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Abstract

Logarithmic spherical vector quantization (LSVQ) is a
specific type of gain-shape vector quantization (VQ),
where input vectors are decomposed into a gain and a
shape component which are quantized independently.
In this contribution, novel theoretical results on LSVQ
are presented: It will be shown that, for high bit rates,
with logarithmic (A-Law) scalar quantization (SQ) of
the gain and spherical vector quantization (SVQ) of
the shape component a signal-to-noise ratio (SNR) is
achieved which is approximately independent of the in-
put source distribution. In addition, a detailed theore-
tical analysis leads to a lower bound for the quantiza-
tion distortion related to SVQ. By introducing approxi-
mations for the assumption of high bit rates, this bound
is the basis for the computation of the optimal alloca-
tion of bit rate to the gain and the shape quantizer,
respectively, and yields an estimate for the achievable
SNR for LSVQ.

1. Introduction

In quantization [1], apart from the achievable per-
formance, also computational complexity and memory
consumption are traditionally of high importance for
practical applications. On the one hand, fixed-rate SQ
[2] is known to require low computational complexity
and memory. On the other hand, it was shown that
SQ is outperformed by fixed-rate VQ which benefits
from the space filling, the shape and the memory ad-

vantage [3]. Techniques such as gain-shape [4], lattice
based [5] and permutation code [6] VQ have been pro-
posed, offering a reasonable balance between quanti-
zation performance and coding complexity. In many
cases, VQs are designed under the assumption of a spe-
cific simple source distribution and, in particular, for
memoryless sources. If the distribution of the input
source is unknown, the assumption of a Gaussian dis-
tribution is useful as a worst case scenario since it has
the highest differential entropy [7]. Targeting high cod-
ing efficiency, gain-shape VQ based on spherical vector
quantization (SVQ) of the shape part, with all code-

vectors located on the surface of scaled versions of the
unit sphere, well approximates the optimal codevector
density for a Gaussian source. Applications of gain-
shape SVQ for source coding have been proposed in
numerous publications, e.g., [8] and [9]. Remarkable
results on the analysis of spherical codes in general are
in particular given in [10]. In [11], SVQ based on a so-
called wrapped spherical code is combined with source
optimized SQ in gain-shape fashion for the coding of
Gaussian sources.
In this paper, we present a theoretical analysis of LSVQ
which, in contrast to the work in [11], is based on a com-
bination of SVQ with logarithmic SQ. The employment
of a logarithmic rather than a source optimized SQ is
motivated by the fact that the variance of input sig-
nals in practice reveals a wide dynamic range. As a
novel result, it will be shown in Section 2 that LSVQ
approximately achieves a constant quantization SNR
independent of the probability density function (PDF)
of the input source over a wide dynamic range for high
bit rates. In Section 3, very similar to the sphere bound
for VQ in general [12], a lower bound for the achievable
quantization distortion related to SVQ and a high rate
estimate for the theoretical performance of LSVQ are
derived. Integral part of the derivation of the high rate
estimate is the calculation of the optimal allocation of
bit rate to the gain and shape components. SNR curves
for LSVQ will be presented in Section 4.

2. Logarithmic Spherical Vector Quantization

A vector quantizer (VQ) is an entity that maps an
Lv-dimensional input vector x ∈ R

Lv to a vector rep-
resentative taken from a finite vector codebook X to
produce the quantized vector x̃ = Qvq(x) ∈ X . In the
quantization process, the goal is to select that codevec-
tor x̃ which minimizes a specific quantization distor-
tion, in the following the squared error

d(x, x̃) =‖ x − x̃ ‖2
2 . (1)

LSVQ is a special type of VQ in which each input vector
is decomposed into its absolute value and a normalized



version with unit absolute value, referred to as the gain
and the shape components

g =‖ x ‖2 and c =
1

g
· x. (2)

Both components are quantized independently by lo-
garithmic SQ according to the A-Law rule [2] and SVQ
to produce the quantized versions g̃ = Qg(g) and c̃ =
Qsvq(c), respectively. The input signal is reconstructed
to produce the overall quantized signal vector

x̃ = c̃ · g̃. (3)

The independent quantization of gain and shape com-
ponent enables a very efficient realization. Given the
effective bit rate (the number of bits per vector co-
ordinate) for the two quantizers as rg and rsvq, the
number of quantization reconstruction levels of Qg is
Ng = 2rg·Lv , and the number of spherical codevectors

related to Qsvq is Nsvq = 2rsvq·Lv , respectively. The
overall number of codevectors related to the combina-
tion of both quantizers, referred to as overall codevec-

tors, is

Nlsvq = 2rlsvq·Lv = Ng · Nsvq = 2(rsvq+rg)·Lv (4)

with the overall effective bit rate rlsvq. All normal-
ized vectors c to be quantized by Qsvq are located on
the surface of an Lv-dimensional sphere with radius

R = 1.0, denoted as S(1.0)
Lv

. Given the spherical vector
codebook Csvq for Qsvq, the spherical quantization cells

are defined as

Cc̃ = {c ∈ S(1.0)
Lv

: ‖ c − c̃ ‖2
2 ≤ ‖ c − c̃′ ‖2

2

∀ c̃′ 6= c̃, and c̃′, c̃ ∈ Csvq}.
(5)

For the first part of the analysis of LSVQ, all spher-
ical quantization cells are assumed to be of identical
shape. The overall surface area content of a sphere in
Lv dimensions with radius R is

SSLv
= V

(1.0)
SLv

· Lv · R(Lv−1) (6)

with V
(1.0)
SLv

as the volume of an Lv-dimensional unit

sphere [13],

V
(1.0)
SLv

=
2 · πLv/2

Lv · Γ(Lv

2 )
, (7)

and the Γ-function defined, e.g., in [14]. The content
of each single spherical quantization cell on the surface
of the unit sphere can be computed as

S
(I)
Cc̃

=
SSLv

Nsvq
=

2 · πLv/2

Γ(Lv

2 ) · Nsvq

. (8)
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Figure 1: Spherical quantization cells located on the
surface of the unit sphere (left side) and example overall
quantization cell (right side) for Lv = 3.

The covering of the sphere surface for Lv = 3 is demon-
strated on the left side of Figure 1. For the construction
of the overall codevectors x̃ according to (3), the spher-
ical codevectors are combined with different quantiza-
tion reconstruction levels g̃, and overall quantization

cells Cx̃ result. On the right side of Figure 1, an ex-
ample overall quantization cell is shown for Lv = 3.
Compared to the “flat” spherical quantization cells (B
in the figure), the overall quantization cells also have
a height in radial direction which is the distance be-
tween adjacent radius quantization reconstruction lev-
els, denoted as ∆g(g̃). The bottom and the upper side
surface areas of that cell, B′ and B′′, respectively, are
scaled versions of the spherical quantization cells, B.
For high bit rates and hence a large number of code-
vectors, the curvature of the sphere can be neglected,
and ∆g(g̃) is small. In this case, the bottom and the
upper side surface area of the overall quantization cell
are approximately identical (therefore B′ ≈ B′′ in Fig-
ure 1). With the overall codevector x̃ located in the
center of the quantization cell, the sphere radius scal-
ing factor is g̃ =‖ x̃ ‖2 so that B′ ≈ B′′ ≈ B · g̃(Lv−1)

(6), and the cell volume is approximately

VCx̃
(g̃) ≈ S

(I)
Cc̃

· g̃(Lv−1) · ∆g(g̃). (9)

Assuming that the gain factors to be quantized fall into
the logarithmic area of the A-Law compression curve,
∆g(g̃) is approximately the quantization error related
to A-Law quantization of the radius [2],

∆g(g̃) =
(1 + ln(A))

Ng
· g̃ (10)

with A as the A-Law quantization constant. Hence,
the overall quantization cell volume is approximately

VCx̃
(‖ x̃ ‖2) ≈

2 · πLv/2 · (1 + ln(A))

Γ(Lv/2)
· (‖ x̃ ‖2)

Lv

Nsvq · Ng
(11)



and is a function of the absolute value of the corre-
sponding overall codevector, ‖ x̃ ‖2= g̃. From this cell
volume, the quantizer point density function can be
derived as

λ(x̃) ≈ Γ(Lv/2)

2 · πLv/2 · (1 + ln(A))
· (‖ x̃ ‖2)

−Lv . (12)

Given p(x) as the PDF of the input signal source, it is
a common assumption in high bit rate VQ that p(x) ≈
p(x̃) and λ(x̃) is a continuous function. According to
[12], it follows that the mean of the overall quantization
distortion can be computed from (12) as

D
(I)
lsvq = N

−2/Lv

lsvq · Clsvq ·
∫

x̃∈RLv

p(x̃)

(λ(x̃))2/Lv
dx̃. (13)

Correspondingly, the SNR is

SNR
(I)
lsvq =

N
2/Lv

lsvq

Clsvq · π
·
(

Γ(Lv/2)

2 · (1 + ln(A))

)2/Lv

·
∫

x∈RLv
p(x)· ‖ x ‖2

2 ·dx
∫

x̃∈RLv
p(x̃)· ‖ x̃ ‖2

2 ·dx̃
︸ ︷︷ ︸

≈1

(14)

with constant Clsvq in (13) and (14) depending on the
(yet unknown) shape of the overall quantization cells.
As conclusion, the SNR related to LSVQ is approxi-
mately independent of the PDF of the input signal.

3. Analysis of an “Idealized” SVQ

With respect to the assumptions and the proof of
a constant SNR in the previous section, w.l.o.g. only a
single overall quantization cell is regarded in the follow-
ing with the corresponding overall codevector located
on the surface of the unit sphere (‖ x̃ ‖2= 1). A quan-
titative expression for the SNR rather than the quali-
tative one as in (14) shall be derived. For this purpose,
the quantization distortion solely related to Qsvq will
be computed at first and then combined with the dis-
tortion related to Qg.
Since the exact shape of the spherical quantization cells
is unknown, in analogy to the sphere bound for VQ
in general [12], we define an “idealized” SVQ to be
composed of “spherical cap” quantization cells as illus-
trated by Figure 2 for Lv = 3. The spherical codevector
c̃ is located in the center (at the north pole), and the
angular radius γ determines the size of the spherical
cap. The spherical cap area content [10] is

S
(II)
Cc̃

= V
(1.0)
SLv−1

· (Lv−1) ·
∫ γ

0

(sin(β))(Lv−2)dβ. (15)

Note that the extension (II) is used here to highlight
the difference to the cell area content in (8).

c̃

γ

Cc̃

β

sin(β) c

c− c̃

Figure 2: “Spherical cap” quantization cell, Lv = 3.

Given a normalized vector c which is located inside
the spherical cap area as shown in the example of Fig-
ure 2, the absolute value of the quantization error can
be computed as a function of β,

‖ c − c̃ ‖2= 2 · sin(β/2). (16)

Assuming that the distribution of c within the spherical
cap quantization cell is uniform (constant PDF p(c)),
the distortion as a function of angular radius γ is

Dsvq =

∫

Cc̃

p(c)· ‖ c − c̃ ‖2
2 dc

=

∫ γ

0
(2 · sin(β

2 ))2 · (sin(β))(Lv−2)dβ
∫ γ

0
(sin(β))(Lv−2)dβ

(17)

with
p(c) = 1/S

(II)
Cc̃

. (18)

So far, γ is the unknown parameter in (17). In order to
compute this parameter, it is assumed that the com-
plete unit sphere surface is covered by spherical cap
quantization cells as shown on the left side of Figure 3.
Given the angular radius such that the spherical caps
do not overlap, the spheres do only cover a fraction of
the complete surface. This approach is the analogon to
“sphere packing” in the literature and demonstrated by
Figure 3 a). The density δ ≤ 1 [5] depends on the vec-
tor dimension and is approximately the ratio between
the area covered by spherical caps and the unit sphere
surface area [10].
If no uncovered space is allowed, the spherical caps
overlap as shown in Figure 3 b) which is the analogon
to “sphere covering” in the literature. In analogy to
the definition of the density, the thickness θ ≥ 1 is de-
fined as the proportion of the overall space covered by
the spherical caps in relation to the surface area of the
unit sphere.
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Figure 3: Covering of unit sphere surface by “spherical
cap” quantization cells.

It is known that spheres have the lowest “moment of
inertia” which is the basis for the derivation of the
“sphere lower bound” for VQ in general [12]. Since
the spherical quantization cells are restricted to be lo-
cated on the surface of the unit sphere here, in analogy
to the sphere as the optimum cell shape in VQ (due to
the lowest “moment of inertia”), the spherical cap is
the optimal cell shape in SVQ.
If the angular radius γ is determined according to the
“sphere packing” assumption, the distortion (17) is cer-
tainly lower than the distortion achievable by any dis-
tribution of codevectors on the sphere surface, referred
to as “realistic” SVQ: The spherical quantization cells
of the “idealized” SVQ have the optimal shape and also
are smaller than those achievable in a “realistic” SVQ.
In contrast to this, in the “sphere covering” approach,
even though the cell shape is optimal, the distortion
(17) is not a bound because the cells are larger than
for a “realistic” SVQ.
The best option to compute γ, however, is to define
that the spherical caps do not overlap and cover the
complete surface at the same time. This assumption is
obviously unrealistic as shown for the example Lv = 3
in Figure 3 but is the basis for a more accurate bound
than that related to the “sphere packing” assumption:
Since the area content related to the best “realistic”
SVQ may be equal to that related to the “idealized”
SVQ, the “idealized” SVQ has no benefit due to smaller
spherical quantization cells. Nevertheless, the distor-
tion is lower since the “idealized” SVQ benefits from
the optimal spherical quantization cell shape which
can not be achieved by a “realistic” SVQ for finite di-
mensions. This makes equation (17) to a lower bound
which is more meaningful than the lower bound for the
“sphere packing” approach.
Taking this into account, γ can be computed from

SSLv
= Nsvq · SC

(II)
c̃

. (19)

Substituting (15) in (19) yields an equation from which
the angular radius γ can be determined. Due to the in-
tegral, a direct computation is not straight forward. It
can, however, be solved numerically, e.g., by means of
Newtons Method. Given the computed angular radius
γ, the quantization distortion can be calculated by nu-
merically solving the integrals (17).

3.1. High Bit Rate Approximations

For high bit rates, the angular radius γ is very small,
and the curvature of the sphere can be neglected. Con-
sidering the integral equations (15) and (17), the fol-
lowing approximations can be introduced,

sin(β) . β for 0 ≤ β ≤ γ (20)

2 · sin(β/2) . β for 0 ≤ β ≤ γ. (21)

Correspondingly, the approximated angular radius is

γ̂ =

(
2
√

π · Γ(Lv+1
2 )

Γ(Lv

2 ) · Nsvq

) 1
Lv−1

, (22)

and the high rate approximation of the distortion (17)
can be computed as

D̂svq =
Lv − 1

Lv + 1
· γ̂2 =

Csvq

N
2

Lv−1
svq

(23)

with the constant

Csvq =
Lv − 1

Lv + 1
·
(

2
√

π · Γ(Lv+1
2 )

Γ(Lv

2 )

) 2
Lv−1

. (24)

The quantization of the gain factor can be considered
as an error vector in radial direction which leads to the
distortion [2]

Dg =
Cg

N2
g

with Cg =
(1 + ln(A))2

12
. (25)

As the curvature of the sphere is negligible for high bit
rates, within each overall quantization cell, the error
vector related to Qsvq, c − c̃, and that related to Qg

are orthogonal and therefore independent. This allows
that the corresponding quantization distortions can be
added to yield the overall distortion

D
(II)
lsvq =

Csvq

N
2

Lv−1
svq

+
Cg

N2
g

. (26)

By using the approximations rather than the exact
solution, with respect to (17), it can not be guaran-
teed that (26) is a bound. Therefore, all high rate
results must be considered as a performance estimate
for LSVQ rather than a bound.
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Figure 4: LSVQ quantization SNR in dB for different effective bit rates and dimensions. References for Lv = 1
and the asymptotic SNR for Lv → ∞ (6-dB-per-bit rule) are shown. The A-Law constant is A = 5000.

3.2. Optimal Bit Allocation

In order to find the optimal distribution of the over-
all bit rate to Qg and Qsvq, the overall distortion (26)
is minimized in a Lagrangian optimization, given the
constraint Nlsvq = Nsvq ·Ng in (4). The auxiliary func-
tion is

χ =
Csvq

N
2

Lv−1
svq

+
Cg

N2
g

+ λ · (Ng · Nsvq − Nlsvq). (27)

Setting its partial derivatives with respect to Ng and
Nsvq to zero yields

Dg =
Dsvq

Lv − 1
(28)

as an intermediate result. The optimal number of
spherical codevectors and gain quantization reconstruc-
tion levels is finally computed as

Nsvq =

(
1

Lv − 1
· Csvq

Cg

)Lv−1
2·Lv

· N
Lv−1

Lv

lsvq (29)

Ng =

(

(Lv − 1) · Cg

Csvq

)Lv−1
2·Lv

· N
1

Lv

lsvq. (30)

As the considered quantization cell is located around
the surface of the unit sphere, the variance of input
signal x is approximately E{‖ x ‖2

2} ≈ 1. After sub-
stituting (29) and (30) in (26), the overall logarithmic
SNR in dB as a function of the overall effective bit rate
rlsvq is

SNR
(II)
lsvq |dB= 6.02 · rlsvq − 10 log10

(
Lv

(Lv+1)
Lv−1
Lv

·
[

2
√

π
Γ(Lv+1

2 )

Γ(Lv

2 )

] 2
Lv

·
[
(1 + ln(A))2

12

] 1
Lv

)

.

(31)

Considering the asymptotic case for infinite dimen-
sions, it can be shown that

lim
Lv→∞

SNR
(II)
lsvq |dB= 6.02 · rlsvq (32)

which is consistent with the rate distortion function
for uncorrelated Gaussian distributed sources with zero
mean.

4. Results

The logarithmic SNR in dB for different dimensions
Lv and effective bit rates rlsvq is shown in Figure 4. The
curves for the “high rate approximation” are shown as
solid lines with either circle, hexagram, or square mark-
ers representing the different dimensions. The dotted
curves are based on the exact computation of the dis-
tortion for SVQ by numerically computing the angular
radius γ and solving the integrals in (17). For the opti-
mal bit allocation, in both cases, instead of computing
it directly according to (29) and (30), in a first step, Dg

is computed from Dsvq according to (28). In the next
step, the number of quantization reconstruction levels
Ng is computed from Dg according to (25). Two refer-
ence curves are shown, the maximum achievable SNR
for uncorrelated Gaussian distributed source with zero
mean according to rate-distortion theory (RDT) which
is also the asymptotic performance of LSVQ for infinite
dimensions (Lv → ∞) according to (32), and the per-
formance of logarithmic (A-Law) scalar quantization
as the special case of LSVQ for Lv = 1. The A-Law
quantization constant is A = 5000 which is a reason-
able tradeoff between dynamic range and performance
of the quantizer. The fact that for infinite dimensions
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Figure 5: Logarithmic LSVQ performance offset O(Lv)
(33) over vector dimension.

the maximum SNR according to RDT is reached is well
consistent with the sphere-hardening effect mentioned
in [11]. Obviously, the SNR computed according to the
exact solution for SVQ (as expected) is different for low
bit rates and asymptotically reaches the same perfor-
mance as computed according to the high rate approx-
imations for high bit rates. Since it is lower than the
SNR related to the high rate approximation, it seems
that also (23) defines a bound.
Another interesting result is shown in Figure 5 where
the asymptotic SNR for infinite dimensions (32) in

comparison to SNR
(II)
lsvq for finite dimensions (31)

O(Lv)= lim
Lv→∞

SNR
(II)
lsvq |dB −SNR

(II)
lsvq |dB (33)

is shown as a function of the vector dimension. For
quantization in practice, this result indicates that by
increasing the dimension Lv, the highest performance
gain can be achieved in the area of low values.

5. Conclusion

In this paper, theoretical results for LSVQ gain-
shape VQ have been presented. In the first part, a
proof was given to show that LSVQ achieves a quanti-
zation SNR which is approximately independent of the
input source PDF. In the second part, a lower bound for
the achievable quantization SNR related to SVQ and a
quantitative expression for the SNR related to LSVQ
for high bit rates were derived based on assumptions
similar to those known from the sphere bound for VQ
in general. One important outcome of these derivations
is the optimal allocation of bit rate for the logarithmic
SQ of the gain and the SVQ for the shape component
for high bit rates. Given a spherical code as the basis
for a new LSVQ in practice, the results are a valuable
reference to assess the quality of a spherical code for
quantization and to find the optimal allocation of bits
to gain and shape component.
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