed
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in order to obtain the filter coefficients a1 · · · aN . Based
on these filter coefficients the input signal is filtered with
HA(z) = 1−

∑N
i=1 ai · z

−i, the LP analysis filter, to produce
the LP residual signal d(k) which is quantized and transmitted
to the decoder as d̃(k). In the decoder the signal x̃(k) is
reconstructed from d̃(k) by filtering with the all-pole LP
synthesis filter HS(z) = H−1

A (z). Numerous contributions
have been published concerning the principles of linear
prediction, for example [8].
In the context of block adaptive linear predictive coding,
the linear prediction coefficients must be transmitted in
addition to signal d̃(k). This can be achieved with only small
additional bit rate as shown for example in [9]. The length of
the signal segment used for LP analysis, LLPC , is responsible
for the algorithmic delay of the complete codec.
In the SCELP codec, Vector Quantization (VQ) is
applied to the LP residual d(k). Multiple samples
of the signal d(k) are combined in a vector
d =

[

d0 · · · dLV −1

]

of length LV in chronological
order with l = 0 · · · (LV − 1) as vector coordinate index
prior to quantization in LV -dimensional coding space. In the
SCELP audio codec, VQ is applied in closed-loop manner
according to the principle of analysis-by-synthesis at the
encoder side to find the optimal quantized excitation vector
d̃ for the LP residual.
The principle of the SCELP encoder is depicted in Figure 1.
For analysis-by-synthesis the decoder is part of the encoder.
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Fig. 1. Principle SCELP Encoder.

During the vector search procedure in the encoder for each
index i corresponding to one of the available code vectors, an
excitation vector d̃i is generated first. That excitation vector
is then fed into the LP synthesis filter HS(z). The resulting
signal vector x̃i is compared to the input signal vector x to
find the index iQ with minimum mean square error (MMSE)

iQ = arg min
i
{Di = (x − x̃i) · (x − x̃i)

T }. (1)

By the application of an error weighting filter W (z), a
perceptual masking of the quantization noise inherent to the
decoded signal can be achieved.
The spherical code which is the basis for the vector quantiza-
tion will be described in the next section. Because analysis-by-
synthesis in general results in a high computational complexity
for VQ, in [1] the analysis-by-synthesis framework has been
modified to enable a very efficient vector search strategy that
is based on Pre-Selection and Candidate-Exclusion.

III. EMPLOYED SPHERICAL CODE

Spherical quantization in general has been investigated inten-
sively, for example in [6], [7] and [10]. For the construction
of code vectors for the quantization of the LP residual, d̃, the
apple-peeling principle is applied in the SCELP audio codec
in a gain-shape manner: Each code vector is composed of a
gain (scalar) and a shape (vector) part. The code vectors c̃ for
the quantization of the shape part are located on the surface
of a unit sphere. The gain component is the quantized radius
R̃. Both components are combined to determine

d̃ = R̃ · c̃. (2)

For transmission, the index isp and the index iR for the
reconstruction of the shape part of the vector and the gain
factor respectively must be combined to form the codeword
iQ. The principle of the spherical code construction according
to the apple-peeling code as applied in the SCELP codec
has been described in the literature, for example in [5]. It is
based on the representation of the centroids for the shape part,
c̃ ∈ C, in (LV −1) angles [ϕ̃0 · · · ϕ̃LV −2] in polar coordinates.
In the following, the construction principle will be shortly
demonstrated by the example of a 3-dimensional sphere, as
depicted in Figure 2. The example centroids constructed with
respect to the apple-peeling algorithm, c̃a, c̃b, c̃c, are marked
as big black bullets on the surface of the unit sphere.
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Fig. 2. Apple-peeling Code for a 3-dimensional Sphere.

The sphere has been cut in order to display the 2 angles, ϕ0 in
x-z-plane and ϕ1 in x-y-plane. Due to the symmetry properties
of the spherical code, only the upper half of the sphere is
shown. For code construction, the angles will be considered
in the order of ϕ0 to ϕ1, 0 ≤ ϕ0 < π and 0 ≤ ϕ1 < 2π
for the complete unit sphere. The apple-peeling construction
constraint to have a minimum separation angle θ in between
neighbor centroids is expressed on the surface of the sphere:
The distance between neighbor centroids in one direction is
denoted as δ0 and in the other direction as δ1. As the centroids
are placed on a unit sphere and further assuming small θ, the
distances can be approximated by the circular arc according
to the angle θ to specify the apple-peeling constraint:

δ0 ≥ θ, δ1 ≥ θ and δ0 ≈ δ1 ≈ θ (3)

The minimum separation angle θ is chosen as θ = π/Nsp with
the code construction parameter Nsp ∈ N. By choosing the
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number of angle quantization levels Nsp, the range of angle
ϕ0 is divided into Nsp angle quantization intervals with equal
size of ∆ϕ0

= θ. Circles of latitude (dash-dotted line) on the
surface of the unit sphere at

ϕ0 = ϕ̃0,i0 = (i0 + 1/2) · ∆ϕ0
(4)

are linked to index i0 = 0 · · · (Nsp − 1). The centroids of
the apple-peeling code are constrained to be located on these
circles which are spaced according to the distance δ0, hence
ϕ0 ∈ ϕ̃0,i0 for all c̃ ∈ C.
The radius of each circle of latitude depends on ϕ̃0,i0 . The
range of ϕ1, 0 ≤ ϕ1 < 2π, is divided into Nsp,1 angle intervals
of equal length ∆ϕ1

. In order to hold the minimum distance
constraint, the separation angle ∆ϕ1

is different from circle to
circle and depends on the circle radius, sin(ϕ̃0,i0), and thus
ϕ̃0,i0 :

∆ϕ1
(ϕ̃0,i0) =

2π

Nsp,1(ϕ̃0,i0)
&

θ(Nsp)

sin(ϕ̃0,i0)
(5)

With this, the number of intervals for each circle is

Nsp,1(ϕ̃0,i0) = ⌊
2π

θ(Nsp)
· sin(ϕ̃0,i0)⌋. (6)

In order to place the centroids onto the sphere surface, the
according angles ϕ̃1,i1(ϕ̃0,i0) associated with the circle for
ϕ̃0,i0 are placed in analogy to (4) at positions

ϕ̃1,i1(ϕ̃0,i0) = (i1 + 1/2) ·
2π

Nsp,1(ϕ̃0,i0)
(7)

Each tuple [i0, i1] identifies the two angles and thus the posi-
tion of one centroid of the resulting code C for construction
parameter Nsp.
A tuple of [i0, i1] is mapped to an overall sphere index
isp = 0 · · · (Msp(Nsp) − 1) with the number of centroids
Msp(Nsp) as a function of the start parameter Nsp. This index
mapping will be described in detail in the next section.
While the example here is limited to a unit sphere in three
dimensions, in practical cases a higher dimension LV > 3
is used. Considering a representation of the code vectors in
spherical polar coordinates, LV −1 angles are considered, the
last angle in the range of 0 ≤ ϕ̃LV −2 < 2π and all other
angles in the range of 0 ≤ ϕ̃l < π, l = 0 · · · (LV − 3).
With respect to the complete codeword iQ for a signal vector
of length LV , a budget of r = r0 · LV bits is available with
r0 as the effective number of bits available for each sample.
Considering MR available indices iR for the reconstruction
of the radius and Msp indices isp for the reconstruction of
the vector on the surface of the sphere, the indices can be
combined in a codeword iQ according to

iQ = iR · Msp + isp (8)

for the sake of coding efficiency. In order to combine all
possible indices in one codeword, the condition

2r ≥ Msp · MR (9)

must be fulfilled.
A possible distribution of MR and Msp is proposed in [7].
The underlying principle is to find a bit allocation such that
the distance θ(Nsp) between code vectors on the surface
of the unit sphere is as large as the relative step size of
the logarithmic quantization of the radius. In order to find
the combination of MR and Msp that provides the best
quantization performance at the target bit rate r, the spherical
code is designed iteratively with increasing Nsp to provide
the highest number of index combinations that still fulfill
constraint (9).

IV. SPHERICAL CODING TREE FOR DECODING

For an efficient spherical decoding procedure we propose
to employ a spherical coding tree in this contribution. In
the context of the decoding process for the spherical vector
quantization the incoming vector index iQ is decomposed
into index iR and index isp with respect to equation (8).
The reconstruction of the radius R̃ requires to read out an
amplitude from a coding table due to scalar logarithmic
quantization.
For the decoding of the shape part of the excitation vec-
tor, c̃ =

[

c̃0 .. c̃(LV −1)

]

, the sphere index isp must be
transformed into a code vector in cartesian coordinates. For
this transformation the spherical coding tree is employed. The
example for the 3-dimensional sphere in Figure 3 demonstrates
the correspondence of the spherical code vectors on the unit
sphere surface with the proposed spherical coding tree.
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Fig. 3. Correspondence: Code Vector and Coding Tree.

The coding tree on the right side of the Figure contains
branches, marked as non-filled bullets, and leafs, marked as
black colored bullets. One layer of the tree corresponds to
the angle ϕ̃0, the other one to angle ϕ̃1. The depicted coding
tree contains three subtrees, marked as horizontal boxes in
different gray colors. Considering the code construction, each
subtree represents one of the circles of latitude on the sphere
surface, marked with the dash-dotted, the dash-dot-dotted, and
the dashed line. On the layer for angle ϕ̃0, each subtree
corresponds to the choice of index i0 for the quantization
reconstruction level of angle ϕ̃0,i0 . On the tree layer for angle
ϕ̃1 each coding tree leaf corresponds to the choice of index i1
for the quantization reconstruction level of ϕ̃1,i1(ϕ̃0,i0). With
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each tuple of
[

i0, i1
]

the angle quantization levels for ϕ̃0 and
ϕ̃1 required to find the code vector c̃ are determined. Therefore
each leaf corresponds to one of the centroids on the surface of
the unit sphere, c̃isp

=
[

c̃isp,0 c̃isp,1 c̃isp,2

]

with the index
isp = 0..9 in Figure 3.
For decoding, the index isp must be transformed into the
coordinates of the spherical centroid vector. This transforma-
tion employs the spherical coding tree: The tree is entered
at the coding tree root position as shown in the Figure with
incoming index isp,0 = isp. At the tree layer for angle ϕ̃0

a decision must be made to identify the subtree to which
the desired centroid belongs to find the angle index i0. Each
subtree corresponds to an index interval, in the example either
the index interval isp |i0=0= 0, 1, 2 , isp |i0=1= 3, 4, 5, 6,
or isp |i0=2= 7, 8, 9. The determination of the right subtree
for incoming index isp on the tree layer corresponding to
angle ϕ̃0 requires that the number of centroids in each subtree,
N0, N1, N2 in Figure 3, is known. With the code construction
parameter Nsp, these numbers can be determined by the
construction of all subtrees. The index i0 is found as

i0 =











0 for 0 ≤ isp,0 < N0

1 for N0 ≤ isp,0 < (N0 + N1)

2 for (N0 + N1) ≤ isp,0 < (N0 + N1 + N2)

(10)

With index i0 the first code vector reconstruction angle
ϕ̃0,i0 and hence also the first cartesian coordinate, c̃isp,0 =
cos(ϕ̃0,i0), can be determined. In the example in Figure 3,
for isp = 3, the middle subtree, i0 = 1, has been found to
correspond to the right index interval.
For the tree layer corresponding to ϕ̃1 the index isp,0 must be
modified with respect to the found index interval according to
the following equation:

isp,1 = isp,0 −

(i0−1)
∑

i=0

Ni. (11)

As the angle ϕ̃1 is the final angle, the modified index corre-
sponds to the index i1 = isp,1. With the knowledge of all
code vector reconstruction angles in polar coordinates, the
code vector c̃isp

is determined as

c̃isp,0 = cos(ϕ̃0,i0)

c̃isp,1 = sin(ϕ̃0,i0) · cos(ϕ̃1,i1)

c̃isp,2 = sin(ϕ̃0,i0) · sin(ϕ̃1,i1) (12)

For a higher dimension LV > 3, the index modification in
(11) must be determined successively from one tree layer to
the next.
The subtree construction and the index interval determination
must be executed on each tree layer for code vector decoding.
The computational complexity related to the construction of
all subtrees on all tree layers is very high and increases expo-
nentially with the increase of the sphere dimension LV > 3.
In addition, the trigonometric functions used in (12) in general
are very expensive in terms of computational complexity.
In order to reduce the computational complexity the coding

tree with the number of centroids in all subtrees is deter-
mined in advance and stored in ROM. In addition, also the
trigonometric function values will be stored in lookup tables,
as explained in the following section.
Even though shown only for the decoding, the principle of
the coding tree and the trigonometric lookup tables can be
combined with the Pre-Search and the Candidate-Exclusion
methodology described in [1] very efficiently to reduce also
the encoder complexity.

V. EFFICIENT STORAGE OF THE CODEBOOK

Under consideration of the properties of the apple-peeling code
construction rule the coding tree and the trigonometric lookup
tables can be stored in ROM in a very compact way:

A. Storage of the Coding Tree
For the explanation of the storage of the coding tree, the
example depicted in Figure 4 is considered.
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..
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Fig. 4. Compact Realization of the Coding Tree.

Compared to Figure 3 the coding tree has 4 tree layers and is
suited for a sphere of higher dimension LV = 5. The number
of nodes stored for each branch are denoted as Ni0 for the first
layer, Ni0,i1 for the next layer and so on. The leafs of the tree
are only depicted for the very first subtree, marked as filled
gray bullets on the tree layer for ϕ̃3. The leaf layer of the tree is
not required for decoding and therefore not stored in memory.
Considering the principle of the sphere construction according
to the apple-peeling principle, on each remaining tree layer
for ϕ̃l with l = 0, 1, 2 the range of the respective angle, 0 ≤
ϕ̃l < π, is separated into an even or odd number of angle
intervals by placing the centroids on sub spheres according to
(4) and (7). The result is that the coding tree and all available
subtrees are symmetric as shown in Figure 4. It is hence only
necessary to store half of the coding tree and also only half of
all subtrees. In Figure 4 that part of the coding tree that must
be stored in ROM is printed in black color while the gray
part of the coding tree is not stored. Especially for higher
dimension only a very small part of the overall coding tree
must be stored in memory.

B. Storage of the Trigonometric Functions Table
Due to the high computational complexity for trigonometric
functions, the storage of all function values in lookup tables
is very efficient. These tables in general are very large to
cover the complete span of angles with a reasonable accuracy.
Considering the apple-pealing code construction, only a very
limited number of discrete trigonometric function values are
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required as shown in the following:
Considering the code vectors in polar coordinates, from one
angle to the next the number of angle quantization levels ac-
cording to equation (6) is constant or decreases. The number of
quantization levels for ϕ̃0 is identical to the code construction
parameter Nsp. With this a limit for the number of angle
quantization levels Nsp,l for each angle ϕ̃l, l = 0 · · · (LV −2)
can be found:

Nsp,l(ϕ̃0,i0 · · · ϕ̃0,il−1
) ≤

{

Nsp 0 ≤ l < (LV − 2)

2Nsp l = (LV − 2)
(13)

The special case for the last angle is due to the range of
0 ≤ ϕ̃LV −2 < 2π. Consequently, the number of available
values for the quantized angles required for code vector
reconstruction according to (4) and (7) is limited to

ϕ̃l ∈

{

(j + 1
2 ) · π

Nsp,l
for l < (LV − 2)

(j + 1
2 ) · 2π

Nsp,l
for l = (LV − 2)

, (14)

with j = 0 · · · (Nsp,l − 1) as the index for the angle quantiza-
tion level.
For the reconstruction of the vector c̃ in cartesian coordinates
according to (12) only those trigonometric function values
are stored in the lookup table that may occur during signal
compression/decompression according to (14). With the limit
shown in (13) this number in practice is very small. The size
of the lookup table is furthermore decreased by considering
the symmetry properties of the cos and the sin function in the
range of 0 ≤ ϕ̃l < π and 0 ≤ ϕ̃LV −2 < 2π respectively.

VI. RESULTS

The described principles for an efficient spherical vector
quantization are used in the SCELP audio codec to achieve
the estimated computational complexity of 20-25 WMOPS as
described in [1]1. Encoding without the proposed methods
is prohibitive considering a realistic real-time realization of
the SCELP codec on a state-of-the-art General Purpose PC.
The complexity estimation in the referenced contribution has
been determined for a configuration of the SCELP codec for a
vector length of LV = 11 with an average bit rate of r0 = 2.8
bit per sample plus additional bit rate for the transmission
of the linear prediction coefficients. In the context of this
configuration a data rate of approximately 48 kbit/sec for audio
compression at a sample rate of 16 kHz could be achieved.
Considering the required size of ROM, the new codebook is
compared to an approach in which a lookup table is used
to map each incoming spherical index to a centroid code
vector. The iterative spherical code design procedure results
in Nsp = 13. The number of centroids on the surface of
the unit sphere is determined as Msp = 18806940 while the
number of quantization intervals for the radius is MR = 39.
The codebook for the quantization of the radius is the same
for the compared approaches and therefore not considered.
In the approach with the lookup table Msp code vectors of

1Complexity measured in a floating point implementation with a weighted
instruction set similar to the weighted instruction set specified by ETSI for
fixed point.

length LV = 11 must be stored in ROM, each sample in 16
bit format. The required ROM size would be

MROM,lookup = 18806940 · 16 Bit · 11 = 394.6 MByte. (15)

For the storage of the coding tree as proposed in this paper,
only 290 KByte memory is required. With a maximum of
Nsp,l = 13 angle quantization levels for the range of 0 · · ·π
and Nsp,(LV −2) = 26 levels for the range of 0 · · · 2π, the
trigonometric function values for code vector reconstruction
are stored in 2 KByte ROM in addition to achieve a resolution
of 32 Bit for the reconstructed code vectors. Comparing the
two approaches the required ROM size can be reduced with
the proposed principles by a factor of

MROM,lookup

MROM,tree

≈ 1390. (16)

VII. CONCLUSION

It was shown in our previous contribution [1] that the SCELP
low delay audio codec outperforms the G.722 audio codec in
terms of achievable audio quality with an algorithmic delay of
below 10 ms. In this contribution an auxiliary codebook has
been proposed to reduce the computational complexity of the
spherical code as applied in the SCELP. This codebook not
only reduces the computational complexity of encoder and
decoder simultaneously, it actually is a mandatory building
block to achieve a realistic performance of the SCELP codec.

The codebook is based on a coding tree representation of
the apple-peeling code construction principle and a lookup
table for trigonometric function values for the transformation
of a codeword into a code vector in cartesian coordinates.
Considering the storage of this codebook in ROM, the required
memory can be downscaled in the order of magnitudes with
the new approach compared to an approach that stores all code
vectors in one table as often used for trained codebooks.
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