
RTPROC: Rapid Real-time Prototyping for Audio Signal
Processing

Hauke Krüger, Thomas Schumacher, Thomas Esch, Bernd Geiser, Peter Vary
Institute of Communication Systems and Data Processing
RWTH Aachen University, D-52056 Aachen, Germany

{krueger,schumacher,esch,geiser,vary}@ind.rwth-aachen.de
www.ind.rwth-aachen.de

Abstract: In this contribution the RTProc system for the rapid development
of real-time prototypes for digital audio signal processing algorithms is pre-
sented. RTProc enables even unexperienced programmers to transform the
first implementation of a new algorithm in Matlab into a stand-alone real-time
demonstrator written in C/C++ in a very efficient way. In order to achieve
this goal, the RTProc software architecture is defined such that hardware
and algorithm related programming issues are separated. All hardware re-
lated programming aspects are hidden so that the algorithm developer can
focus on the implementation of the algorithm.
Different application scenarios are supported by RTProc to operate on two
different platforms: General purpose PCs (RTProcPC) and the Analog De-
vices ADSP-21369 EZKIT [1] embedded DSP target (RTProcDSP). While
RTProcPC enables real-time processing of algorithms realized in C/C++ with
a minimum system latency of approximately 5 ms, even lower system latency
can be achieved by RTProcDSP if necessary.
Compared to earlier versions of RTProc [3], the current version has been ex-
tended according to the needs of algorithm developers to guide users through
all development phases in digital signal processing, starting from first Matlab
simulations to the final highly efficient implementation in fixed point arith-
metic.
Example real-time prototypes for noise reduction for mobile communication,
simulation of speech and audio codecs, and Matlab based room acoustic mea-
surements will be demonstrated to show the potential of RTProc.

1 Introduction

The conventional development of a product applying a new audio signal processing algo-
rithm commonly can be divided into three development phases as depicted in Fig. 1.

Development Phase I: Algorithm Development
First investigations on a new algorithm in general involve the usage of high level program-
ming languages such as Matlab. Existing libraries are employed for algorithm exploration.
Since the algorithm is operated with audio samples in offline manner, aspects such as com-
putational complexity do not play a significant role yet.

Development Phase II: Real-Time Evaluation
In phase II, the algorithm developed in phase I is tested under real-time conditions1. A

1Since most operating systems on general purpose PCs do not fulfill hard real-time constraints, the
term real-time refers to soft real-time conditions in RTProcPC.



highly efficient programming language such as C/C++ is chosen since processing efficiency
is crucial to reach the required program execution speed. In order to identify a suitable
realization of the new algorithm, further aspects have to be taken into consideration such
as portability to fixed point arithmetic, algorithmic delay, and further optimization of the
computational complexity.

Development Phase III: Product Integration
In the final development phase, the new algorithm is realized on the target product plat-
form, e.g., a low power fixed point DSP or microcontroller unit (MCU). This phase can
be well prepared in phases I and II and, in most cases, is not in the main focus of the
algorithm developer.

Phase I:
offline

Phase II:
real-time

Phase III:
product

Algorithm:
Development
MATLAB

Algorithm:
Testing (e.g. floating/

fixed point)
C/C++

Algorithm: e.g.
low power implementation

Optimization,
verification

Optimization,
verification

Figure 1 - Phases in the development of real-time audio signal processing prototypes.

Rapid real-time prototyping as the outcome of phase II is very important for the success-
ful introduction of new algorithms: From the developer’s point of view, it enables efficient
algorithm optimization, evaluation, and verification in real-world scenarios and customer
field tests. In addition to that, a real-time prototype is a highly valuable instrument to
market new solutions since potential customers can get in touch with prototypes of future
products before entering development phase III.

Development phase I is related to the development of high level programming language
software only. A realization of the same algorithm to be tested and optimized under
real-time conditions, however, involves a lot of additional programming effort in order to
connect the new algorithm to audio hardware as well as to create a control user interface
which allows to adapt algorithm parameters during runtime. In practice, during phases I
and II, due to the different programming languages, at least two versions of the algorithm
exist. Each version is verified and optimized in each of the phases independently. The
synchronization of both versions (indicated by the dotted arrow in Fig. 1) is difficult and
time consuming. In summary, the conventional development is inefficient and prohibits
short development intervals.

The goal of RTProc is to simplify the development process to reduce the time spent for the
creation of real-time demonstrators. Due to a clear separation of functional components
in RTProc, all hardware related programming aspects are hidden from the developer,
and almost no additional effort is required to switch from the offline to the real-time
development phase. In addition, easy-to-use mechanisms for the automatic generation



of source code enable to, e.g., attach graphical control interfaces to prototypes or to re-
alize common programming tasks in a very convenient way. Special attention has been
payed to realize RTProc as an algorithm development system according to the needs of
the algorithm developers: The integration of real-time audio processing functionality in
Matlab enables to smoothly make the transition from offline development to real-time
processing by mixing Matlab and C/C++ code without significant additional program-
ming effort due to RTProc code generation tools. Consequently, development phase I
and II are merged such that problems related to different algorithm versions for offline
and real-time processing are no longer present. Moreover, tools are provided to measure
and optimize the timing behavior during real-time processing and algorithm efficiency in
terms of computational complexity.

2 Principle of RTProc

RTProc is based on a software architecture realized in C/C++ that decomposes audio
signal processing applications into three functional units, the driver, the algorithm and

input: double
process

output: double

runtime
interaction

messaging

algorithm component

algorithm-API

host component

driver-API
application

access to data buffers through API

e.g. int24 double

open/close

setup

input output

e.g. int24
device driver

e.g. int24
audio device

driver component

Figure 2 - Basic principle of RTProc.

the host component, as depicted in Figure 2.

The Driver Component
The driver component has access to the audio input/output device. In practice, the mech-
anism to interact with the hardware differs depending on the target platform and, on the
PC, the chosen hardware access technology. In order to provide one unique interface for
all applications, the driver component maps all basic hardware and system specific func-
tionality to a simple interface, the RTProc driver application programmable interface



(driver-API). During real-time processing, the driver component converts all hardware
specific data types into hardware independent data types and grants access to the audio
samples for further processing through the driver-API.

The Algorithm Component
The algorithm component has access to the audio buffers prepared by the driver compo-
nent. Its main purpose is to process the input audio samples according to the algorithm
to be realized. The resulting output samples are written to the reserved output buffers.
The algorithm component is completely independent from the rest of the audio processing
application and the hardware. The runtime interaction block in Fig. 2 enables to modify
processing parameters and therefore the algorithmic behavior during audio processing.

The Host Component
The host component controls the driver and the algorithm component through the algo-
rithm- and the driver-API. It is the key element of all audio processing applications and
routes all user interaction to the other two components. During audio signal processing,
it transfers all audio data between driver and algorithm component.

In RTProc aided development, the developer realizes the new algorithm as an algorithm
component independently from any hardware aspects. Since driver and host components
have been implemented as part of RTProc already, it is sufficient to focus on the algo-
rithmic functionality only.
RTProcPC is currently realized for the Windows Operating System. Driver components
based on the ASIO [8]and the directKS [5] technology are supported to enable mul-
tichannel audio processing with system latencies of less than 5 ms. Enhanced RTProc
driver components to support functionality such as additional real-time audio file routing,
automatic resampling and asynchronous audio processing are available to cover the whole
bandwidth of applications. Two different host components are available, one to integrate
real-time processing in Matlab (the Matlab host), and a generic library to offer the
opportunity to add RTProc to customized applications (the generic host). GUI host
applications make use of the Matlab and the generic host component, respectively, to
provide graphical user interfaces (GUI) for real-time audio processing control.
The embedded DSP version RTProcDSP targets applications which require even lower
system latency and hard real-time. The driver and the host components are both part of
a proprietary lightweight RTProc DSP operating system in this case. An optional con-
nection to a general purpose PC can be established on the basis of an onboard hardware
component to realize a serial communication link.

3 RTProc Aided Algorithm Development

RTProc aided algorithm development significantly benefits from the merge of the devel-
opment phases I and II. In that context, the different operation modes of the RTProc
Matlab host application, the offline, the hook up, and the high efficiency mode, play an
important role: In general, the developer starts algorithm exploration in the offline op-
eration mode of the host. In this mode, audio files stored on the harddrive or in the
workspace are processed in a convenient way and stored back to harddrive or workspace.
In order to realize a specific algorithm, the algorithm developer provides a callback func-
tion in analogy to the algorithm component main signal processing function. This callback
function is called by the Matlab host application on a buffer-by-buffer basis. All other
functionality, e.g., the decomposition of the input signal into buffers is managed by the
Matlab host application.



If the buffer-by-buffer processing callback function execution time is sufficiently short,
the Matlab implementation of the algorithm can also be executed in real-time. For this
purpose, the RTProc Matlab host application can be operated in the hook up mode: The
RTProc software architecture including the RTProc driver component is loaded in the
background of Matlab and synchronizes Matlab to the soundcard I/O. Compared to the
offline mode, the Matlab signal processing callback provided by the algorithm developer
reads and writes audio samples from and to the audio device.
Due to the required synchronization overhead, this purely Matlab based real-time audio
signal processing approach is applicable only in case of algorithms with a low compu-
tational complexity and for applications with moderate latency constraints. In all other
situations, the realization of an algorithm component in C/C++ according to the RTProc
software architecture is the more efficient approach to follow. In order to enable a smooth
transition from the offline version of the algorithm in Matlab to a C/C++ implementa-
tion, the RTProc Matlab host application enables to mix Matlab functions and functions
which are part of the C/C++ algorithm component arbitrarily in the offline mode. Con-
sequently, the code transition process of an algorithm from Matlab to C/C++ can be
realized very efficiently as follows:
At the beginning, most algorithm functionality has been realized and verified in Matlab
as shown in Fig. 3 a). In order to convert the Matlab code into a C/C++ based real-time
version of the algorithm, all functional parts are slowly ported to C/C++ in a step-by-step
procedure and from inside to outside. Two typical situations in the transition process are
demonstrated by the examples in Fig. 3: In part b) of the figure, the first functions have

a) Start of transition from
Matlab to C/C++

b) Early transition stage c) Advanced transition stage

Matlab

Matlab

Matlab

Matlab C/C++

C/C++

C/C++

verification

Figure 3 - Porting from Matlab to C/C++ in RTProc: Examples for situations at the begin-

ning (a), in an early (b) and in an advanced (c) development stage.

been converted to C/C++ in an early development stage, whereas in part c), nearly the
full algorithm has been converted to C/C++ in an advanced development stage.
Since in this smooth transition process, each single function can be easily verified against
its Matlab counterpart, implementation failures, which are often very time consuming to
find in conventional development, are avoided. The effort to call C/C++ functions from
within Matlab is only minimal since all required code is generated automatically by an
RTProc tool based on simple meta information provided by the algorithm developer.
Once all functionality is completely implemented in C/C++ and verified, the Matlab
Host GUI can be switched into the high efficiency operation mode. In this mode, the
time-critical signal processing tasks are executed completely in the background of Mat-
lab without interfering with any Matlab functionality. No modification of source code or
recompilation of the algorithm component is required to run the algorithm in real-time
in the high efficiency operation mode. And even though signal processing is done in the
background, the algorithm developer benefits from the RTProc Matlab integration in the
high efficiency mode: A non-time-critical bidirectional data link between Matlab and the



C/C++ based algorithm component in the background enables to, e.g., compute process-
ing parameters such as fixed filter coefficients in Matlab and to send those parameters to
the algorithm component. Here, the parameters instantaneously have an impact on the
signal processing algorithm.
In the last phase of the development, the real-time prototype should be prepared for de-
ployment to customers. In this context, an operation independently from Matlab as a
stand-alone real-time demonstrator can be realized based on the deployable host applica-
tion. Purely C/C++ based algorithm components which have been developed with the
Matlab host application can be loaded without any source code modification or recompi-
lation.
If an embedded solution is desired, the RTProc software architecture allows for a conve-
nient conversion of an algorithm from RTProcPC to RTProcDSP since both versions are
highly source code compatibility. A step-by-step procedure to convert Matlab functions
into C/C++ code for the embedded DSP in analogy to the methodology described in the
context of the PC version of RTProc is realized by means of the serial communication
link described in Section 2.

3.1 RTProc Runtime User Controls, Tools and Extensions

Once an algorithm component has the desired functionality, a very important task is to
create a runtime user control in order to modify signal processing parameters while the
algorithm operates (runtime user interaction). Different mechanisms are supported by
RTProc to reduce the programming effort in different development phases:

Generic User Controls
Simple user controls are sufficient for real-time algorithm exploration, verification and
optimization. The RTProc generic runtime configuration mechanism is based on a de-
scription of parameters to be adapted during runtime in a software construct, in Fig. 2
shown as the runtime interaction block. Based on this description, graphical user in-
terfaces are generated dynamically by the host. Consequently, the specification of the
runtime control is independent from the host and no knowledge about GUI programming
is required. All source code required to manage the generic runtime configuration is gen-
erated automatically by the RTProc Generic Runtime Compiler.

QT based User Controls
More sophisticated user controls can be realized based on QT [4] and the RTProc QT
Extension. A framework involving code generation and the QT designer enables a drag-
and-drop design methodology in which only very little portions of source code have to be
added by hand. Due to the powerful GUI features of QT, very attractive graphical user
interfaces can be designed.

In addition to the basic RTProc functionality, tools and extensions are provided with
RTProcPC to support the algorithm developer in optimizing the real-time operation of
newly created prototypes, e.g.,

the RTProc Full Speed Data Logger to store data produced during real-time pro-
cessing on hard drive without interfering with real-time processing

the RTProc Matlab Data Reader to read the stored data for timing accurate algo-
rithm analysis afterwards in Matlab

The RTProc Communication Extension to connect the audio signal processing al-
gorithm to real communication networks such as ISDN, GSM and Ethernet



The RTProc Codec Library as a collection of standardized and non-standardized
speech and audio codecs to be used in combination with the communication exten-
sions for real-time simulations of state-of-the-art and future communication systems.

4 Example Applications

RTProc was successfully used to develop various audio signal processing prototypes. The
following are example projects which will be presented at the 20th conference ESSV:

Noise Reduction in Mobile Communication: When a speech communication device
is used in environments with high levels of ambient noise, the noise picked up by the
microphone significantly impairs the quality and/or the intelligibility of the transmitted
speech signal. In order to get a reliable separation from the noise signal, noise reduction
algorithms have become part of modern communication devices. Based on RTProc, a
speech enhancement demonstrator was developed to demonstrate several state-of-the-art
noise suppression techniques based on (advanced) statistical approaches [6] as well as
psychoacoustical techniques [7]. In order to conduct field tests in realistic scenarios, the
RTProc communication extensions enable to evaluate the performance of the speech
enhancement algorithms in the context of real GSM based telephone calls.

Real-time Simulation of a Codec Candidate for Standardization: At the authors’
department, an embedded speech and audio codec has been developed which is suitable for
”super-wideband” (50 Hz – 14 kHz) audio communication over packet-switched networks.
This codec has been successfully submitted to ITU-T by Huawei and ETRI as a candidate
[2] for the upcoming super-wideband extensions of Rec. G.729.1 and G.718. For the
purpose of real-time evaluation and demonstration of this codec, an RTProc real-time
demonstrator has been created which comprises the encoder and the decoder components.
Using a graphical interface, the user can adjust the sent and the received bit rate in real-
time. Furthermore, the instantaneous packet loss rate can be controlled to assess the
codec performance under realistic channel conditions.

Matlab tool for the measurements of room acoustics: Based on the RTProc
Matlab host, a tool was developed to measure room acoustics. For each measurement, a
test signal is played back by a loudspeaker, recorded by a microphone and finally evaluated
in order to compute the room impulse response. Signal generation and measurement
evaluation are realized most efficiently in Matlab whereas simultaneous and reproducible
playback and recording of audio signals must be realized by RTProc operating in the
background since this functionality is not available in Matlab. The tool is an open platform
in which signal generation and data evaluation functionality can be exchanged. The
RTProc communication extensions allow to enhance the functionality to measure the
characteristics of communication systems such as GSM or ISDN.

5 Conclusion

In this contribution RTProc has been presented as a powerful system for the rapid de-
velopment of audio signal processing prototypes on different platforms. Compared to the
conventional way, RTProc can simplify the development process and shortens the devel-
opment time.
Key element of RTProc is a software architecture according to which each application
is decomposed into different functional blocks. This architecture enables to liberate the
developer of a new algorithm from all programming aspects which are not related to the



actual algorithmic functionality. Compared to other component based approaches for
audio signal processing, RTProc has been designed according to the needs of algorithm
developers and offers guidance throughout all common development phases. Besides this,
tools are provided with RTProc to support the developer to create runtime user controls,
to verify the proper functionality even under real-time conditions, and to optimize the
new algorithm.
Currently, with RTProcPC and RTProcDSP two platforms are supported based on Mi-
crosoft Windows PCs and the ADSP-21369 EZKIT from Analog Devices respectively2.

References

[1] Analog Devices, Inc.: EZ-KIT Lite for Analog Devices ADSP-21369 SHARC
Processor . http://www.analog.com, 2008.

[2] Bernd Geiser, Hauke Krüger, Heinrich Löllmann, Peter Vary, Deming

Zhang, Hualin Wan, Hai Ting Li, and Li Bin Zhang: Candidate Proposal for
ITU-T Super-Wideband Speech and Audio Coding . In Proc. of Intl. Conf. on Acoustics,
Speech, and Signal Processing (ICASSP), Taipei, Taiwan, Apr. 2009.

[3] Hauke Krüger, Thomas Lotter, Gerald Enzner, and Peter Vary: A PC
based Platform for Multichannel Real-time Audio Processing . In Proceedings of Inter-
national Workshop on Acoustic Echo and Noise Control (IWAENC), Kyoto, Japan,
Sept. 2003.

[4] Jasmin Blanchette and Mark Summerfield: C++ GUI Programming with Qt
4 . Prentice Hall, 2006.

[5] Microsoft Corporation: Windows Driver Development Kit .
http://msdn.microsoft.com.

[6] Peter Vary and Rainer Martin: Digital Speech Transmission - Enhancement,
Coding and Error Concealment . Wiley, Chichester, 2006.

[7] Stefan Gustafsson, Rainer Martin, Peter Jax, and Peter Vary: A Psy-
choacoustic Approach to Combined Acoustic Echo Cancellation and Noise Reduction.
IEEE Transactions on Speech and Audio Processing, 10(5):245–256, July 2002.

[8] Steinberg Soft- und Hardware GmbH: ASIO Interface Specification, v2.0,
1997-1999 . http://www.steinberg.de, 1999.

2Further information about RTProc is available at http://www.ind.rwth-aachen.de/∼rtproc.


