
Gosset Low Complexity Vector Quantization with Application to Audio Coding

Hauke Krüger, Bernd Geiser, Peter Vary

Institute of Communication Systems and Data Processing (), RWTH Aachen University, Aachen, Germany
E-Mail: {krueger,geiser,vary}@ind.rwth-aachen.de
Web: www.ind.rwth-aachen.de

Abstract

This paper introduces a novel and highly efficient realization of
a spherical vector quantizer (SVQ), the “Gosset Low Complex-
ity Vector Quantizer” (GLCVQ). The GLCVQ codebook is com-
posed of vectors that are located on spherical shells of the eight-
dimensional Gosset lattice E8. A high encoding efficiency is
achieved by representing the spherical vector codebook as ag-
gregated permutation codes. Compared to previous algorithms,
the computational complexity and memory consumption is fur-
ther reduced by grouping the so-called classleader vectors into a
significantly lower number of classleader root vectors based on
separate handling of signs and magnitudes for each vector co-
ordinate. The GLCVQ concept can be generalized to vector di-
mensions that are multiples of eight. In particular, GLCVQ for
16-dimensional vectors is used in Amd. 6 to ITU-T Rec. G.729.1
for super-wideband speech and audio coding.

1 Introduction

In gain-shape vector quantization [12], the input vector x ∈Rn is
decomposed into a gain factor g ≥ 0 and a shape vector c ∈ R

n

which are then quantized independently by means of a scalar and
a vector quantizer, respectively. Typically, the euclidean norm is
used and therefore the gain factor g and the shape vector c are
computed as

g = |x|= ||x||2 and c= g−1
x. (1)

With this normalization, all vectors {c} computed from a se-
ries of input vectors {x} are located on the surface of the n-
dimensional unit sphere. In order to match the properties of the
normalized vectors {c}, the codevectors of the vector quantizer
should be located on the surface of the unit sphere as well. Such
a vector quantizer is referred to as a spherical vector quantizer
(SVQ). In [8] and [7] it has been shown that, when combined
with logarithmic scalar quantization of the gain factor g, the quan-
tization performance of the gain-shape approach is independent
from the statistical characteristics of the input signals. There-
fore, this concept is particularly suited for the encoding of audio
signals which usually have unknown characteristics. Practical
realizations of SVQ have been described in the literature, e.g.,
[9, 10], and several others are part of recent speech and audio
coding standards, for instance ITU-T Rec. G.729.1 [6, 11], ITU-T
Rec. G.718 [4, 15], ITU-T Rec. G.719 [5, 16], and 3GPP AMR-
WB+ [1]. In particular, an approach for SVQ based on the well-
known Gosset lattice E8 has first been applied to speech coding
in [2]. Here, lattice points that are located on spherical shells of
constant radius form the basis of the SVQ codebooks. An effi-
cient realization of the nearest-neighbor quantization routine can
be achieved by grouping the codevectors into classes that can be
interpreted as permutation codes. Each class is then represented
by an associated classleader vector. Even though this approach
is computationally efficient compared to a full codebook search,
it is still not applicable for higher bit rates since the number of
classleader vectors increases too much.

In this paper, a novel technique for nearest-neighbor quantiza-
tion based on spherical codevectors that are taken from shells
of the Gosset lattice is proposed. Thereby, the computational
complexity and the memory consumption is significantly reduced

This work has been conducted in cooperation with Huawei Technologies

Co., Ltd., Core Network Research Dept., Beijing, P.R. of China

by grouping the classleader vectors according to a significantly
lower number of classleader root vectors based on separate hand-
ling of the signs and the magnitudes of the codevector coordi-
nates. This quantizer, which is referred to as “Gosset Low Com-
plexity Vector Quantizer” (GLCVQ), has been successfully ap-
plied for super-wideband speech and audio coding in the codec
proposal of [3]. It is now part of Amd. 6 to ITU-T Rec. G.729.1.

2 SVQ Based on the Gosset Lattice

The Gosset lattice is defined in eight dimensions, as the superpo-
sition of the checkerboard lattice D8 and a shifted version thereof,

E8
.
= D8∪ (D8 +v) ,v =

[

1
2 . . . 1

2

]T
. (2)

The checkerboard lattice is defined for arbitrary dimensions n as

Dn
.
=

{

x= [x0 . . . xn−1]
T∈ Z

n : (
n−1

∑
i=0

xi)mod 2≡ 0

}

. (3)

Lattice vectors with a constant distance to the origin define a shell
of a lattice. The spherical vector codebook of the SVQ to be in-
vestigated in the following is composed of all N vectors which
fulfill the Gosset lattice condition (2) and at the same time are
located on a shell with a specific radius, normalized to have unit
absolute value. Targeting a nearest-neighbor quantization with
low complexity and memory, due to the invariance of (2) against
permutation of the vector coordinates, the N codevectors populat-
ing the SVQ codebook can be represented by permutations codes
as shown in [2].

Let the vector x̃i ∈R
n be one out of p classleader vectors. Each

classleader vector is composed of L≤ n different real valued am-
plitudes µl distributed over the n vector coordinates in decreasing
order µ0 > µ1 > · · ·> µL−1, i.e.,

x̃i = [x̃i,0 x̃i,1 . . . x̃i,n−1]
T

=
[

←w0→

µ0 µ0

←w1→

µ1 µ1 . . .
←wL−1→

µL−1 µL−1

]T
. (4)

Each of the real values µl can occur wl times within the vector. A
permutation of the vector x̃i is defined as another vector x̃′i that
is composed of the same real values µl but in a different order.
An equivalence class is defined as the set of codevectors which
can be produced by arbitrary permutations of a single classleader
vector. Finally, the SVQ codebook is defined as the aggrega-
tion of the codevectors of the equivalence classes related to all p
classleader vectors, normalized to have unit absolute value.

The advantage of the permutation code representation of the
codebook is that an efficient nearest-neighbor quantization rou-
tine can be employed as proposed in [14] where only the
classleader vectors must be evaluated rather than all vectors in
the codebook in order to find the optimal codevector.

Examples of the number of spherical codevectors and corre-
sponding classleader vectors for codebook designs at different
effective bit rates per vector coordinate are listed in Table 1.

ITG-Fachtagung Sprachkommunikation · 06. – 08.10.2010 in Bochum Paper 50

ISBN 978-3-8007-3300-2 © VDE VERLAG GMBH ∙ Berlin ∙ Offenbach

Table 1: Exemplary numbers of codevectors, equivalence classes
and equivalence root classes for the Gosset lattice E8.

Bit rate Codevectors Equiv. classes Equiv. root
log2(N)/n N p (cf. [2]) classes q

0.988 240 8 2
1.762 17520 42 5
2.042 82560 103 8
2.257 272160 162 11

3 Gosset Low Complexity VQ

The computational complexity of the SVQ approach as described
in the previous section is still quite high, in particular at higher
bit rates. E.g, in the example shown in the last row of Table 1,
162 classleader vectors must be evaluated in the nearest neigh-
bor quantization procedure to find the optimal codevector for a
given input vector x. To further reduce the complexity, q < p
classleader root vectors are defined in the GLCVQ approach,
cf. Section 3.1 . The achievable computational complexity is sig-
nificantly lower than with the conventional approach since only
the q classleader root vectors must be evaluated rather than the p
classleader vectors in order to find the optimal codevector. Exam-
ples for the relation of the number of classleaders p to the number
of classleader root vectors q are also given in Table 1.
Usually, the Gosset lattice is defined for eight dimensions. Due
to its construction rule which is based on the general Dn lattice,
formally, the proposed GLCVQ concept can be generalized to
arbitrary dimensions. High quantization performance, however,
can only be achieved for dimensions which are multiples of eight.

3.1 Definition of Classleader Root Vectors

A classleader root vector is defined in analogy to (4) but contains
only positive real valued amplitudes µl ≥ 0. Given a classleader
root vector, sets of classleader vectors described earlier can be
constructed by combining the classleader root vector coordinates
with a specific distribution of positive and negative signs. How-
ever, in order to fulfill the lattice constraint (2), a sign parity con-
dition must be considered for two classes of classleader root vec-
tors, described in the following. In analogy to Section 2, all code-
vectors which can be produced based on a specific classleader
root vector form an equivalence root class.

Type A classleader root vectors fulfill the constraint defined as
the first part of (2) (the definition of the D8 lattice). According
to this definition, given a valid vector xA = [xA,0 · · · xA,7]
(a vector which fulfills the lattice constraint (2)), another valid
vector xA

′ can be constructed by inverting one sign of a vector
coordinate at an arbitrary position iA,0 of xA since

(
n−1

∑
i=0

x′A,i)mod 2 = ((
n−1

∑
i=0

xA,i)−2 · xA,iA,0)mod 2≡ 0 (5)

and xA,iA,0 ∈ Z. Since the inversion of a sign of a coordinate does

not change the absolute value of a vector, vectors xA
′ and xA

are located on the same shell. As a conclusion, valid codevectors
are produced from type A classleader root vectors by setting ar-
bitrary combinations of positive and negative signs at all vector
coordinates, followed by an (optional) permutation of the vector
coordinates and normalization.

Type B classleader root vectors fulfill the constraint defined
as the second part of (2) (the definition of the shifted D8 lat-
tice). According to this definition, given a valid vector xB =
[xB,0 · · · xB,7] (a vector fulfilling this definition), a vector

xB
′ produced by inverting one sign at an arbitrary coordinate po-

sition iB,0 of xB would not be valid with respect to the definition
in (4). By inverting the signs at two different vector coordinates
iB,0 and iB,1 of xB, however, another valid vector xB

′′ can be

constructed from xB to fulfill the codevector construction con-
straint since

(
n−1

∑
i=0

x′′B,i)mod 2 =

(

(
n−1

∑
i=0

xB,i)−2 · xB,iB,0 −2 · xB,iB,1

)

mod 2

= (0−1−1)mod 2≡ 0. (6)

Since the inversion of a sign of a coordinate does not change the
absolute value of a vector, vectors xB

′′ and xB are located on the
same shell.
As a conclusion, valid vectors are produced from type B
classleader root vectors by setting such combinations of positive
and negative signs that fulfill a sign parity constraint, followed by
an (optional) coordinate permutation and normalization. The sign
parity constraint can be even or odd according to the definition

parity(x) =

(

n−1

∑
i=0

sign(xi)

)

mod2 =

{

1 odd

0 even
(7)

with

sign(xi) =

{

0 if xi >= 0

1 if xi < 0
. (8)

An example to demonstrate how groups of classleader vectors can
be expressed by means of 2 type A classleader root vectors and
1 type B classleader root vector with odd sign parity constraint is
exemplified in Table 2.

3.2 Nearest-Neighbor Quantization

Note that following the gain-shape approach (1), the vector to
be quantized is assumed to be normalized to have unit absolute
value and is therefore written as c in the remainder of this section.
The classleader root vectors will be denoted as x̃m with m as the
classleader root index and —by definition— all with the same
(not necessarily unit) absolute value. The SVQ codebook is pop-
ulated with codevectors c̃i which are derived from the classleader
root vectors as described in Section 3.1.
A full nearest-neighbor quantization procedure could be realized
such that, given a vector c to be quantized and the SVQ codevec-
tors as c̃i, a similarity metric Mi

Mi = c
T · c̃i (9)

is evaluated at first for all codevector entries addressed by index
0 ≤ i < N. The optimal candidate codevector is determined as
that codevector which leads to the highest similarity metric,

iopt = argmax
i

Mi. (10)

The proposed novel nearest-neighbor quantization procedure to
be described in the following takes advantage of the representa-
tion of all valid codevectors by means of type A and B classleader
root vectors and utilizes a sign distribution as well as a permuta-
tion matrix. Since only the q classleader root vectors must be
evaluated, it can be realized with a complexity and memory con-
sumption which is significantly lower than that of the full search
approach (N candidates) and that of the conventional approach
[2] (p candidates).
Given the vector to be quantized as c, for the quantization pro-
cedure at first all signs are separated from the magnitudes to pro-
duce vectors

cmag = [| c0 | | c1 | · · · | c7 |]
T

csign = [sign(c0) sign(c1) · · · sign(c7)]
T , (11)

involving the definition of the sign function from (8). In the next
step, the amplitudes are rearranged involving the n× n permuta-
tion matrix Pc to produce

c
∗
mag = Pc ·cmag

c
∗
sign = Pc ·csign. (12)

ITG-Fachtagung Sprachkommunikation · 06. – 08.10.2010 in Bochum Paper 50

ISBN 978-3-8007-3300-2 © VDE VERLAG GMBH ∙ Berlin ∙ Offenbach

Table 2: Type A and B classleader root vectors and corresponding classleader vectors for E8.

Classleader root vector Associated classleader vectors
[

1 0 0 0 0 0 0 0
]T [

1 0 0 0 0 0 0 0
]T

Type A
[

0 0 0 0 0 0 0 −1
]T

[

1
2

1
2

1
2

1
2

0 0 0 0
]T [

1
2

1
2

1
2

1
2

0 0 0 0
]T

Type A
[

1
2

1
2

1
2

0 0 0 0 − 1
2

]T
,
[

1
2

1
2

0 0 0 0 − 1
2
− 1

2

]T

[

1
2

0 0 0 0 − 1
2
− 1

2
− 1

2

]T
,
[

0 0 0 0 − 1
2
− 1

2
− 1

2
− 1

2

]T

[

3
4

1
2

1
2

1
2

1
2

1
2

1
2

1
2

]T [

3
4

1
2

1
2

1
2

1
2

1
2

1
2
− 1

2

]T
,
[

3
4

1
2

1
2

1
2

1
2
− 1

2
− 1

2
− 1

2

]T

Type B
[

3
4

1
2

1
2
− 1

2
− 1

2
− 1

2
− 1

2
− 1

2

]T
,
[

3
4
− 1

2
− 1

2
− 1

2
− 1

2
− 1

2
− 1

2
− 1

2

]T

(odd parity)
[

1
2

1
2

1
2

1
2

1
2

1
2

1
2
− 3

4

]T
,
[

1
2

1
2

1
2

1
2

1
2
− 1

2
− 1

2
− 3

4

]T

[

1
2

1
2

1
2
− 1

2
− 1

2
− 1

2
− 1

2
− 3

4

]T
,
[

1
2
− 1

2
− 1

2
− 1

2
− 1

2
− 1

2
− 1

2
− 3

4

]T

such that all coordinates in c
∗
mag are in decreasing order.

Instead of computing the similarity metric metric for all code-
vectors following the full nearest-neighbor search approach, only
the classleader root vectors are evaluated. The similarity metric
is hence written as

Mm = c
∗
mag

T · x̃m. (13)

with the index m ∈ {0, . . . ,q−1} to address all classleader root
vectors and x̃

m as the classleader root vector with index m (either
type A or type B). Considering the computation of the similar-
ity metric, however, the sign parity constraint discussed earlier
demands special consideration:

Type A Classleader Root Vector:

The similarity metric (13) is based on the magnitude vectors c∗mag

and on the classleader root vectors x̃
m which are, by definition,

also composed of positive coordinate values only. Considering
that a classleader root vector represents a group of codevectors
by combining the magnitudes with signs at arbitrary positions and
a permutation of coordinates afterwards, the computed similarity
metric (13) is the maximum achievable similarity metric value for
all codevectors to be produced from the type A classleader root
vector. This maximum similarity is achievable if the classleader
root vector is combined with positive and negative signs such
that it matches the vector c

∗
sign. The resulting maximum simi-

larity metric value for the group of codevectors represented by
the classleader root vector (equivalence root class) is

M
∗
m = M

(A)
m = Mm. (14)

The optimal codevector within this equivalence root class is con-
structed from the classleader root vector by adding signs at posi-
tions identical to the sign distribution of vector c∗sign, permutation

(inverse to matrix Pc) and normalization afterwards.

Type B Classleader Root Vector:

Given a type B classleader root vector, the similarity metric (13)
is the maximum among the similarities related to all codevectors
that can be constructed from the classleader root vector. Due to
the sign parity constraint, however, not all sign combinations are
allowed. Therefore two cases must be distinguished:

• Case 1: parity(c∗sign) = parity(x̃m)

The optimal distribution of signs can be achieved so that the
maximum similarity metric for the group of codevectors re-
presented by this classleader root vector is

M
∗
m = M

(B)
m = Mm. (15)

The optimal codevector within this equivalence root class is
constructed from the classleader root vector by adding signs

at positions identical to the sign distribution of vector c∗sign,

permutation (inverse to matrix Pc) and normalization after-
wards.

• Case 2: parity(c∗sign) 6= parity(x̃m)

If the parity of the signs related to the input vector does not
comply with the classleader root vector sign parity constraint,
the sign of one coordinate with unknown index j0 of the
classleader vector must be different to that in c

∗
sign. As a con-

sequence, the similarity metric (13) must be updated by

M
∗
m = M

(B)
m = Mm−2 · c∗mag, j0 · x̃m, j0 (16)

with c∗mag, j0
and x̃m, j0 as single vector coordinate values at

the position j0. The maximum modified metric is achieved
for index

j0 = argmin
0≤ j<n:x̃m, j 6=0

c∗mag, j · x̃m, j. (17)

Since in both vectors c∗mag and x̃m the magnitudes are in de-

creasing order, the minimum is given for the index j0 of the
last non-zero vector coordinate of x̃m. The optimal codevec-
tor is hence the classleader root vector combined with the dis-
tribution of signs identical to that given by vector c

∗
sign but

with a sign inversion at the j0-th vector coordinate, followed
by permutation (inverse to matrix Pc) and normalization.

3.2.1 The Optimal Classleader Root Vector

In order to find the optimal codevector, the similarity metric
M ∗

m is evaluated for all q classleader root vectors according to
(14),(15) or (16). The optimal among the classleader root vectors
is the one with index

mQ = argmax
m

M
∗
m (18)

which can be transformed into the optimal codevector as de-
scribed in Section 3.2.
Note that in this section for the computation of the similarity met-
ric the classleader root vectors are not normalized to have unit
value. This, however, does not have any impact on the quantiza-
tion performance since all classleader root vectors have identical
absolute value.

3.3 Codevector-to-Index-Mapping

Once the optimal codevector has been computed, this information
must be transformed into a codevector index. In order to retain a
high quantization efficiency, quantization index offset tables are
stored for all classleader root vectors. In order to transform a spe-
cific permutation of a classleader vector into a quantization index,
in the literature, the Schalkwijk algorithm has been proposed [13].
In [3], a more efficient alternative has been used. These aspects,
however, shall not be discussed in detail here.

ITG-Fachtagung Sprachkommunikation · 06. – 08.10.2010 in Bochum Paper 50

ISBN 978-3-8007-3300-2 © VDE VERLAG GMBH ∙ Berlin ∙ Offenbach

(a) (b)

5 10 15 20 25 30 35
 1

 2

 3

 4

 5

6

 7

8

 9

 10

Bit rate [bit / vector]

C
o

m
p

le
xi

ty
 [

 k
O

p
s

/
v

e
ct

o
r

]

8−dim. G.729.1 VQ

8−dim. GLCVQ

16−dim. G.729.1 VQ

16−dim.GLCVQ

Complexity of GLCVQ

(c)

Figure 1: (a) and (b): SNR performance of 8- and 16-dimensional GLCVQ compared with lattice VQ from ITU-T Rec. G.729.1 [6, 11]
(and 3GPP AMR-WB+ [1]) — (c): Comparison of computational complexity measured in 1000 weighted operations per quantized
vector (encoder and decoder).

4 Evaluation & Test Results

The quantization performance and computational complexity of
GLCVQ has been compared with the lattice-based SVQ which
is used for transform coding in the TDAC module of ITU-T
Rec. G.729.1, see Fig. 1. The GLCVQ achieves a slightly better
signal-to-quantization-noise-ratio than the reference VQ module
which is in fact close to the theoretical optimum for the consid-
ered vector dimensions of 8 and 16 [7]. However, a considera-
ble reduction in computational complexity (≈ factor 2 – 3.5) is
achieved which is due to the efficient representation of the code
in terms of classleader root vectors and the particularly efficient
indexing procedure of [3] for the lattice points (which is not de-
scribed in this paper, though). On the other hand, since the result-
ing codebooks do not represent embedded codes, a little flexibil-
ity is sacrificed concerning the available bit rates.

The GLCVQ has been applied to quantize transform coeffi-
cients in the Huawei/ETRI candidate codec [3] for the super-
wideband extensions of ITU-T Rec. G.729.1 and G.718. Thereby,
mainly a vector dimension of 16 has been used. An adaptive bit
allocation procedure assigns the available budget to a number of
16-dimensional subbands in the MDCT (Modified Discrete Co-
sine Transform) domain. The allocation is based on the so called
“spectral envelope” which provides a logarithmically quantized
gain factor for each subband. In this codec, the GLCVQ con-
tributed significantly to the excellent performance that could be
shown in the subjective ITU-T tests. In fact, all requirements
for mono input signals were passed with only half of the the al-
lowable (overall) complexity. Consequently, the GLCVQ module
has been included in the final ITU-T recommendation as an addi-
tional VQ module to enhance the wideband MDCT coefficients.

5 Conclusions

We have proposed a new algorithm for spherical vector quan-
tization with codebooks that are based on shells of the Gosset
lattice. While maintaining excellent quantization performance, a
considerable reduction of the computational complexity could be
achieved by grouping the p equivalence classes of the original
algorithm [2] into q < p equivalence root classes. For example,
at a bit rate of approximately 2.257bit/vector, only a fraction of
q/p ≈ 6.8% of the candidate vectors have to be evaluated com-
pared to [2]. In addition, the GLCVQ concept offers flexibility
w.r.t. the vector dimension n (multiples of 8) while maintaining
many favorable properties.

The GLCVQ has been successfully applied for super-wideband
speech and audio coding in the candidate codec which is de-
scribed in [3]. Recently, it has been included in Amd. 6 to ITU-T
Rec. G.729.1.

Literature

[1] 3GPP TS 26.290. Extended adaptive multi-rate - wideband (AMR-

WB+) codec; transcoding functions, 2004.

[2] J. P. Adoul, C. Lamblin, and A. LeGuyader. Baseband speech cod-

ing at 2400 bps using spherical vector quantization. In Proc. of

IEEE ICASSP, San Diego, CA, USA, March 1984.

[3] B. Geiser, H. Krüger, H. W. Löllmann, P. Vary, D. Zhang, H. Wan,

H.T. Li, and L.B. Zhang. Candidate proposal for ITU-T super-

wideband speech and audio coding. In Proc. of IEEE ICASSP,

Taipei, Taiwan, April 2009.

[4] ITU-T Rec. G.718. Frame error robust narrowband and wideband

embedded variable bit-rate coding of speech and audio from 8-32

kbit/s, 2008.

[5] ITU-T Rec. G.719. Low-complexity, full-band audio coding for

high-quality, conversational applications, 2008.

[6] ITU-T Rec. G.729.1. G.729 based embedded variable bit-rate coder:

An 8-32 kbit/s scalable wideband coder bitstream interoperable with

G.729, 2006.

[7] H. Krüger. Low Delay Audio Coding Based on Logarithmic Spher-

ical Vector Quantization. PhD thesis, RWTH Aachen, 2010.

[8] H. Krüger, R. Schreiber, B. Geiser, and P. Vary. On Logarithmic

Spherical Vector Quantization. In Proc. of International Symposium

on Information Theory and its Applications (ISITA), Auckland, New

Zealand, December 2008.

[9] H. Krüger and P. Vary. SCELP: Low Delay Audio Coding with

Noise Shaping based on Spherical Vector Quantization. In Proc. of

EUSIPCO, Florence, Italy, September 2006.

[10] B. Matschkal, F. Bergner, and J.B. Huber. Joint Signal Processing

for Spherical Logarithmic Quantization and DPCM. In Proc. of

4th International Symposium on Turbo Codes and Related Topics,

Munich, Germany, April 2006.

[11] S. Ragot et al. ITU-T G.729.1: An 8-32 kbit/s scalable coder inter-

operable with G.729 for wideband telephony and Voice over IP. In

Proc. of IEEE ICASSP, Honolulu, Hawai’i, USA, April 2007.

[12] M.J. Sabin and R.M. Gray. Product Code Vector Quantizers for

Waveform and Voice Coding. IEEE Transactions on Acoustics,

Speech, and Signal Processing, ASSP-32(3):474–488, June 1984.

[13] J. P. M. Schalkwijk. An algorithm for source coding. IEEE Trans-

actions on Information Theory, 18(3):395 – 399, May 1972.

[14] D. Slepian. Permutation Modulation. Proceedings of the IEEE,

53(3):228–236, 1965.

[15] T. Vaillancourt et al. ITU-T EV-VBR: A robust 8-32 kbit/s scal-

able coder for error prone telecommunications channels. In Proc. of

EUSIPCO, Lausanne, Switzerland, August 2008.

[16] M. Xie et al. ITU-T G.719: A new low-complexity full-band (20

kHz) audio coding standard for high-quality conversational applica-

tions. In Proc. of IEEE Workshop on Applications of Signal Process-

ing to Audio and Acoustics, pages 265–268, New Paltz, NY, USA,

October 2009.

ITG-Fachtagung Sprachkommunikation · 06. – 08.10.2010 in Bochum Paper 50

ISBN 978-3-8007-3300-2 © VDE VERLAG GMBH ∙ Berlin ∙ Offenbach

	Zurück zum Inhaltsverzeichnis / Back to Contents
	Gosset Low Complexity Vector Quantization with Application to Audio Coding
	Abstract
	1 Introduction
	2 SVQ Based on the Gosset Lattice
	3 Gosset Low Complexity VQ
	3.1 Definition of Classleader Root Vectors
	3.2 Nearest-Neighbor Quantization
	3.2.1 The Optimal Classleader Root Vector

	3.3 Codevector-to-Index-Mapping

	4 Evaluation & Test Results
	5 Conclusions
	Literature

