
RTPROC: A SYSTEM FOR RAPID REAL-TIME PROTOTYPING IN AUDIO

SIGNAL PROCESSING

Hauke Krüger and Peter Vary

Institute of Communication Systems and Data Processing

Aachen University, Templergraben 55, D-52056 Aachen, Germany

{krueger,vary}@ind.rwth-aachen.de

Abstract

In this contribution a new system for the rapid develop-

ment of real-time prototypes for digital audio signal pro-

cessing algorithms on Windows PCs and a Digital Signal

Processor (DSP) platform is presented. The goal of this

system is to enable even unexperienced developers to trans-

form the conceptual idea of a new algorithm into a stand-

alone real-time demonstrator as quickly and conveniently

as possible. In order to achieve this goal, a software ar-

chitecture is defined where hardware and algorithm related

programming issues are separated to allow the algorithm

developer to completely focus on the implementation of the

algorithm only.

Compared to the earlier version [7], the new system sup-

ports all real-time prototype development phases from first

Matlab simulations to the final highly efficient implementa-

tion in fixed point arithmetic and covers all relevant aspects

such as e.g. control interface generation, function verifi-

cation, complexity measuring and real-time data tracking.

Development of prototypes based on general purpose PCs

(RTProcPC) and the ADSP-21369 EZKIT [1] embedded

DSP target (RTProcDSP) are currently supported (Fig. 1).

The system has been successfully used to implement various

real-time prototypes such as noise reduction, acoustic echo

compensation, and digital hearing aid simulation.

Soundcard

DSP

RTProcPC

RTProcDSP

RTProc

Figure 1. Audio signal processing real-time
demonstrator based on RTProc.

1. Introduction

The conventional development of a product applying a

new algorithm in audio signal processing commonly can be

divided into three development phases as depicted in Fig. 2.

Development Phase I: Algorithm Investigation

First investigations on a new algorithm in general involve

the usage of high level programming languages such as

Matlab. Existing libraries are employed for algorithm ex-

ploration. Since the algorithm is operated with audio sam-

ples in offline manner, aspects such as computational com-

plexity do not play a significant role yet.

Development Phase II: Real-Time Evaluation

In phase II, the algorithm found in phase I is tested under

real-time conditions1. A highly efficient programming lan-

guage such as C/C++ is chosen since processing efficiency

is crucial to reach the required program execution speed. In

order to identify a suitable realization of the new algorithm,

further aspects have to be taken into consideration such as

portability to fixed point arithmetic, algorithmic delay, and

computational complexity.

Development Phase III: Product Integration

In the final development phase, the new algorithm is real-

ized on the target product platform, e.g., a low power fixed

point DSP or microcontroller (MCU). This phase can be

well prepared in phases I and II and, in most cases, is not in

the main focus of the algorithm developer.

While phase I is related to the development of high level

programming language software only, a realization of the

algorithm to be tested and optimized under real-time con-

ditions involves a lot of programming effort to connect the

new algorithm to audio hardware and to create a control in-

terface which allows to adapt algorithm parameters during

runtime. In praxis, during phases I and II, due to the dif-

ferent programming languages, at least two versions of the

1Since the Windows Operating System is not a real-time operating sys-

tem, the term real-time refers to soft real-time conditions in RTProcPC.

12th 2008 IEEE/ACM International Symposium on Distributed Simulation and Real-Time Applications

1550-6525/08 $25.00 © 2008 IEEE

DOI 10.1109/DS-RT.2008.42

311

12th 2008 IEEE/ACM International Symposium on Distributed Simulation and Real-Time Applications

1550-6525/08 $25.00 © 2008 IEEE

DOI 10.1109/DS-RT.2008.42

311

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 2, 2009 at 08:56 from IEEE Xplore. Restrictions apply.

Phase I:

offline

Phase II:

real-time

Phase III:

product

Algorithm:

Investigation

MATLAB

Algorithm:

Testing (e.g. floating/

fixed Point)

C/C++

Algorithm:

Low power implementation

Optimization,

Verification

Optimization,

Verification

Figure 2. Phases in the conventional deve-

lopment of real-time audio signal processing
prototypes.

algorithm exist. Each version is verified and optimized in

each of the phases independently. The synchronization of

both versions (indicated by the dotted arrow in Fig. 2) is

difficult and time consuming. In summary, the conventional

development is inefficient and prohibits short development

intervals.

The goal of RTProc is to simplify this process to reduce

development time. Due to a clear separation of functional

components in RTProc, all hardware related programming

aspects are hidden from the developer, and almost no addi-

tional effort is required to switch from offline to real-time

processing. In addition, an easy-to-use mechanism enables

to attach control interfaces to the prototypes in a very con-

venient way. Due to an integration of the real-time func-

tionality in Matlab, in RTProc aided development, phases

I and II from Fig. 2 are merged to overcome the problems

related to different versions for offline and real-time pro-

cessing. Moreover, tools are provided to measure and op-

timize the timing behavior during real-time processing and

algorithm efficiency in terms of computational complexity.

At the end of the development with RTProc, the resulting

real-time prototype is a demonstrator that shows all benefits

of a new algorithm in a realistic application scenario and,

henceforth, is the most convincing argument to market new

solutions.

2 Principle of RTProc

RTProc is based on a software architecture realized in

C/C++ that composes audio signal processing applications

into three functional units, the driver, the algorithm and

the host component, as depicted in Figure 3.

input: double
process

output: double

runtime

interaction

messaging

algorithm component

algorithm-API

host component

driver-API
application

access to data buffers through API

e.g. int24 double

open/close

setup

input output

e.g. int24
device driver

e.g. int24
audio device

driver component

Figure 3. Basic principle of RTProc.

The Driver Component

The driver component has access to the audio input/output

device. In praxis, the mechanism to interact with the

hardware differs depending on the target platform and, on

the PC, the chosen software library. In order to provide one

unique interface for all applications, the driver component

maps all basic hardware and system specific functionality

to a simple interface, the RTProc driver application

programmable interface (driver-API). During real-time

processing, the driver component converts all hardware

specific into hardware independent data types and grants

access to the audio samples for further processing through

the driver-API.

The Algorithm Component

The algorithm component has access to the audio buffers

prepared by the driver component. Its main purpose is to

process the input audio samples according to the algorithm

to be realized. The resulting output samples are written

to the reserved output buffers. The algorithm component

is completely independent from the rest of the audio

processing application and the hardware. The runtime

interaction block in Fig. 3 enables to modify processing

parameters and therefore the algorithmic behavior during

audio processing.

The Host Component

The host component controls the driver and the algorithm

component through the algorithm- and the driver-API. It

is the key element of all audio processing applications and

312312

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 2, 2009 at 08:56 from IEEE Xplore. Restrictions apply.

routes all user interaction to the other two components.

During audio signal processing, it transfers all audio data

between driver and algorithm component.

In RTProc aided development, the algorithm developer

realizes the new algorithm as an algorithm component

independently from any hardware aspects. Since driver

and host components have been implemented as part of

RTProc already, it is sufficient to focus on the algorithmic

functionality only.

On the PC platform (RTProcPC), supported driver compo-

nents are based on the ASIO [11], the directSound [9] and

the directKS [10] technology to enable multichannel audio

processing with system latencies of less than 5 ms. Two

different host components are available, one to integrate

real-time processing in Matlab (the Matlab host), and a

generic library to offer the opportunity to add RTProc

to customized applications (the generic host). The GUI

host application makes use of the generic host component

and provides a graphical user interface (GUI) to control

real-time audio processing.

The embedded DSP based version of RTProc,

RTProcDSP, targets applications which require even

lower system latency and hard real-time. The driver

and the host component are both part of a proprietary

operating system in this case. A serial communication link

(RS-232, [6]) enables runtime user control of parameters

and algorithm verification from within Matlab in analogy

to RTProcPC.

3 RTProc Aided Algorithm Development

RTProc aided algorithm development benefits from the

merge of the development phases I and II. The developer

starts algorithm exploration in Matlab. Targeting real-time

audio processing with low latency, a Matlab program is not

fast enough. In order to use RTProc and at the same time

benefit from Matlab, the RTProc Matlab host component

offers an offline mode in which audio signals from the Mat-

lab workspace are fed into the algorithm component and

Matlab and C/C++ functions can be mixed arbitrarily.

In general, at the beginning of the development, most

functionality is realized in Matlab. In order to approach a

real-time version of the algorithm, all functionality parts are

ported to C/C++ step-by-step as demonstrated by the exam-

ples in Fig. 4 for an early and an advanced development

stage, respectively. Implementation failures, which are of-

ten very time consuming in conventional development, are

avoided since each single function can be easily verified

against its Matlab counterpart.

Once all functionality is implemented in C/C++ and ver-

ified, the algorithm can be operated in real-time. The Mat-

lab host is simply switched from offline into real-time mode

to use audio samples from the sound device rather than the

a) Early development stage b) Advanced development stage

MatlabMatlab C/C++

C/C++

C/C++

verification

Figure 4. Porting from Matlab to C/C++ in RT-
Proc, examples for an early (a) and an ad-

vanced (b) development stage.

samples from the Matlab workspace. Processing parame-

ters such as filter coefficients can be calculated in Matlab

offline and directly used in real-time processing.

Adding a runtime user control (GUI) can be done in a very

convenient way: Instead of dealing with GUI libraries such

as, e.g., QT [2], in RTProc, parameters to be adapted dur-

ing runtime are described in a software construct, in Fig.

3 shown as the runtime interaction block. Based on this

description, the GUI is generated dynamically by the host.

Consequently, the specification of the runtime control is in-

dependent from the host and guarantees that the same pro-

cessing parameters can be controlled, no matter which type

of host is currently used. Given a simple description of

the runtime control parameters in a configuration file, the

RTProc Generic Runtime Compiler generates all required

code automatically. Once a first version of the algorithm in

real-time is available, the following tools are provided with

RTProcPC to profile and optimize the code:

• The RTProc Complexity Instrumentation Tool helps

to transform standard C/C++ code into an instru-

mented version based on which the complexity of the

algorithm can be measured in terms of number of

weighted operations per second. The weight of each

processing instruction can be easily adapted to simu-

late different types of DSP instruction sets.

• The RTProc Full Speed Data Logger enables to store

huge amounts of data produced during real-time pro-

cessing on hard drive without interfering with real-

time processing. Matlab tools are provided to read the

stored data for timing accurate back tracing purposes.

To switch from the development to a deployable version of

an algorithm is very easy since all components developed

with the Matlab RTProc host can be employed without

modification also in combination with the RTProc GUI

host application which can be distributed to, e.g., customers

as a stand-alone real-time demonstrator.

Porting a prototype developed with RTProcPC to

RTProcDSP does not involve much programming effort

since both versions of RTProc are mostly source code

compatible.

313313

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 2, 2009 at 08:56 from IEEE Xplore. Restrictions apply.

4 Example Applications

RTProc was successfully used to develop various audio

signal processing prototypes. The following are example

projects which will be presented at the DS-RT 2008:

• Acoustic Echo Control: Acoustic echo in hands-free

communication systems is due to the echo path from

the loudspeaker to the microphone [3]. An echo can-

celer reconstructs and removes the echo signal from

the microphone signal before transmission. The ro-

bustness of the adaptation following [4] in realistic

acoustic environments is demonstrated by a real-time

prototype developed with RTProc.

• Speech Enhancement: An approach to perform

speech enhancement in noisy acoustic environments

based on the filter-bank equalizer proposed in [8] was

realized with RTProc. This new approach has an al-

gorithmic delay lower than that achieved by common

frequency-domain filtering approaches known from

the literature. The key technique of the new approach

is a non-uniform frequency resolution achieved by fre-

quency warping based on an allpass transformation.

• Voice Over Internet Protocol (VoIP): Based on

RTProc, a simple VoIP application was realized to

connect participants of a wideband voice call via inter-

net. The involved digital speech transmission is based

on the ITU-T G.722 wideband audiocodec [5].

5 Conclusion

In this contribution RTProc has been presented as a

new system for the rapid development of audio signal pro-

cessing prototypes on different platforms. Compared to the

conventional way, RTProc simplifies the development pro-

cess and shortens the development time. Key element of

RTProc is a software architecture according to which each

application is decomposed into different functional blocks.

This architecture enables to liberate the developer of a new

algorithm from all programming aspects which are not re-

lated to the actual algorithmic functionality.

Besides this, tools are provided with RTProc to support

the developer to create runtime user controls, to verify the

proper functionality even under real-time conditions, and

to optimize the new algorithm. Currently, with RTProcPC

and RTProcDSP two platforms are supported based on Mi-

crosoft Windows PCs and the ADSP-21369 EZKIT from

Analog Devices respectively. Example real-time prototypes

developed with RTProc will be presented in the demo

at the 12th IEEE International Symposium on Distributed

Simulation and Real Time Applications.

References

[1] Analog Devices, Inc. EZ-KIT Lite for Analog Devices

ADSP-21369 SHARC Processor. http://www.analog.com,

2008.

[2] J. Blanchette and M. Summerfield. C++ GUI Programming

with Qt 4. Prentice Hall, 2006.

[3] C. Breining and E. Hänsler. Acoustic echo control, an ap-

plication of very-high-order adaptive filters. IEEE Signal

Processing Magazine, Sept. 1999.

[4] G. Enzner and P. Vary. Robust and elegant, purely statistical

adaptation of acoustic echo canceler and postfilter. In Pro-

ceedings of International Workshop on Acoustic Echo and

Noise Control (IWAENC), Kyoto, Japan, Sept. 2003.

[5] ITU-T, Rec. G.722. 7 kHz Audio Coding within 64 kbit/s,

1988.

[6] B. Kainka. Messen, Steuern, Regeln über die RS 232-

Schnittstelle. Franzis Verlag, 1997.

[7] H. Krüger, T.Lotter, G. Enzner, and P.Vary. A PC based Plat-

form for Multichannel Real-time Audio Processing. In Pro-

ceedings of International Workshop on Acoustic Echo and

Noise Control (IWAENC), Kyoto, Japan, Sept. 2003.

[8] H. Löllmann and P. Vary. Generalized Filter-Bank Equal-

izer for Noise Reduction with Reduced Signal Delay. In

Proceedings of European Conference on Speech Communi-

cation and Technology (INTERSPEECH), Lisbon, Portugal,

Sept. 2005.

[9] Microsoft Corporation. DirectX Software Development Kit.

http://msdn.microsoft.com.

[10] Microsoft Corporation. Windows Driver Development Kit.

http://msdn.microsoft.com.

[11] Steinberg Soft- und Hardware GmbH. ASIO Interface Spec-

ification, v2.0, 1997-1999. http://www.steinberg.de, 1999.

314314

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 2, 2009 at 08:56 from IEEE Xplore. Restrictions apply.

