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Abstract
Most systems for the transmission and storage of speech and audio signals are
nowadays based on digital technology. For specific applications, e.g., wireless mi-
crophones for live concerts, however, operation constraints are defined which only
analog technology could fulfill. The most critical and often contradictory constraints
are a low algorithmic delay, a high perceived quality for speech as well as for audio
signals at low bit rates and a low computational complexity. State-of-the-art stan-
dardized approaches for digital lossy source coding in general either have a high
algorithmic delay or have been optimized for speech signals only and are not suit-
able for audio coding.

The outcome of this thesis are novel approaches for the lossy compression of digital
speech and audio signals with low algorithmic delay. The new concepts are prin-
cipally based on combined linear prediction and vector quantization which is well-
known from state-of-the-art speech codecs. However, fundamental modifications of
the concepts known from speech coding are essential to achieve a low algorithmic
delay and a low computational complexity as well as a high perceived speech and
audio quality at low bit rates.

The developed approaches for low delay audio coding significantly outperform stan-
dardized audio codecs with a comparable algorithmic delay and bit rate, e.g., the
ITU-T G.722 audio codec, in terms of a higher subjective quality for speech and
particularly audio signals.
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Reff,svq Effective bit rate per vector coordinate in SVQ

Reff,g Effective bit rate per vector coordinate for quantization of gain
factor in LSVQ
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S(I)
Cc̃

Content of spherical quantization cells (high rate assumption)

S(II)
Cc̃

Content of spherical quantization cells (“idealized SVQ”)

SNR(I)
lsvq SNR related to LSVQ in the qualitative (high rate) analysis

SNR(II)
svq SNR derived for an “idealized” SVQ

SNR(II)
lsvq SNR derived for an “idealized” LSVQ

SNR(III)
lsvq SNR derived for an “idealized” LSVQ for high rate approxima-

tions

S(ELv )

N(A)
Shell of the generalized Gosset Lattice (GLCVQ)

S(ALv )

N(B)
ALBVQ codevectors before normalization

S∗
(mϑ1

) Circles on the surface of the sphere related to the APVQ code-
vector construction

S(r)
Lv

Unit sphere with radius r

S(
SLv

r) Area content of sphere surface

V (r)
SLv

Volume of sphere

VCx̃
(g̃) Volume of the overall quantization cell in LSVQ

βmax Maximum angular radius to define a spherical cap quantization
cell in SVQ

∆g(g̃) Size of quantization interval related to scalar quantization of
the gain factor in LSVQ

λG(x) Optimal codevector density for multivariate Gaussian PDF

δ Sphere packing density constant in vector quantization

θ Sphere covering thickness constant in vector quantization

λLv,sp(r) Sphere density function in LSVQ

ϑc,ν Angle in polar coordinates

δν Distance between codevectors related to the νth angle in polar
coordinates

Principal Symbols related to Chapter 5:

aar,1 Set of filter coefficients to control exemplary AR processes

A(z) System function of linear prediction signal estimator

C∆ Constant for the determination of error weighting filter Fnew(z)

eivq Error vector in CELP encoder
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ew,ivq Weighted error vector in CELP encoder

F (z) Error weighting filter in generalized closed-loop LPC

Fnew(z) New error weighting filter

Fconv(z) Conventional error weighting filter

Gp Maximum achievable prediction gain

h(X) Differential entropy

hW (k) (Truncated) impulse response of combined weighting filter
HW (z)

hW (Truncated) impulse response of combined weighting filter
HW (z) in vector notation

HW (z) Combined weighting filter

HW,SA/B
(z) Part of the combined weighting filter related to states SA/B

MSx
ivq

Quantization cost or metric in the CELP index iteration pro-
cedure

Nce Number of candidates in pool related to the Candidate Exclu-
sion

Nlpc Linear prediction order

qSx Quantization performance loss due to search strategy Sx with
reduced complexity

W (z) Error weighting filter in CELP coding (equivalent to F (z))

xfr Filter ringing signal in the modified CELP approach

∆(k) Quantization error signal amplitude

γ Parameter for the setup of the error weighting filter (conven-
tional approach)

∆ Quantization error vector to update the states in modified
CELP approach

ΞSF(x(k)) Spectral flatness measure

Φ∆ Covariance function of the quantization error

Principal Symbols related to Chapter 6:

Aw(z) Frequency warping allpass

Hw
S (z) Warped linear prediction synthesis filter

λw Frequency warping coefficient
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Introduction
In the past decades, a “digital revolution” in communications and multimedia tech-
nologies took place:

• Wired telephony was still based on analog networks and terminals in the late
1980’s when the Integrated Services Digital Network (ISDN) was standardized
(e.g. [ITU93]) to substitute the wide spread analog technology.

• Mobile terminals were based on analog technology when the digital wireless
telephony (the D-Netz) was introduced in Europe in 1992. In Germany, the
switch from analog to digital technology was completed in 2001 with the
complete deactivation of the analog C-Netz.

• In the early 1980’s, audio signals were recorded on analog magnetic audio
tapes when the compact disc (CD) was launched to enable storage of audio
contents in a digital way. Meanwhile, the CD and various successor technolo-
gies have replaced analog recording medias almost everywhere.

In this context, the invention of technologies to represent signals in a very compact
way in the digital domain based on efficient source coding algorithms has played a
fundamental role. The best known and commercially successful audio coding appli-
cation is the MPEG-1, audio layer 3 audio codec, denoted as MP3 [ISO93], which
was the basis for the development of a completely new market of internet based
music distribution and lifestyle [Bla04].
Even though this “digital revolution” may seem to be complete, indeed, certain
applications involving speech and audio are still based on analog technology since
constraints must be fulfilled which are not or only inadequately compatible with
existing digital source coding techniques. Especially low algorithmic delay, high
transmission robustness and high quality at low bit rates for all types of signals are
barely achievable simultaneously by state-of-the-art standardized speech and audio
codecs.
For this reason, a novel approach for speech and audio coding in the digital domain
is developed in this thesis that enables low algorithmic delay, achieves high quality
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for speech and audio signals at moderate bit rates, and which can be optimized
to be robust against bit errors in wireless transmission scenarios. Special focus is
drawn to theoretical analyses of the underlying principles as well as practical con-
cepts for source coding of signals with low computational complexity and memory
consumption.

1.1 Application Examples

Purely analog technology for speech and audio transmission is currently often used
for applications in which a signal is available at a sender and must be brought to a
receiver on two different transmission channels in parallel, e.g., via

• direct acoustic transmission and

• a transmission involving a transformation of the signal, a wireless radio link
and the signal reconstruction at the receiver.

A low transmission delay is crucial to guarantee that the two transmitted signals
are (at least approximately) synchronous at the receiver side. Typical application
scenarios are explained in the following.

1.1.1 Wireless Microphones in Live Concerts

The application of wireless microphones in live concerts is demonstrated by Figure
1.1. A live ensemble is playing music based on drums, a guitar, and a singer for an
audience in a large concert hall. The singer’s voice and the guitar are recorded by
a microphone, transmitted to a receiver, amplified, and finally played back through
the loudspeakers since both do not produce sufficient loudness levels. In order to
allow the singer and the guitar player to freely move on the stage, both microphones
are linked to the receiver and amplifier via a wireless transmission link. The acoustic
volume produced by the drums is high enough so that an amplification may not be
necessary. Consequently, sound signals reach the audience via two different paths,
the percussion sounds via the direct acoustic transmission path and the guitar and
voice signals via the wireless transmission link. Low transmission delay from the
microphone to the amplifier is required to combat the following problems:

• The amplified voice signal reaches the singer via the delayed microphone-to-
amplifier wireless transmission link. The singer is disturbed by his own voice
if the amplified microphone signal is returned with too much delay (Scenario
labeled by marker “1” in the Figure).

• The music quality is degraded if the music components produced by the drums
and those from the guitar/singer reach the audience asynchronously. A very
low delay is not noticeable and can be tolerated (Scenario labeled by marker
“2” in the Figure).
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Figure 1.1: Application example for state-of-the-art wireless microphones in a live concert
based on analog radio techniques (modulator and demodulator).

• The voice and the guitar signals (partly) reach the audience twice, once
through direct acoustic emission and once via the microphone-to-amplifier
wireless transmission link. If the delay difference between both signals is too
high, undesired delay or comb filter effects result (Scenario labeled by marker
“3” in the Figure).

Informal listening tests showed that a transmission delay of less than 10 ms can
approximately be tolerated. For this reason, most wireless microphones currently
available in the market are based on analog transmission systems (Frequency Mod-
ulation (FM)) or high bit rate Pulse Code Modulation (PCM) based digital trans-
mission systems. A proper setup of a larger number of analog wireless microphones
for very big concert events is often problematic due to typical analog problems such
as intermodulation artifacts. Digital PCM wireless microphone systems require a
high bit rate and therefore a high transmission bandwidth which limits the number
of microphones.

1.1.2 Wireless Audio-Link for Hearing Aids

More and more functionality has been integrated into digital hearing aids recently so
that, besides their original functionality, these devices have become sophisticated
multimedia and communication units [Pud08]. In that context, modern hearing
aids can be connected to other multimedia and communication devices via a wire-
less audio-link. This technology is exemplified in Figure 1.2 where a person wearing
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Figure 1.2: Application example for wireless audio-link in hearing aids based on analog
transmission technique.

a hearing aid with integrated wireless audio-link is connected to a TV set. Since
common digital transmission techniques such as bluetooth can not be directly inte-
grated into hearing aids due to low power consumption constraints, the audio signal
is transmitted to a remote control unit (RCU) first. In the next step, the signal is
then forwarded from the RCU to the hearing aid via an analog low-distance wireless
transmission link. Audio signals may reach the person wearing the hearing aid on a
direct acoustic path and a path involving the wireless transmission link. Therefore,
a low transmission delay is important (Scenario labeled by marker “1”). In addition
to that, a low transmission delay is crucial to ensure synchrony between the visual
content from the TV and the audio signal reaching the hearing aid (Scenario labeled
by marker “2”). This becomes even more important since two different transmission
techniques (Bluetooth and the low distance wireless audio-link) may be combined
due to the signal routing through the RCU.

In both examples, replacing the analog transmission by digital technology yields
a significantly higher transmission error robustness to overcome problems related
to analog radio technology. The transmitted audio bandwidth of a digital wireless
transmission system should be high, and the algorithmic delay of the involved digital
source coder must be low enough not to introduce a significant amount of additional
delay compared to the analog transmission system. Compared to the mentioned
PCM based digital systems, the bit rate should be as low as possible so that the
(radio) transmission bandwidth is narrow even in case of the operation of multiple
wireless transmission units in parallel. Since the mobile devices are commonly
battery powered, low computational complexity of the encoder and/or the decoder
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is an additional design target for the source coder in the digital wireless transmission
system.

1.2 Available Speech and Audio Codecs

Research on digital source coding for speech and audio signals was pushed by disjoint
groups in the past due to completely different application constraints. Consequently,
two different codec families have evolved which will be briefly described in the
following.

1.2.1 Speech Coding

The development of candidates for speech coding was mostly driven by standardiza-
tions in wireless communications for narrowband (300-3400 Hz audio bandwidth)
and wideband (50-7000 Hz audio bandwidth) speech. Aspects such as transmission
robustness, minimal transmission bandwidth (low bit rate), and low computational
complexity to enable operation in battery powered handheld mobile terminals have
been important application constraints. In addition, limitations for the allowed al-
gorithmic delay are in general specified to ensure a high conversational quality.
The latest and widest spread speech coding standards, e.g., the Enhanced Full
Rate (EFR, [ETS96]), the Adaptive Multi-rate (AMR, [ETS00] and the Adaptive
Multi-rate Wideband codec (AMR-WB, [ETS01]), are based on a model for hu-
man speech production. In order to fulfill the low delay constraints, the employed
technique is time domain based and, in particular, employs linear prediction (LP)
combined with vector quantization (VQ) following the Code-Excited Linear Predic-
tion (CELP) [SA85] approach.
Speech codecs have been standardized mainly by the International Telecommunica-
tion Union (ITU) and the European Telecommunication Standards Institute (ETSI)
or 3rd Generation Partnership Project (3GPP) in the past. In general, latest stan-
dardized low bit rate speech codecs have an algorithmic delay of round about 20 ms
and offer reasonable quality for speech signals at very low bit rates. Only specific
speech coding candidates such as the ITU-T G.711 [ITU88a], the ITU-T G.728
[ITU92], and the ITU-T G.722 [ITU88b] codec enable an algorithmic delay below
10 ms. However, these speech codecs mostly produce poor quality for audio sig-
nals due to the assumption of a speech production model, especially the candidates
operated at very low bit rates.

1.2.2 Audio Coding

Most standardized audio codecs have been developed for music archival storage.
In general, the most important aspect in audio coding is to guarantee a high or
transparent quality. Constraints regarding the involved computational complexity
have not been significant limitations since the audio encoder can be operated offline
on, e.g., a personal computer (PC) which is often connected to the public electricity
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network. Over the last years, manufacturers of mobile devices have started to inte-
grate audio decoders on mobile battery powered platforms so that the development
of low complexity decoders has been driven by market requirements. Due to the
offline nature of the encoding procedure, transmission robustness and low algorith-
mic delay were not important issues.
In audio coding, transform coding [ZN77] based on spectral transforms such as the
Modified Discrete Cosine Transform (MDCT, [PB86]) or the Fast Fourier Trans-
form (FFT), e.g., [OS92] is mostly employed in combination with perceptual models
to exploit the properties of the human auditory system. In order to achieve a suf-
ficient spectral resolution, the transform lengths are very large so that most audio
codecs have a high algorithmic delay. As the bit rate needs not to be fixed, ap-
proaches for variable bit rate coding are employed to reduce the overall average bit
rate.
Audio codecs [Bra06] have been standardized mostly by the International Organi-
zation for Standardizations (ISO) which is often referred to as the Moving Picture
Experts Group (MPEG). The most famous standardized audio codecs are the MP3
codec [ISO93] and the Advanced Audio Codec [ISO97]. A low delay variant of the
Advanced Audio Codec (AAC-LD) [ISO05] is available and adapts the audio coding
concepts for communication systems. Audio codecs offer a high quality for audio
signals at high bit rates but often are inferior compared to speech codecs for speech
signals at very low bit rates.

1.2.3 Converged Speech and Audio Coding

Recently, manufacturers push converged services in telecommunications and mul-
timedia networks. On the one hand, this keyword represents the demand to develop
new techniques for interoperability in heterogeneous networks. On the other hand,
for converged services, codecs are desired which perform well for speech and audio
signals, denoted as speech and audio convergence coding. For this reason,
novel approaches for converged speech and audio coding have been proposed in the
literature, e.g., [KKO08], [BGK+08]. Also new coding standards have been cre-
ated to combine speech and audio coding in a hierarchical concept such as the Ex-
tended Adaptive Multi-Rate Wideband Codec (AMR-WB+, [ETS05]) and the ITU-T
G.729.1 [ITU06] codec.

A selection of state-of-the-art standardized speech and audio codecs for higher au-
dio bandwidths (wideband or higher) are depicted in Figure 1.3. The overall bit
rate in kbit/sec is assigned to the x-axis, and the corresponding algorithmic delay
to the y-axis. In the area of very low algorithmic delay (less than 10 ms), only the
ITU-T G.722 audio codec is currently freely available. Besides the standardized
codecs, proprietary source coding solutions for low delay audio coding exist, e.g.
the AAC Ultra Low Delay (AAC-ULD) codec developed by the Fraunhofer Insti-
tute for Digital Media Technology [KSW+04].
Considering the achievable audio quality, to allow for a high algorithmic delay is
fundamental to reach high or even transparent quality at low bit rates (e.g., the
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Figure 1.3: State-of-the-art standardized speech and audio codecs and corresponding bit
rates and algorithmic delay.

24 kbit/sec mode of the AAC codec). Therefore, it would be unrealistic to ex-
pect that a comparable audio quality can be achieved by approaches with very low
algorithmic delay.

1.3 The New Low Delay Speech and Audio Codec

Obviously, suitable candidates for source coding of speech and audio signals with
low bit rates which have a delay below 10 ms to fulfill the constraints as defined by
the example application scenarios are currently only rarely available. Those stan-
dardized codecs which have a low algorithmic delay, e.g., the ITU-T G.722 codec
at data rates of 48, 56, and 64 kbit/sec, produce poor quality, especially for audio
signals.
For this reason, new techniques for low delay speech and audio coding are presented
in this thesis. The rough idea of the underlying concept is the following: In order
to reach the desired low algorithmic delay, the time domain concept as known from
speech coding is followed. Same quality for speech and audio signals is achieved
by not allowing any components related to the specific characteristics of speech,
e.g., no exploitation of long-term prediction to model the speakers instantaneous
pitch period as commonly used in speech coding. In return, the bit rate is slightly
increased by employing a new type of vector quantization to achieve a higher sub-
jective quality for all types of signals. Correlation within the signal to be encoded
is exploited by means of combined linear prediction and quantization. In that con-
text, linear prediction must be viewed as a compact representation of the signals
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spectral envelopes rather than a method to identify vocal tract parameters as often
motivated in speech coding, e.g., [VM06].

1.4 Structure of the Thesis

In this thesis, general theoretical analyses and practical concepts for low delay au-
dio coding are presented along with a concrete proposal of two new low delay audio
codecs. The remainder of this thesis is divided into six chapters. In the first two
chapters, theoretical results from rate distortion theory and high rate (asymptotic)
quantization theory are briefly summarized: Rate distortion theory is reviewed in
Chapter 2 and provides general bounds on the maximum achievable performance
in quantization. In particular the reverse waterfilling procedure for rate distortion
optimal quantization of correlated sources is described and will be of high impor-
tance in later chapters. The theory of quantization with fixed and variable rate
scalar and fixed rate vector quantizers is discussed in Chapter 3. It is concluded
that variable bit rate concepts are not suitable for the target applications and fixed
rate vector quantization is the most promising approach that clearly outperforms
fixed rate scalar quantization.
In Chapter 4, the concept of Logarithmic Spherical Vector Quantization (LSVQ),
a specific type of gain-shape vector quantizer, is introduced. LSVQ is the direct
consequence of the application of the high rate asymptotic vector quantization the-
ory to approximate the optimal normalized codevector density for the Gaussian
distribution as a worst case assumption for the distribution of samples in the con-
text of audio signals. It will be shown qualitatively that the signal-to-noise ratio
(SNR) achieved by LSVQ is approximately independent from the input signal distri-
bution. A detailed theoretical analysis yields novel (quantitative) lower bounds for
the achievable quantization distortion. The theoretical analysis of LSVQ is followed
by the proposal of three different practical LSVQ concepts. Due to the develop-
ment of novel approaches for nearest neighbor quantization, these concepts can be
realized with very low computational complexity and memory consumption to be
well applicable in practical applications. The chapter concludes with a comparison
of the SNR measured for the three proposed LSVQ concepts and the theoretical
results.
In Chapter 5, LSVQ is combined with linear prediction. Even though combined
linear prediction and quantization is principally well-known from speech coding,
new aspects are investigated which are of high relevance for the coding of audio sig-
nals with low algorithmic delay. In particular, novel theoretical results are derived
which, in contrast to the high rate theory of linear predictive coding well-known
from the literature, are valid also for lower bit rates. A conclusion drawn from the
new theory is that linear predictive quantization with feedback of the quantization
error can become instable. A new optimization criterion for the block adaptive
computation of the filter coefficients involved in closed-loop linear predictive cod-
ing is derived which is shown to be the approximation of the reverse waterfilling
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principle known from rate distortion theory.
In Chapter 6, the concepts and theoretical investigations from the previous chap-
ters form the basis for the derivation of two new and very flexible low delay audio
codecs, denoted as the Spherical Code-Excited Linear Prediction (SCELP) and the
Warped Spherical Code-Excited Linear Prediction (W-SCELP) codec. In order to
develop the SCELP codec, the concept of combined LSVQ and linear prediction is
optimized in terms of the computational complexity. Based on measurements of
signal-to-noise ratios, it is shown that by exploiting the properties of one specific
among the proposed LSVQ concepts a huge reduction of computational complexity
can be achieved while the quality is only marginally decreased. The W-SCELP
codec is the extension of the SCELP codec and employs frequency warped linear
prediction (WLP) to account for the properties of the human auditory system.
Therefore it achieves a higher perceived quality especially for audio signals.
Measurements of the computational complexity of fixed point implementations of
the proposed codecs show that both codecs can be operated with moderate com-
plexity. Quality assessments with objective quality measures document that the
new codecs significantly outperform standardized codecs with a comparable delay
and bit rate, e.g., the ITU-T G.722 codec, in terms of a higher subjective quality
for speech and particularly audio signals.

Parts of the results of this thesis are presented in the following references published
by the author: [GKL+09, KGV08, KJLV09, KLEV03, Krü09, KSE+09, KSGV08,
KV02, KSV06, KV05, KV06a, KV06b, KV07a, KV07b, KV08a, KV08b, KV08c,
SKV09]. These references are highlighted by underlines in the following, i.e., [ ].
Note that this thesis is accompanied by a supplement document [Krü09] to provide
interested readers with additional and very detailed information on selected topics.
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Rate Distortion Theory
A vast number of source coding algorithms targeting the lossy compression of digital
signals have been proposed in the literature. The goal of all these algorithms is to
achieve a high bit rate reduction while retaining a high perceptual quality. Always,
the choice of the employed technology is highly influenced by application specific
constraints such as, e.g., type of source signal, allowed coding delay, or available
data rate. Even though in some source coding algorithms well hidden behind a
lot of pre- and postprocessing, the common key component with a direct impact
on bit rate and quality in lossy source coding is the quantizer. A proper design is
very important as a suboptimally designed quantizer is a burden that can never be
compensated by any additional signal processing.
In the design of a new quantizer, it is very useful to know the maximum theoreti-
cally achievable quantization performance. A very general approach to provide this
information was given by the “Mathematical Theory of Communication” [Sha48]
and, specifically, the Rate Distortion Theory (RDT).
The RDT provides bounds which will be presented in this section. In the remainder
of this thesis, these bounds will often be referred to, e.g., for consistency checks of
practical results, or for the assessment of different practical approaches for quanti-
zation. In addition to that, even though it does not exactly specify how to design
a quantizer that has optimum performance, helpful guidelines can be learned from
RDT that will be of high benefit in the following chapters.

2.1 Definition of the Rate Distortion Function

The RDT was developed principally to extend information theory to sources with
continuous amplitudes. Numerous publications exist, e.g., [CT91], [Ber71], and
[Yeu02]. The problem addressed by the RDT is illustrated in Figure 2.1.
Given is a set of N continuous independent and identically distributed (i.i.d.) ran-
dom variables (random process)

X :=
[

X0 X1 · · · XN−1

]T
(2.1)
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Figure 2.1: Quantization of sets of continuous random variables, X.

(with variances σ2
0 = σ2

1 = · · · = σ2
N−1 = σ2 and zero mean). The quantizer Q

outputs a set of output random variables

X̃ :=
[

X̃0 X̃1 · · · X̃N−1

]T
. (2.2)

The output variables are a finite representation of the input random variables and
therefore have discrete amplitudes. The quantizer Q is defined as the mapping of
the (infinite) input alphabet X related to the random input variables X to the finite
output alphabet X̃ related to the output variables X̃,

Q : X → X̃ . (2.3)

The input random variables are characterized by the (multivariate) probability den-
sity function (PDF)

p(x) := pX(x). (2.4)

In analogy to this, the set (realization of the random process) of discrete valued
output variables is related to the (multivariate) probability mass function (PMF)

q(x̃) := p
X̃

(x̃). (2.5)

2.1.1 Definition of a Quantization Cost Function

For an error-free representation of the continuous input random variables by the
discrete output variables, an infinite number of representations and hence, if ex-
pressed in binary digits (bits), infinite bit rate would be necessary. Given only
a finite number of representations, distortion d is introduced to rate the cost for
representing a single event of a set of random variables, given as symbol x =
[

x0 x1 · · · xN−1

]T ∈ X , by a representative x̃ =
[

x̃0 x̃1 · · · x̃N−1

]T ∈ X̃ ,

d(x, x̃) =
1

N

N−1
∑

i=0

d(xi, x̃i). (2.6)

The quantization cost for a single event of a set of N random variables is hence the
average of the cost for each vector component based on the scalar distortion measure
d(x, x̃). Several distortion measures have been investigated in the literature, for
example the Hamming criterion [CT91], the magnitude error criterion [Ber71], and
the squared error criterion [Ber71]. In most cases and also in the remainder of this
thesis, rate distortion results are based on the squared error criterion

d(xi, x̃i) = (xi − x̃i)
2. (2.7)



12 2 Rate Distortion Theory

Considering the mapping of input to output variables, it is assumed that, given one
event related to the set of the input random variables, the quantizer Q outputs that
representation which minimizes the cost function (2.6).
Each quantizer Q has a fixed mapping of input variables to output variables and is
characterized by the expectation of the quantization cost function,

D := E{d(x, x̃)} =
∑

x̃∈X̃

∫

x∈X

p
X,X̃(x, x̃) · d(x, x̃)dx. (2.8)

This expectation value is a function of the joint PDF for input and output variables,
which can be expressed in terms of the input PDF p(x) and the conditional PDF
pQ(x̃|x) which depends on quantizer Q,

p(x, x̃) := p
X,X̃(x, x̃) = p(x) · pQ(x̃|x) (2.9)

In the case of the squared error criterion for the distortion (2.7), the expectation of
the cost function is denoted as the mean squared error (MSE).

2.1.2 Definition of the Information Rate
The information output rate of a quantizer is the mutual information (MI), defined,
e.g., in [Ber71] as follows:

I(X; X̃) = h(X)− h(X|X̃). (2.10)

This mutual information is a function of the differential entropy related to the PDF
of the set of input random variables with continuous amplitudes and the conditional
differential entropy related to the conditional PDF pQ(x̃|x) which characterizes
the quantizer. The differential entropy for a given amplitude continuous random
variable and the corresponding PDF p(x) is defined as

h(X) = −
∫

x∈X

p(x) · log2(p(x))dx. (2.11)

Differential entropies are used here because both, p(x) and pQ(x̃|x) are related to
random variables with continuous amplitudes. The logarithm in (2.11) is to the
base of two so that all information rates are specified as bit rates rather than in
nats which is also very common in the literature.
The mutual information can be expressed as the Kullback-Leibler distance as [CT91]

I(X; X̃) =
∑

x̃∈X̃

∫

x∈X

p(x) · pQ(x̃|x) · log2
pQ(x̃|x)

q(x̃)
dx. (2.12)

In this equation, the mutual information is a function of the source distribution
p(x), the mapping function or conditional PDF pQ(x̃|x) which characterizes the
quantizer, and the probability mass function q(x̃) from (2.5). In the context of
quantization, the mutual information is the expectation value of the number of bits
(the bit rate) required to represent vectors x by the quantized representations x̃
given a fixed source distribution (p(x)) and quantizer (pQ(x̃|x)).
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2.1.3 The Rate Distortion Function (RDF)

So far, nothing has been said about the quantization cost which is also a function of
the quantizer and hence the conditional PDF pQ(x̃|x). An efficient quantizer is one
that operates with a low bit rate and retains the expectation of the quantizer cost
function as low as possible. These constraints, however, are contradictory according
to (2.8) and (2.12) which shall be illustrated by the following observations:

• The quantization performance can be increased by allowing a larger number
of representatives in the output alphabet. In this case, the expectation of
the cost function (2.8) decreases. At the same time, with a higher number of
representatives, naturally the average bit rate is increased.

• The average bit rate of the quantizer can be decreased by reducing the number
of representatives. At the same time, with a lower number of representatives,
the expectation of the quantizer cost function is of course increased.

In the design of the most efficient quantizer, the mapping function pQ(x̃|x) must
hence be chosen such that the best cost-bit-rate-balance is achieved. This is
demonstrated by Figure 2.2. A plane spanned by the quantization cost function
D on the x- and the MI (and hence bit rate) on the y-axis is shown qualitatively.
For a given distribution of the input random variables, different quantizers are
represented by different points of operation, characterized by a pair of MI and D.
In the Figure, example quantizers are shown as Q1, Q2 and Q3. All these quantizers
are located in the rate distortion region, painted in gray color. Given a fixed allowed
maximum distortion D, among all quantizers, there will be one with a minimum
information rate. The corresponding point of operation is located on the edge of the
rate distortion region and defines one point of the rate distortion function R(D).
In a mathematical sense, the point of operation at which this quantizer is located
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is defined as the minimum achievable mutual information (necessary average bit
rate), given the side constraint that a maximum distortion D is not exceeded,

R(D) = min
p(x|x̃):

∑∫
p(x)·pQ(x̃|x)·d(x,x̃)dx≤D

I(X; X̃). (2.13)

R(D) is nonnegative, monotonic decreasing and convex [Ber71].

2.1.4 The Distortion Rate Function (DRF)

The definition of the rate distortion function for a given input random variable was
based on the minimum information rate for a fixed distortion D. An optimization
the other way around is also possible: Given a specific information rate R, among
all quantizers the cost function D(R) is minimal for one specific quantizer. The
corresponding pair of rate and minimal distortion defines one point of the distortion
rate function. Due to the properties of the rate distortion function, the distortion
rate function can be calculated by inverting R(D).

2.2 Calculation of the Rate Distortion Function

The rate distortion function can only be calculated explicitly in very specific cases.
In particular, in case of the squared error distortion criterion (2.7), it is possible to
calculate the rate distortion function for an i.i.d. Gaussian random variable X with
zero-mean, variance σ2, and with PDF

pX(x) = N (x, 0,σ2) =
1√

2πσ2
· exp

−x2

2σ2
. (2.14)

The rate distortion function is

RG(D) =

{
1
2 log2

σ2

D , 0 ≤ D < σ2

0 , D ≥ σ2
(2.15)

and is shown in Figure 2.3 a) for σ2 = 1.
The distortion rate function is determined by inverting equation (2.15). Instead of
calculating the distortion D(R) (MSE), it is often useful to consider the normalized
distortion D(R) = D(R)/σ2, the normalized logarithmic distortion in dB,

D(R)|dB = 10 · log10(D(R)) = 10 · log10(D(R)/σ2), (2.16)

or the logarithmic signal-to-noise ratio (SNR) in dB,

SNR(R)|dB = 10·log10(E{X2}/D(R)) = 10·log10(σ2/D(R)) = −D(R)|dB. (2.17)
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Figure 2.3: Rate distortion function and respective SNR over bit rate for an i.i.d. Gaus-
sian random variable. The logarithmic SNR in b) is calculated from the distortion rate
function according to (2.17).

The specification of the logarithmic SNR is a common practice in quantization and
will often be used in the remainder of this thesis.
For the Gaussian random variable, the logarithmic SNR is

SNRG(R)|dB = 10 · log10(22·R) ≈ 6.02 · R. (2.18)

This result is often referred to as the 6-dB-per-bit rule and states that for each addi-
tional bit spent for quantization, the logarithmic SNR is increased by approximately
6 dB. The logarithmic SNR in dB according to the rate distortion function for a
Gaussian input variable is shown in Figure 2.3 b). We will refer to the 6-dB-per-bit
rule as the asymptotic quantization performance in various situations in this thesis.

2.2.1 Rate Distortion Bounds

For random variables with other distributions than the Gaussian, the rate distor-
tion function can not be explicitly calculated. The Shannon Lower Bound (SLB)
RSLB(D), however, lowerbounds the rate distortion function R(D) for arbitrary
distributions. The derivation of this function is based on the fact that, given a
fixed signal variance, the maximum differential entropy is generally attained for a
Gaussian PDF [Ber71]. Taking advantage of this fact, a lower bound for the mu-
tual information (2.10) can be calculated for a given PDF p(x) and the respective
differential entropy h(X) as

R(D) = min
p(x|x̃):

∑∫
p(x)·pQ(x̃|x)·d(x,x̃)dx≤D

I(X; X̃) (2.19)

≥ h(X)− max
p(x|x̃):

∑∫
p(x)·pQ(x̃|x)·d(x,x̃)dx≤D

h(X|X̃). (2.20)
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For the computation of the Shannon Lower Bound, the second part of this equation
is upper bounded by the conditional differential entropy h(D) of a random variable
with variance D which is assumed to be Gaussian distributed, hence

RSLB(D) = h(X)− h(D) ≤ R(D). (2.21)

In analogy to this, also an upper bound for the rate distortion function is given
implicitly by (2.15),

R(D) = min
p(x|x̃):

∑∫
p(x)·pQ(x̃|x)·d(x,x̃)dx≤D

I(X; X̃) ≤ RG(D). (2.22)

The rate distortion function R(D) for a given PDF and respective differential en-
tropy h(X) is hence bounded by (2.21) and (2.22).

RSLB(D) ≤ R(D) ≤ RG(D). (2.23)

The Shannon Lower Bound can also be transformed into the distortion rate function
by inversion of (2.21),

DSLB(R)|h(X) = 22·(h(X)−R). (2.24)

The distortion rate function for a Gaussian variable in relation to the SLB for a
random variable with arbitrary distribution is defined as

∆D,X|dB = 10 · log10(
DG(R)

DSLB(R)|h(X)
) = 10 · log10(

1
2 · log2(2πeσ2)

h(X)
) (2.25)

and given for different PDFs in the literature, e.g., [Erd04].

2.2.2 Approximation by Blahuts Method

The Shannon Lower Bound defines only the asymptotic behavior of the rate distor-
tion function for large values of R. A way to calculate the rate distortion function
also for low information rates was proposed in [Bla72], [Ari72], and [Csi74] and
is known as Blahuts Method. Results for the approximation of the rate distortion
function based on Blahuts Method were shown in [NZ78] also for signals with non-
Gaussian distribution.
According to Blahuts Method, the solution of the problem in (2.13) can be found by
constructing isolated function values of the rate distortion curve following an itera-
tive approach. The function values are found for different values of the parameter
s which is the gradient of the rate distortion curve. A unique result is guaranteed
because the rate distortion function is convex.
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2.3 Rate Distortion Function for Stationary
Correlated Gaussian Sources

For the calculation of the rate distortion function for correlated sources (intraframe
correlation), a set of N independent continuous random variables with different
variances

σ2
i (= σ2

j ∀ i (= j, i, j ∈ {0, . . . , N − 1} (2.26)

is considered at first which produces events of vectors x being subject to quanti-
zation. In order to explicitly calculate the rate distortion function, it is assumed
that the random variables have Gaussian distribution.
For each of the N random variables Xi, the individual information rate is Ri and
the quantizer cost function Di. Since in quantization, often an effective bit rate per
sample rather than the bit rate per vector is specified (e.g. in (3.37)), the average
information rate and distortion per vector coordinate shall be computed as
the mean over all random variables in the following,

R̄ =
1

N
·

N−1
∑

i=0

Ri (2.27)

D̄ =
1

N

N−1
∑

i=0

Di. (2.28)

According to the optimization procedure described in, e.g., [CT91], a new variable
D0 is introduced and the distortion for each random variable is

Di =

{

D0 , if D0 < σ2
i

σ2
i , if D0 ≥ σ2

i

. (2.29)

The corresponding information rate can be calculated in analogy to 2.15 as

Ri =







1
2 · log2(

σ2
i

D0
) , if D0 < σ2

i

0 , if D0 ≥ σ2
i

. (2.30)

Both equations define that the individual bit rates are setup such that the same
quantization distortion is introduced for all random variables except for those for
which the introduced quantization distortion would be greater than the variance
of the random variable. In the latter case, no bits are reserved for the quantiza-
tion of the individual random variable. The described procedure is called reverse
waterfilling [CT91]. Similar to Blahuts Method, the rate distortion curve can be
constructed pointwise based on pairs of R and D which are computed for the slope
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s of the rate distortion curve. According to [Ber71], D0 is computed for a given
value of s as

D0 = − 1

2s
. (2.31)

Consequently, the average distortion is

D̄ =
1

N

N−1
∑

i=0

min(D0,σ2
i ), (2.32)

and the corresponding information rate in bits is

R̄(D̄) =
1

N

N−1
∑

i=0

max(0,
1

2
log2(

σ2
i

D0
)). (2.33)

R̄(D̄) is a function of D̄ since D0 in (2.33) can be expressed as a function of D̄ on
the basis of (2.32).

2.3.1 Asymptotic Behavior for High Bit Rates

For high bit rates, it can be assumed that min(D0,σ2
i ) = D0 for all i. In this case,

the rate distortion function is

R̄(D̄) =
1

2N
·

N−1
∑

i=0

log2(
σ2

i

D0
), (2.34)

and the distortion is

D̄ = D0. (2.35)

With (2.35) and the inversion of equation (2.34) to compute D̄(R̄) as well as the
mean of the variances of all independent random variables,

σ2 =
1

N

(N−1)
∑

i=0

σ2
i , (2.36)

the asymptotic SNR for high bit rates in dB is derived as

SNR(R̄)|dB = 10 · log10

(
σ2

D̄(R̄)

)

= 10 · log10

( 1
N

∑(N−1)
i=0 σ2

i

(
∏N−1

i=0 σ2
i )

1
N · 2−2R̄

)

= 10 · log10

( 1
N

∑N−1
i=0 σ2

i

exp( 1
N

∑N−1
i=0 ln(σ2

i ))

)

+ 6.02 · R̄. (2.37)
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2.3.2 Decorrelation by Singular Value Decomposition
(SVD)

The case of N independent random variables with different variances can be
adapted for the case of a set of N dependent random variables if the following
constraints are fulfilled:

• The cross correlation function (CCF) of two random variables with index i
and j from the overall set is

ϕXi,Xj
= E{Xi · Xj}. (2.38)

• Considering two pairs of random variables from the overall set with index i0

and j0 = i0 + ∆i for the one and i1 and j1 = i1 + ∆i for the other pair with
i0 (= i1, the cross correlation function is only a function of |∆i|:

ϕX,X(|∆i|) := ϕXi0
,Xj0

= ϕXi1
,Xj1

∀ i0, i1,∆i. (2.39)

These constraints are fulfilled for, e.g., ergodic sequences Xt related to a station-
ary correlated Gaussian variable with zero mean, recorded at equidistant time
intervals t = T0, T1, · · · so that the set of random variables is defined as X =
[

Xt=T0 Xt=T1 · · · Xt=TN−1

]T
[Ber71]. The corresponding multivariate PDF

is

pX(x) = N (x; 0,ΦX) =
1

(2π)N/2
· 1
√

det(ΦX)
· exp(−1

2
x ·Φ−1

X
· xT ) (2.40)

with the covariance matrix

ΦX =







ϕX,X(0) ϕX,X(1) · · · ϕX,X(N − 1)
ϕX,X(1) ϕX,X(0) · · · ϕX,X(N − 2)

· · · . . . · · · · · ·
ϕX,X(N − 1) ϕX,X(N − 2) · · · ϕX,X(0)







(2.41)

composed of the autocorrelation function (ACF) values ϕX,X(i). The term det(ΦX)
refers to the determinant of the covariance matrix ΦX.
In [Ber71] it is shown that ΦX is a symmetric Toeplitz matrix if the constraints
specified earlier are fulfilled [GS58]. Another matrix

ΓX =
[

xe0 xe1 · · · xeN−1

]

(2.42)

can be calculated for a given matrix ΦX that is composed of the N orthogonal
Eigenvectors xei

. Based on ΓX, ΦX can be decomposed by means of a Singular
Value Decomposition (SVD) as proposed in the context of the Karhunen Loeve
Transform (KLT)[Kar47] according to

ΦX = ΓX ·ΛX · ΓT
X, (2.43)
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to produce the diagonal matrix ΛX which is composed of the Eigenvalues λX,i,

ΛX =







λX,0 0 · · · 0
0 λX,1 · · · 0

· · · · · · · · · · · ·
0 0 · · · λX,N−1







. (2.44)

Due to the diagonalization of matrix ΦX, the problem related to a set of dependent
Gaussian random variables has been transformed into a problem related to a set of
N independent random variables with different variances in the coordinate system
of the principal axes (Eigenvectors xei

). The Eigenvalues λX,i are the equivalent
of the different squared variances of the independent random variables. In analogy
to (2.37), the asymptotic SNR for high bit rates for a set of dependent Gaussian
random variables is hence

SNR(R̄)|dB = 10 · log10(
1
N

∑N−1
i=0 λX,i

exp( 1
N

∑N−1
i=0 ln(λX,i))

) + 6.02 · R̄ (2.45)

An example that well illustrates the diagonalization of an example covariance matrix
is shown in Section 3.2.1.3 for the PDF related to a two-dimensional correlated
Gaussian random variable.

2.3.3 Toeplitz Distribution Theorem

Given an ergodic sequence originating from a stationary Gaussian random variable
X, it was shown in [GS58] that

lim
N→∞

1

N

N−1
∑

k=0

G(λX,k) =
1

2π

π∫

−π

G(φX(Ω))dΩ (2.46)

with G being an arbitrary continuous function, the Eigenvalues λX,i of the covari-
ance matrix ΦX, and the power spectral density (PSD), e.g., [VM06],

φX(Ω) =
∞
∑

k=−∞

ϕX,X(k) · exp(−jkΩ) (2.47)

computed from the autocorrelation function (ACF) for variable Xt. With respect
to the reverse waterfilling (2.32 and 2.33), the average distortion and rate can be
computed from the PSD as

D̄ =
1

2π
·

π∫

−π

min(D0,φX(Ω))dΩ (2.48)
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and

R̄(D̄) =
1

4π
·

π∫

−π

max(0, log2(
φX(Ω)

D0
)dΩ, (2.49)

respectively. The SNR related to the asymptotic rate distortion function for a
correlated Gaussian source can be hence calculated from the PSD as

SNR(R̄)|dB = 10 · log10(

1
2π ·

π∫

−π
φX(Ω)dΩ

exp( 1
2π

π∫

−π
ln(φX(Ω))dΩ

) + 6.02 · R̄. (2.50)

for high bit rates and as the limit for N → ∞ (2.46). In anticipation of Section
5.2.4.2, the first part of (2.50) is equal to the spectral flatness measure (SFM) given
in (5.67).

2.3.4 Example SNR Plot for Correlated Gaussian Sources

In Figure 2.4, example plots for the SNR according to the rate distortion function
for correlated Gaussian sources are depicted for three different covariance matrices
and hence Eigenvalues as the solid line with circle markers, the dashed line with
square markers, and the dotted line with triangle markers. The matrices ΛX,a,
ΛX,b, and ΛX,c for the examples have been constructed such that the asymptotic
SNR for high bit rates is the same in all cases while the behavior for lower bit rates
is significantly different due to different reverse waterfilling characteristics. Pairs
of rate and distortion have been computed for a number of values for parameter
s according to Section 2.3 with the Eigenvalues as the variances in (2.32) and
(2.33). In addition to the mentioned curves, the SNR related to the rate distortion
function for an uncorrelated Gaussian i.i.d. random variable (ΛX = E) is shown.
The asymptotic difference between RDT for correlated and uncorrelated Gaussian
sources for high bit rates is

∆SNR|dB = 10 · log10(
1
N

∑N−1
i=0 λX,i

exp( 1
N

∑N−1
i=0 ln(λX,i))

) = 10 dB (2.51)

for ΛX,a, ΛX,b, and ΛX,c.
It will be shown in later chapters of the thesis that ∆SNR is identical to the (asymp-
totic) memory advantage in vector quantization and the (asymptotic) maximum
prediction gain in linear predictive coding which will be introduced in Section 3
and 5, respectively.
Bit rates at which the reverse waterfilling has an impact on the performance are
those where the SNR plots deviate from the (linear) continuation of the asymptotic
RDT curve for high bit rates (gray line with label SNRhr), e.g., R̄low,ΛX,a

in Figure
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Figure 2.4: SNR curves related to the rate distortion function for correlated Gaussian
sources (different covariance and hence Eigenvalue matrices ΛX,i as listed in Appendix
B.2 to demonstrate different reverse waterfilling behaviors).

2.4. Accordingly, a new definition of “low bit rate areas” and “high bit rate areas”
can be derived which we will refer to in Section 5.2.5.3. From the plots it is obvious
that this new definition of high and low bit rate areas depends strongly on the
signal, e.g.,

Rlow,ΛX,a
≈ 0.8 bits and Rlow,ΛX,c

≈ 5 bits. (2.52)

Especially the low bit rate areas will be subject of additional theoretical investi-
gations in Section 5.2.6.1 and 5.2.6.2. As a conclusion of these investigations, a
new solution to realize the reverse waterfilling in combined linear prediction and
quantization will be derived in Section 5.
The Eigenvalue matrices for the three example curves, ΛX,a, ΛX,b, and ΛX,c are
listed in detail in Appendix B.2.
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Quantization

In the previous chapter, results from the rate distortion theory were reviewed.
Bounds on the maximum theoretically achievable quantization performance were
discussed which will be helpful in the assessment of approaches for quantization in
practice. Nevertheless, rate distortion theory refuses to present practical recipes
how to approach the given bounds, not least because all bounds are based on the
(unrealistic) assumption of infinite block lengths.
In this chapter, quantization will be investigated from a practical point of view,
in the literature denoted as asymptotic quantization theory. Different quantiza-
tion schemes will be investigated, and the corresponding operational rate distortion
functions will be put in relation to the results from rate distortion theory. Various
text books and other publications have been written on quantization, e.g., [Neu96],
[JN84], [Abu90], and [GR92]. A very good overview on all aspects of quantization
is given in [GN98].
This thesis addresses the problem of quantization of audio signals (audio coding).
In most practical applications, audio coding is done purely in the digital domain
since the analog input signal has already been transformed into a high precision
digital representation with a large number of bits in the analog-to-digital converter
(ADC). Quantization in this context should be considered a requantization opera-
tion to find a representation of the digital signal with a lower number of bits rather
than an analog-to-digital conversion. The representation produced by the ADC
nowadays, however, is of such high precision in practice (e.g. 24 or 32 bits) that the
digital signals can be treated as signals with continuous amplitudes. Nevertheless,
due to the preceding ADC, the signal amplitudes are guaranteed to be of limited
amplitude so that quantization overload effects, if happening, can not be influenced
by the digital audio codec in most cases and will not be considered here.
In the first part of this chapter, the principles of scalar quantization (SQ) will be
briefly reviewed. It will be distinguished between fixed and variable rate coding.
The performance achievable by the proposed scalar quantizers will be presented for
uncorrelated (also referred to as memoryless) signals only, approaches to exploit
the correlation immanent to a signal with memory will be subject of Chapter 5.



24 3 Quantization
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Figure 3.1: Scalar (uniform) quantization of amplitude continuous signal x(k).

In the second part of this chapter, the results for SQ will be generalized for vector
quantization (VQ). It will be shown that VQ has advantages compared to SQ and
asymptotically reaches the rate distortion function for infinite dimensions. The ba-
sis for all calculations of quantization performances in this chapter are statistical
processes and random variables. In order to be applicable also for sequences of
signal amplitudes (and hence audio signals), it is assumed that all signals to be
quantized are stationary and ergodic.

3.1 Scalar Quantization (SQ)

In scalar quantization (SQ), at a given time index k, an input signal x := x(k) ∈ X
is mapped to an output signal x̃ := x̃(k) ∈ X̃ . The input alphabet X is a (quasi)
infinite set of signal samples with (quasi) continuous amplitudes, whereas the output
alphabet X̃ is a finite set of signal samples with discrete amplitude. The principle is
shown on the left side in Figure 3.1. In order to be precise, note that the SQ is part
of the encoder and outputs an index iQ which is transformed into the reconstructed
value x̃ = x̃iQ

taken from X̃ in the decoder. For the sake of simplicity, however,
quantizer, index mapping, and value reconstruction will be considered as one unique
entity and can be described as

Q : x +→ x̃. (3.1)

A scalar quantizer is characterized by its (NQ + 1) quantizer interval bounds
(xb,−1, xb,0, . . . , xb,NQ−1) and the NQ quantizer amplitude reconstruction levels x̃i ∈
X̃ with i = 0, . . . , (NQ− 1). Each quantization interval Csq,i is defined as the space
between neighboring interval bounds,

Csq,i := {x ∈ R : xb,i−1 ≤ x < xb,i} (3.2)

with the corresponding quantization reconstruction level x̃i to be commonly located
inside the interval. An example curve to map the input signal to the output signal
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for a uniform scalar quantizer is shown on the right side of Figure 3.1. Assuming an
unbounded input signal x(k), the outer most quantization cells are also unbounded,
xb,−1 = −∞ and xb,(NQ−1) =∞. The unbounded cells are related to the quantiza-
tion overload. All other cells comprise the so-called support region of the quantizer.
Given the PDF p(x) := px(x) related to input signal x, the expectation of the
quantization cost function or distortion is

D(x, Q(x)) = E{d(x, Q(x))} =

NQ−1
∑

i=0

∫

Csq,i

d(x, x̃i) · p(x)dx (3.3)

=

NQ−1
∑

i=0

∫

Csq,i

(x− x̃i)
2 · p(x)dx (3.4)

with the squared error criterion known from (2.7).

3.1.1 Fixed Rate SQ

In fixed rate SQ, given NQ quantization reconstruction levels, the bit rate of Rfr =
log2(NQ) bits is constant for all times k. In the history of quantization, the target
in the design of fixed rate SQ was mainly to reduce the quantization distortion for
a specific distribution of the input signal, PDF p(x), and a fixed value Rfr.

3.1.1.1 Uniform SQ

In Uniform Quantization, the range of quasi continuous amplitudes of the input
signal is subdivided into NQ intervals of equal size

∆u =
2xmax

NQ
(3.5)

For a sufficiently large number NQ, the input signal is assumed to be uniformly
distributed within each quantization interval. Also, the distribution of signal x(k)
is assumed to be symmetric and limited by −xmax ≤ x ≤ xmax (overload effects
are neglected). The quantization reconstruction levels are located in the center
of gravity with respect to the signal PDF within each interval and therefore the
interval mid-points,

x̃i =
xb,i − xb,i−1

2
∀ i = 0, . . . , (NQ − 1). (3.6)

The introduced quantization distortion is

D(x, Q(x)) ∼=
∆2

u

12
(3.7)



26 3 Quantization
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Figure 3.2: Non-Uniform SQ based on compression function G(x) and uniform scalar
quantizer Q.

[Ben48][VM06][JN84]. Correspondingly, the SNR is

SNRsq,u =
E{x2}

E{(x−Q(x))2}
∼= 12 · E{x2}

∆2
u

(3.8)

Writing ∆u as a function of the bit rate Rfr, the logarithmic SNR in decibel is

SNRsq,u(R)|dB
∼= 10 · log10(3 · E{x2}

x2
max

)

︸ ︷︷ ︸

∆SNR,u|dB

+6.02 · Rfr. (3.9)

The second part of this equation is in accordance to the 6-db-per-bit rule from
(2.18), and the first part is a constant offset ∆SNR,u which depends on the PDF
of the input signal. Example PDF types and corresponding constants for uniform
quantization are, e.g., given in [JN84].

3.1.1.2 Non-Uniform SQ

In non-uniform SQ, the quantization intervals Csq,i are no longer of equal size. One
way to realize a non-uniform quantizer resolution is to use a non-linear compression
function G(x) in the first and to uniformly quantize the compressed output in the
second step as shown in Figure 3.2. The reconstructed signal is x̃ = G−1(Q(G(x)))
with G−1(x̃′) as the inverse of G(x) so that G−1(G(x)) = x. With the derivative of

the compressor function, G′(x) = dG(x)
dx , it is shown in [Ben48] that for large values

of NQ, the quantization distortion is

D(x, Q(x)) ∼=
∆2

u

12

xmax∫

−xmax

p(x)

(G′(x))2
dx (3.10)

(Bennett’s Integral) with ∆u related to the uniform quantizer (3.5). The derivative
of the compressor function can also be interpreted in the context of a quantization
reconstruction level density:
Given the constant normalized point density of the uniform quantizer Q with respect
to signal x′ as

λ0(x′) =
1

2 · x′
max

= const, (3.11)
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due to the compressor function the point density with respect to signal x is

λ1(x) = G′(x) · 1

2 · x′
max

. (3.12)

(3.10) can hence be written as

D(x, Q(x)) ≈ 1

12

1

N2
Q

xmax∫

−xmax

p(x)

(λ1(x))2
dx (3.13)

3.1.1.3 Optimal Non-Uniform SQ

For the assumption of high bit rates, given the PDF of the input signal as p(x), the
normalized point density function λ(x) which is optimal in the sense to minimize
the quantizer distortion [PD51] is

λ(x) =
(p(x))1/3

xmax∫

−xmax

(p(y))1/3dy
. (3.14)

Combining this result with (3.13) yields the Panter and Dite Formula

D(Rfr) ∼=
1

12

( xmax∫

−xmax

(p(x))1/3dx

)3

· 2−2·Rfr (3.15)

Writing this as the logarithmic SNR in decibel yields

SNRsq,nu(Rfr)|dB
∼= 10 · log10

(

12 · E{x2}
(

xmax∫

−xmax

p1/3(x)dx

)3

)

︸ ︷︷ ︸

∆SNR,nu|dB

+6.02 · Rfr (3.16)

Again, besides the 6-db-per-bit rule a constant offset ∆SNR,nu is identified which
is a function of the PDF of the input signal. Values for this offset for Gamma,
Laplacian, Gaussian, and uniform distributions are, e.g., presented in [JN84]. The
constant offset for a Gaussian distributed random variable is

∆SNR,nu,G|dB = 10 · log10(
12

6π
√

3
) = −4.34dB. (3.17)
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3.1.1.4 Lloyd-Max Quantization (LMQ)

So far, the results for non uniform SQ were based on the assumption of high bit
rates. For the case of lower bit rates, an iterative optimization procedure to con-
struct scalar non uniform quantizers has been proposed in [Llo82] and [Max60],
nowadays referred to as the Lloyd-Max Quantizer (LMQ). In the iterative opti-
mization procedure, quantizer threshold values and reconstruction levels are itera-
tively constructed to finally produce a quantizer which is locally or globally opti-
mal. In [JN84], threshold values and reconstruction levels are given for bit rates of
Rfr = 1, 2, 3, 4 bits for Gamma, Laplacian, Gaussian, and uniform distributed ran-
dom variables. An important result related to both, the high rate PDF optimized
SQ and the LMQ, is that

• the optimal positions of the quantizer reconstruction levels are in the center
of gravity of the corresponding quantization intervals.

• the average quantization cost for each cell is roughly the same (also called the
“Partial Distortion Theorem” [PD51]).

3.1.1.5 Logarithmic Non-Uniform SQ

According to (3.13), given the PDF p(x) and a normalized point density λ(x), the
SNR is

SNRsq,nu = 12 · N2
Q

xmax∫

−xmax

x2p(x)dx

xmax∫

−xmax

p(x)/(λ(x))2dx
(3.18)

For a choice of

λ(x) ∼ 1

x
, (3.19)

this SNR is independent from the PDF of the input signal. With respect to (3.12),
this can be achieved by setting

G(x) = K0 · ln(x) + K1 (3.20)

As a logarithmic compression curve is impractical for amplitudes close to zero, in
A-Law SQ [Cat69], the compression curve is defined as

G(x) =







A|x|
1+ln(A) · sign(x) for 0 ≤ |x|

xmax
≤ 1

A

xmax · 1+ln(A
|x|

xmax )

1+ln(A) · sign(x) for 1
A < |x|

xmax
≤ 1.

(3.21)

In this context, the constant A defines a threshold value x = xmax
A at which the

compression curve switches from linear for small amplitudes to logarithmic for
high amplitudes. A very similar concept is known as µ-Law quantization [Hol49]
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G(x) Q G−1(x̃′)

Lossless
binary coder

x x′ x̃′ x̃

iQ

cwiQ

Figure 3.3: Scalar Quantization with lossless binary coder.

[PD51][Smi57]. The ITU-T G.711 speech codec [ITU88a] nowadays employed in
ISDN [ITU88c] and VoIP [Bad06] is based on A-Law quantization with 8 bits and
a value of A = 87.56 in Europe (µ-Law is used in Northern America and Japan).
Due to the threshold functionality, the constant A is related to the dynamic range
in which the quantizer produces a constant SNR, but at the same time also has an
impact on the logarithmic SNR:

SNRsq,nu,A|dB = 4.77− 20 · log10(1 + ln(A))
︸ ︷︷ ︸

∆SNR,nu,A|dB

+6.02 · Rfr. (3.22)

Given a value of A = 87.56 as used in the G.711 codec, the dynamic range of the
quantizer is 38 dB, e.g., [VM06], and the constant offset of the quantizer SNR in
relation to the 6-dB-per-bit rule is

∆SNR,nu,A|dB = −9.99 dB. (3.23)

3.1.2 Variable Rate SQ

For variable bit rate SQ, Figure 3.2 is extended by the additional lossless binary
coder block as shown in Figure 3.3. Compared to fixed rate SQ, in variable rate
SQ, the index iQ is fed into the lossless binary coder to be translated into a binary
codeword cwiQ

of variable instantaneous bit width Rvr(k) prior to a transmission
to the decoder.
It is known from information theory [Sha48], that a non-uniform distribution of the
quantization indices iQ can be exploited to achieve an average bit rate R̄vr which
is lower than that in fixed rate quantization (given the same number NQ),

R̄vr = E{Rvr(k)} ≤ Rfr = log2(NQ) (3.24)

Given the PMF q(x̃i) related to the quantization reconstruction level x̃i, the mini-
mum achievable average bit rate for variable rate quantization is given as the entropy
of the quantizer output

R̄vr,min = H(Q(x)) = −
NQ−1
∑

i=0

q(x̃i) log2(q(x̃i)). (3.25)
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Variable rate quantization is often denoted as entropy constrained quantization
since, in comparison to fixed rate SQ, a new optimization principle is introduced.
This optimization criterion is to minimize the quantization error D(x, Q(x)) (3.4)
subject to the constraint that the entropy does not exceed a certain value H0,

H(Q(x)) ≤ H0 (3.26)

In [Kos63] and [Zad66], it was shown for the assumption of high bit rates that the
optimal quantizer for entropy constrained quantization is a uniform quantizer. The
same result is described in [GP68] where it is shown analytically that the offset
with respect to the 6-dB-per-bit curve for entropy constrained SQ of i.i.d. Gaussian
random variables is only

∆SNR,vr|dB = 1.53 dB (3.27)

for high bit rates (also derived numerically in [GH67]). For lower bit rates, itera-
tive algorithms to design entropy constrained quantizers similar to the LMQ have
been proposed in, e.g., [Woo69], [Ber72], [FL84] and [NZ78] for the squared error
distortion.
For the computation of the minimum average bit rate (3.25), it is assumed that a
lossless binary coder exists so that the average bit rate reaches the entropy. The
widest spread lossless binary coders are based on the Huffman [Huf52] or the Fano
code [Fan61] which reach entropy only in few cases [CT91]. An alternative approach
for lossless coding is Arithmetic Coding [Ris76] which has benefits compared to Huff-
man or Fano coders for very low bit rates and is therefore often used in applications
for coding of images. Lossless entropy coding is investigated in various textbooks,
e.g, [Mac03].

3.1.3 Intermediate Summary

Results related to the different SQ approaches are illustrated in Figure 3.4. In
that figure, SNR curves based on the operational rate distortion functions for a
memoryless Gaussian source for the LMQ and the entropy constraint SQ are shown
as the dashed line with circle markers and the dotted line with asterisk markers,
respectively. In addition, the curves for the high rate approximations for source
optimized and A-Law SQ and for the rate distortion function are shown as the
slash-dot-dotted line with triangle markers, the dashed line with x markers, and
the solid line with square markers, respectively.
The SNR for entropy constrained SQ is the closest to the maximum achievable SNR
according to the rate distortion function (∆SNR,vr = 1.53 dB). The asymptotic re-
sults for the LMQ are consistent with the PDF optimized SQ (∆SNR,nu = 4.34 dB),
and the lowest SNR is achieved by the A-law SQ (∆SNR,nu,A = 9.99 dB). Neverthe-
less, the A-Law quantizer can be a reasonable choice in practical applications where
signals are not necessarily stationary since its performance is independent from the
PDF and the variance of the input signal in a wide dynamic range. The benefit
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of variable rate SQ compared to the fixed rate approaches increases for PDFs with
longer tails, e.g., the Laplacian or Gamma PDF [NZ78].
Even though entropy constrained SQ clearly outperforms fixed rate SQ, it is not al-
ways applicable in practice. The achievable bit rate is only an average value, which
complicates a combination with a fixed rate digital transmission scheme. One so-
lution is to buffer codewords, but in order to avoid that buffer overflow or buffer
exhaust [Jel68] situations occur, the buffer sizes must be large which introduces
additional delay. In addition to that, transmission bit errors may have fatal impact
due to a strong error propagation.
Besides entropy constraint SQ, it will be shown in the next section that the quanti-
zation performance can also be increased by fixed rate VQ. We will see in Chapter
4 that with a Logarithmic Spherical Vector Quantizer, the performance of the en-
tropy constraint SQ can be outperformed already for moderate vector dimensions
which permits applications with low algorithmic delay. A fixed rate VQ also has
the advantage that unequal error protection techniques can be developed to better
combat transmission errors [Hei01][KSV06].

3.2 Vector Quantization (VQ)

In the previous section, it was shown that SQ does not reach the rate distortion
function. Shannon [Sha48] stated that in order to reach the optimal performance, a
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Figure 3.4: SNR over bit rate: a) acc. to rate distortion function, b) LMQ, c) asymptotic
SNR for PDF optimized SQ, d) asymptotic SNR for constrained entropy SQ, and e)
asymptotic SNR for A-Law SQ with A = 87.56 (G.711). The results are for a memoryless
Gaussian random variable. The SNR offsets with respect to the rate distortion function
are given as ∆SNR,nu|dB, ∆SNR,nu,A|dB, and ∆SNR,vr|dB according to [GP68]. The SNR
values for the LMQ are taken from [JN84].
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Figure 3.5: Principle of VQ.

quantizer may have to be designed for blocks of infinite length. In order to approach
the rate distortion function more closely, in VQ, blocks of signal amplitudes x(k)
are collected and quantized jointly. Assuming stationary and ergodic signals, the
blocks of sequential samples of the input signals x(k) can be interpreted as sets of
random variables in analogy to Section 2.1.
Even though it appears to make no sense to jointly quantize sets of i.i.d. random
variables at the first glance, it will be shown that VQ benefits from the so-called
vector quantization advantages even in this case.
Most of the results presented in the following can be interpreted as a generalization
of SQ or, in other words, SQ is a special variant of VQ for vector dimension one.
The principle of VQ is shown in Figure 3.5. The input signal x := x(k) with (quasi)
continuous amplitude is buffered in a buffer of length Lv which is the dimension of
the vector quantizer1. If the buffer is filled at time index k, the vector

x =
[

x(k − (Lv − 1)) . . . x(k − 1) x(k)
]T ∈ X (3.28)

is fed into the quantizer Q to produce the representative

x̃ =
[

x̃(k − (Lv − 1)) . . . x̃(k − 1) x̃(k)
]T

= Q(x) ∈ X̃ . (3.29)

In the quantization procedure, from the finite alphabet X̃ , also denoted as the vector
codebook, that codevector x̃iQ,vq

with index iQ,vq is determined which reconstructs
input vector x from the infinite alphabet X with the minimum quantization cost
given a certain distortion function, e.g.,

iQ,vq = arg min
0≤ivq<Nvq

‖ x− x̃ivq ‖2 ∀ x̃ivq ∈ X̃ (3.30)

based on the squared error and with Nvq as the number of vectors in the vector
codebook X̃ . This quantization procedure is denoted also as the nearest neighbor

1Note that a new parameter for the vector dimension, Lv , is introduced here compared to
parameter N as defined in Chapter 2.1 to distinguish between rate distortion and asymptotic
quantization theory.



3.2 Vector Quantization (VQ) 33

codevector search. The output vector of the quantizer is stored in the output buffer
to produce the output signal x̃ := x̃(k). In analogy to Figure 3.3, the codevector
index iQ may be transformed into a codeword in a lossless binary coder. The
concept of entropy constrained VQ [LZ94], however, will not be considered here
due to the reasons given in Section 3.1.3 so that all codewords have the same bit
width Rvq = log2(Nvq). In analogy to (2.27) and (2.6), the mean of the quantization
cost function per vector coordinate for a squared error criterion (MSE) is specified
as the per vector coordinate distortion

D =
E{‖ x−Q(x) ‖2}

Lv
(3.31)

which can be transformed also into a per vector distortion

D∗ = D · Lv = E{‖ x−Q(x) ‖2}. (3.32)

The quantization cells are the analogon to the quantization intervals in SQ (3.2)
and, with respect to the squared error criterion, defined as

Cvq,x̃ := {x ∈ X :‖ x− x̃ ‖2 ≤ ‖ x− x̃′ ‖2 ∀ x̃′ (= x̃, and x̃′, x̃ ∈ X̃ } (3.33)

with the codevectors located in the center of gravity of the cell. It is shown in [Zad66]
and [Ger79] that (3.15) can be generalized to compute the minimum achievable
quantization distortion of a source optimized fixed rate VQ of dimension Lv for the
assumption of high bit rates as

D(NQ,Lv ) = Cq(Lv) · (NQ,Lv )−2/Lv · ‖ p(x) ‖Lv/(Lv+2) (3.34)

with

‖ p(x) ‖Lv/(Lv+2)=

(∫

X

(p(x))Lv/(Lv+2)

)(Lv+2)/Lv

. (3.35)

In this equation, p(x) := px(x) is the multivariate PDF of the input signal vector
x, NQ,Lv := Nvq is the number of codevectors in vector codebook X̃ , written in
a notation to highlight the analogy to the number of quantization reconstruction
levels NQ,1 := NQ from Section 3.1 for vector dimension Lv, and Cq(Lv) is a
constant to be discussed in Section 3.2.1. In analogy to (3.14), necessary condition
to achieve this minimum distortion is that the normalized quantizer codevector
density function is

λ(x) =
(p(x))Lv/(Lv+2)

∫

X

(p(y))Lv/(Lv+2)dy
(3.36)

and a (quasi) continuous function due to the assumption of high bit rates.
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3.2.1 The VQ Advantages

According to (3.34), the term for the determination of the overall distortion is com-
posed of three independent parts, the constant Cq(Lv), the part related to the
number NQ,Lv of codevectors, and the part that depends on the shape of the mul-
tivariate PDF, ‖ p(x) ‖Lv/(Lv+2). In [LG89], the performance of VQ is compared
to that of SQ based on the same effective bit rate per vector coordinate

Reff, vq =
log2(NQ,Lv )

Lv

!
= log2(NQ,1) (3.37)

with NQ,1 = NQ from Section 3.1 since SQ is a special variant of VQ for Lv = 1.
The vector quantizer advantage is defined as the distortion achievable by source
optimized SQ in relation to the distortion achievable by source optimized VQ

DLv=1(NQ,1)

DLv (NQ,Lv )
=

Cq(1)

Cq(Lv)
︸ ︷︷ ︸

F (Lv)

·
N−2

Q,1

N−2/Lv
Q,Lv

︸ ︷︷ ︸

1

·
‖ p̂(x) ‖1/3

‖ p(x) ‖Lv/(Lv+2)
︸ ︷︷ ︸

S(Lv)·M(Lv)

(3.38)

and can be grouped into the Space Filling Advantage F (Lv), the Shape Advantage
S(Lv), and the Memory Advantage M(Lv). Each of these advantages contributes
to a lower distortion achievable in VQ compared to SQ and will be explained in the
following.

3.2.1.1 The Space Filling Advantage

According to (3.38), F (Lv) is a function of the constants Cq(Lv) and Cq(1) and
independent of the PDF of the input signal. To better understand the role of the
constant Cq(Lv), the special case of a uniform PDF p(x) is considered. In that
case, the overall distortion (3.34) depends only on the constant Cq(Lv) since

‖ p(x) ‖Lv/(Lv+2)= 1 ⇔ p(x) uniform (3.39)

and hence on the filling of the Lv-dimensional vector space by quantization cells. In
general, each quantization cell is bounded by (Lv−1)-dimensional hyperplanes and
also called a (convex) polytope P or Voronoi Region. In [Ger79], it is conjectured
that for a specific dimension Lv, the best fitting of quantization cells is achieved if
all quantization cells are congruent (except for those at the boundaries of the vector
space) which is called a tessellation. Effectively, however, not all quantization cell
shapes are suitable to generate a tessellation. Considering for example Lv = 2,
three types of quantization cell shapes that form a tessellation are the rectangle,
the regular hexagon, and the equilateral triangle as demonstrated in Figure 3.6
a), b) and c), respectively. The group of possible cell shapes and hence polytopes
to generate a tessellation in Lv dimensions are called admissible polytopes PLv .
In order to assess the suitability of different admissible polytopes P ∈ PLv for
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a) Rectangle b) Hexagon c) Triangle

Figure 3.6: Admissible polytopes for Lv = 2

quantization, in [Ger79] the so-called normalized inertia

NI(P ) =
1

Lv
·

∫

P

‖ x− x̃ ‖2 dx

(V (P ))(Lv+2)/Lv
(3.40)

is introduced, with V (P ) as the Lv-dimensional volume of polytope P . Considering
all admissible polytopes for a given dimension Lv, the constant Cq(Lv) is

Cq(Lv) = inf
P ∈PLv

NI(P ), (3.41)

for the optimal polytope in Lv dimensions. According to [Ger79], an optimal poly-
tope exists for each dimension Lv but, unfortunately, little is known about optimal
polytopes for Lv > 3. Closed form solutions are given for Lv = 1 as known from
scalar quantization, Cq(1) = 1

12 , for Lv = 2 with the hexagon as the optimal poly-

tope [Tot59b] and Cq(2) = 5
√

3/108, and for Lv = 3 with the regular truncated
octahedron as the optimal polytope [CS93] with Cq(3) = 0.078543.
In the literature, bounds are given for Cq(Lv), namely the Sphere Lower Bound
based on the fact that every convex polytope has a moment that is greater than
that of a sphere, and the Conway and Sloan Conjectured Lower Bound [CS85]. The
measured results for lattice quantizers in different dimensions (refer to Section B.1
in the supplement document [Krü09]) are given as the Lattice Upper Bound.
The space filling advantage F (Lv) in dB related to the Sphere Lower, the Conway
and Sloane Lower, and the Lattice Upper Bound are listed, e.g., in [Erd04] and
[LG89]. All bounds asymptotically reach

lim
Lv→∞

10 · log10(F (Lv)) = 1.53 dB. (3.42)

3.2.1.2 The Shape Advantage

The shape advantage S(Lv) in (3.38) depends on the multivariate PDF of the
input signal. For memoryless (uncorrelated) sources, no memory advantage can be
exploited and VQ benefits only from the shape advantage which is defined as

S(Lv) =
‖ p̂(x) ‖1/3

‖ p(x) ‖Lv/(Lv+2)
. (3.43)
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The multivariate PDF p(x) for a memoryless source can be computed from the
one-dimensional (marginal) PDF (see the example in Figure 3.7), denoted as p̂(x),
as

p(x) =
Lv−1
∏

i=0

p̂(x). (3.44)

If the signal to be quantized has a uniform distribution, the shape advantage is

SU (Lv) = 1. (3.45)

Assuming an i.i.d. Gaussian distributed source, the shape advantage is [LG89]

SG(Lv) =
33/2

(

Lv+2
Lv

)(Lv+2)/2
. (3.46)

with the asymptotic value for infinite dimensions

lim
Lv→∞

10 · log10(SG(Lv)) = 2.81 dB (3.47)

Values for the shape advantage in dB for Gaussian, Laplacian and Gamma PDFs
are, e.g., given in [Erd04] and [LG89].

3.2.1.3 The Memory Advantage

Given sources with memory, in contrast to a PDF optimized SQ, a PDF optimized
VQ benefits from the correlation immanent to the input signal, denoted as M(Lv) in
(3.38). Note that in the following only the case of linear dependencies is considered,
an example for non-linear dependencies is described in [MSG85].
In analogy to the results from Section 2.3, the memory advantage shall be explained
based on the example of a correlated Gaussian random variable with zero mean.
The multivariate PDF is

pX(x) = N (x; 0,ΦX) =
1

(2π)N/2
· 1
√

det(ΦX)
· exp(−1

2
x · Φ−1

X
· xT ) (3.48)

with the covariance matrix ΦX and the determinant thereof, det(ΦX), as introduced
in (2.41). An example multivariate PDF is illustrated by the three-dimensional plot
in Figure 3.7 a) for Lv = 2 and a covariance matrix of

ΦX =

[

σ2 σ2 · ρ
σ2 · ρ σ2

]

= σ2 ·
[

1 ρ
ρ 1

]

(3.49)

with σ2 = 1.0 and ρ = 0.75. Sequences of samples are stored in the vector x =
[

x(k − 1) x(k)
]T

. From (3.38), combined shape and memory advantage are given
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as

S(Lv) · M(Lv) =
‖ p̂(x) ‖1/3

‖ p(x) ‖Lv/(Lv+2)
(3.50)

In order to separate both parts, the joint PDF p′(x) related to Lv independent
variables with marginal PDF p̂(x) is computed according to (3.44) as

p′(x) =
Lv−1
∏

i=0

p̂(x) (3.51)

to extend (3.50),

S(Lv) · M(Lv) =
‖ p̂(x) ‖1/3

‖ p′(x) ‖Lv/(Lv+2)
︸ ︷︷ ︸

S(Lv)

·
‖ p′(x) ‖Lv/(Lv+2)

‖ p(x) ‖Lv/(Lv+2)
︸ ︷︷ ︸

M(Lv)

. (3.52)

-3

x(k)

x(k)

x
(k
−

1)

x(k − 1)

x(k − 1)

p̂(
x

)
p(

x
)

x
e

0

x e 1

b)

c)

a) Three-dimensional plot of the PDF for Lv = 2
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Figure 3.7: PDF for Gaussian source with memory (covariance matrix ΦX and ρ = 0.75).
In a), the three-dimensional plot of the PDF is shown. In b), the marginal PDF as viewed
from the position marked by the respective arrow in a) is depicted. In c), the top view of
the PDF from the view position according to the corresponding arrow in a) is presented
together with the Eigenvectors xe0 and xe1 .
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The first part of this equation is identical to the shape advantage S(Lv) in (3.43)
(since p′(x) in (3.51) is identical to p(x) in (3.44)). Consequently the memory
advantage is

M(Lv) =
‖ p′(x) ‖Lv/(Lv+2)

‖ p(x) ‖Lv/(Lv+2)
(3.53)

In [LG89], it is shown that for correlated Gaussian random variables with covariance
matrix ΦX in general

‖ p(x) ‖Lv/(Lv+2)= 2π ·
(

Lv + 2

2

)(Lv+2)/2

· det(ΦX)1/Lv . (3.54)

Considering the numerator part in (3.53), the corresponding covariance matrix is

Φ′
X =







σ̂2 0 . . . 0
0 σ̂2 . . . 0

. . . . . . . . . . . .
0 0 . . . σ̂2







= σ̂2 · ILv (3.55)

with σ̂2 as the variance related to the marginal PDF p̂(x). Accordingly, the norm
(3.54) is

‖ p′(x) ‖Lv/(Lv+2)= 2π ·
(

Lv + 2

2

)(Lv+2)/2

· σ̂2. (3.56)

Considering the computation of the norm for p(x), in analogy to (2.43), ΦX can be
diagonalized with respect to its principal axes without changing the norm. Given the
Eigenvalues λX,i as the result of the matrix diagonalization, the memory advantage
can hence be computed as

M(Lv) =
σ̂2

(
∏(Lv−1)

i=0 λX,i

)1/Lv
=

1
Lv

·
(
∑(Lv−1)

i=0 λX,i

)

exp

(

1
Lv

·
∑(Lv−1)

i=0 ln(λX,i)

) . (3.57)

with the variance σ̂2 related to the marginal PDF computed from the Eigenvalues
of the covariance matrix in analogy to (2.36). In the example in Figure 3.7, the
Eigenvectors for the matrix diagonalization are shown as xe0 and xe1 in part c),
the view from above.

3.2.2 Asymptotic VQ Performance

Given a memoryless Gaussian source, in comparison to SQ, VQ benefits from the
space filling and the shape advantage. Assuming high bit rates, given the asymptotic
offset related to source optimized SQ from (3.17) and the asymptotic values for the
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VQ advantages in (3.42) and (3.47), the asymptotic logarithmic SNR related to VQ
with infinite block lengths is equal to the rate distortion function,

SNRvq,G(Reff,vq)|dB
Lv→∞

= SNRsq,nu,G(Rfr)|dB + 10 log10(F (∞))
︸ ︷︷ ︸

1.53dB

+ 10 log10(SG(∞))
︸ ︷︷ ︸

2.81dB

= 6.02 dB · Reff,vq, (3.58)

with Rfr = Reff,vq. In addition to that, by comparing (2.45) and (3.57), it is obvious
that source optimized VQ asymptotically also reaches the rate distortion function
for correlated Gaussian sources.

3.2.3 VQ Design for Low Bit Rates

The results for VQ so far were based on the assumption of high bit rates. For lower
bit rates, the generalization of the LMQ (Section 3.1.1.4) for vectors is described
in [LBG80]. According to that paper, a VQ codebook is the output of a “training”
procedure for a large amount of training data. The resulting VQ consists of the
codevectors which must be stored in a lookup table. This type of quantizer has
a high performance even for low bit-rates and benefits from all VQ advantages.
In practical applications, however, trained quantizers are impractical due to high
memory requirements to store all codevectors. In addition to that, because the
codebook is unstructured, a fast procedure to find the nearest neighbor for a signal
vector to be quantized is not straight forward [Vid86][MM84]. Nevertheless, trained
quantizers are often used for specialized applications for low vector dimensions
or bit rates, e.g., in the quantization of the spectral envelope in speech coding,
[PA93][ETS00][ETS01].

3.2.4 VQ Application Examples

In Section B in the supplement document [Krü09] two example concepts for VQ are
reviewed which are of high importance in a lot of source coding applications. Due
to the employment of structured codebooks, highly efficient nearest neighbor quan-
tization procedures can be realized with low computational complexity and memory
consumption and therefore will be the basis for two candidate VQ realizations in
Section 4.

3.3 Discussion

In the first part of this chapter, different approaches for SQ were briefly summa-
rized. It was shown that for high bit rates, source optimized SQ can be realized as
a combination of a compressor function and a uniform quantizer. The compressor
function was generalized to a point density function, and the optimal point density
can be computed from the PDF of the signal to be quantized. Also, it was described
that the highest quantization performance can be achieved by entropy constrained
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SQ. However, for the target application low delay audio coding, a variable bit rate
is not useful. Required extensive buffering and a very high sensitivity against trans-
mission bit errors make this approach impractical.
In the second part of this chapter, fixed rate VQ was reviewed as a generalization
of SQ. It was shown that for high bit rates, a source optimized VQ adapts its code-
vector point density according to the PDF of the input signal and, compared to SQ,
benefits from the VQ advantages. Source optimized VQ asymptotically reaches the
rate distortion function for infinite block lengths.



4

Logarithmic Spherical VQ
(LSVQ)

In the previous section, it was shown in (3.36) that the density of codevectors for a
source optimized VQ can be derived from the multivariate PDF of the input signal
for high bit rates. Unfortunately, this knowledge does not provide any information
on how to construct a source optimized VQ that is also well applicable in practice.
In all previous chapters, the signal to be quantized was assumed to be stationary
and the PDF well known. Targeting the quantization of real audio signals, iden-
tifying a PDF that accurately describes all parts of an input signal is not straight
forward: Audio signals are not stationary, can have a very high dynamic and may
also have an arbitrary PDF. An approach known from speech coding is to con-
sider short segments of speech signals which are approximately stationary [VM06].
Each segment, however, may have a different characteristic so that a VQ should
be adapted to each single segment independently. Since VQs are mostly designed
offline, designing a new VQ for each segment is certainly not an option. In most ap-
plications, therefore, fixed quantizers designed for memoryless sources are combined
with common techniques such as Linear Prediction (LP) or Transform Coding (TC)
to exploit linear correlation. LP is also suitable for low delay audio coding and will
be studied in detail in Chapter 5.
Designing an optimal fixed VQ for memoryless sources still is a complex task since
the dynamics as well as the PDF of the memoryless signal to be quantized are
unknown. In the early days of speech coding, measurements were proceeded to
find a PDF that is common for speech, e.g., [Ric73], [Nol74], [Ata82][BJW74]. In
the end it turned out that a Gaussian distribution is a good approximation of the
distribution of normalized LP residual signals for speech.
Considering audio signals, the assumption of a common PDF does not make sense.
Instead, a quantizer should be optimized to have reasonable performance for all
types of signals. In this context, the assumption of a Gaussian distribution as a
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worst case scenario is useful since it has the highest differential entropy [Ber71] and
therefore is the most “difficult” source distribution for quantization.

4.1 Motivation for Spherical VQ (SVQ)

Given the multivariate PDF of a memoryless i.i.d. Gaussian source with variance
σ2 and zero mean, it can be shown that the optimal normalized codevector density
of dimension Lv for high bit rates according to (3.36) is

λG(x) = C · exp(− Lv

Lv + 2
· 1

2σ2
· xT · x) ∀ x ∈ R

Lv . (4.1)

with the unknown constant C. This qualitative result shall not be discussed here
in detail. However, since λG(x) is constant for vectors x with equal absolute value
(‖x‖ = const), (4.1) is a good argument to arrange all codevectors uniformly on
shells of spheres.
One way to achieve that all codevectors are arranged on shells of spheres is known
from speech coding as gain-shape VQ which was proposed in [SG84]. In one of the
first realizations of a gain-shape VQ in [AS84], Gaussian distributed sequences (the
shape vectors) are multiplied with an amplitude (the gain factor) to generate the
innovation part of a speech signal. Later, the Gaussian sequences were replaced by
multi-pulses [Ata86] or ternary pulses known as algebraic codebooks [SS87], [XIB88],
[IX89], [SA89], [Sal89]. Still today, this principle is the basis for most state-of-the-art
standardized speech codecs like the ITU-T G.729 codec [ITU96] and the Adaptive
Multirate Narrowband (AMR) and Wideband (AMR-WB) Speech Codecs [ETS00],
[ETS01].
The algebraic codebooks were designed for very low bit rates. However, it will be
shown in the course of this chapter that in order to achieve higher quantization per-
formance at higher bit rates, algebraic codebooks are no longer suitable. Instead,
new VQ concepts must be developed. In this context, Spherical VQ (SVQ) turns
out to be a promising technique and will therefore be studied in detail.
Most often, realizations of SVQ are based on codevectors which are constructed
based on so-called spherical codes. In this context, the spherical code can be con-
sidered as a rule to generate codevectors on the surface of spheres. In the literature,
remarkable results on the analysis of spherical codes in general are in particular
given in [Ham96], [HZ97a], [HZ97b]. In [HZ03], the same authors propose SVQ
based on a so-called wrapped spherical code in combination with a source opti-
mized SQ (see Section 3.1.1.4) in gain-shape fashion for the coding of Gaussian
sources. In contrast to this, the concept of Logarithmic SVQ (LSVQ) is based on a
combination of SVQ with logarithmic SQ (see Section 3.1.1.5). The employment
of a logarithmic rather than a source optimized SQ is motivated by the fact that
audio signals reveal a wide dynamic range and have an unknown PDF in practice.

In the first part of this chapter, the concept of LSVQ is defined and novel theoretical
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results are presented. It is shown for high bit rate assumptions that LSVQ approx-
imately achieves a constant quantization SNR independent of the PDF of the input
signal over a wide dynamic range. Then, very similar to the Sphere Lower Bound
for VQ in general ([Ger79], Section 3.2.1.1), a new lower bound for the achievable
quantization distortion related to SVQ and LSVQ and a high rate estimate for the
theoretical performance of LSVQ are derived. Integral part of the derivation of the
high rate estimate is the calculation of the optimal allocation of bit rate for the
gain and shape components given a fixed overall bit budget.
In the second part of the chapter, three exemplary SVQ realizations will be intro-
duced. The presented examples are designed for high performance quantization,
but at the same time, low computational cost and memory consumption is pre-
served due to newly developed nearest neighbor quantization procedures. In order
to assess the achievable quality, the quantization performance of all quantizers mea-
sured for stationary memoryless i.i.d. Gaussian input signals will be compared to
the theoretical results from the first part at the end of this chapter.

4.2 Theory of LSVQ

In the literature, most of the work on spherical codes are mathematical reviews on
the asymptotic code density, e.g., [Ast84], [Tot59a], and [Cox68]. A good summary
of a lot of aspects related to spherical codes is given in [Ham96]. In contrast to this,
the purpose of this chapter is mainly to discuss aspects related to the application
of spherical codes for LSVQ (refer to [KSGV08] also).

4.2.1 Properties of Spheres

Some general properties of spheres shall be introduced first: An Lv-dimensional

sphere with radius r, denoted as S(r)
Lv

, is defined as the amount of all vectors x in
Lv-dimensional space with a distance r to the origin,

S(r)
Lv

:= {x =
[

x0 . . . xLv−1

]T ∈ R
Lv : ‖x‖ =

√
xT · x = r}. (4.2)

Examples are well known for Lv = 2 and Lv = 3 as a circle and a ball as shown in
Figure 4.1 a) and b), respectively. An Lv-dimensional sphere with a radius r = 1.0

is called a unit sphere, S(1.0)
Lv

. The content within the unit sphere [Cox73] (denoted
as the volume of a sphere) is

V (1.0)
SLv

=

∫

‖x‖≤1

dx =
2 · πLv/2

Lv · Γ(Lv/2)
=

πLv/2

Γ((Lv + 2)/2)

=







πLv/2

(Lv/2)! if Lv even

2Lvπ(L−v−1)/2((Lv−1)/2)!
Lv ! if Lv odd

(4.3)
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r
2r

a) Sphere for Lv = 2 b) Sphere for Lv = 3

Figure 4.1: Examples for spheres for a) Lv = 2 and b) Lv = 3.

with the Gamma function Γ(y) =
∞∫

0
e−t · ty−1dt [BS91]. The volume of an Lv-

dimensional sphere with radius r is calculated from the volume of the unit sphere
as

V (r)
SLv

= V (1.0)
SLv

· rLv . (4.4)

The shell of a sphere is defined as all points which are located on the surface of the
sphere and hence have the same distance r to the origin. The surface area content
is given as

S(r)
SLv

=

∫

x∈S
(r)
Lv

dx = V (1.0)
SLv

· Lv · r(Lv−1). (4.5)

An interesting fact is that the volume of the unit sphere as a function of dimension
Lv grows for increasing dimension Lv, then reaches a maximum value for Lv = 5

and asymptotically reaches lim
Lv→∞

V (1.0)
SLv

= 0 as demonstrated by Figure 4.2.

4.2.2 Definition of LSVQ

LSVQ is a special type of fixed rate gain-shape VQ in which each input vector x
is decomposed into its absolute value and a normalized version with unit absolute
value, referred to as the gain and the shape components

g = ‖x‖ =
√

xT · x and c =
1

g
· x =

x√
xT · x

. (4.6)

Both components are quantized by the two quantizers

Qg : g +→ g̃, g̃ ∈ X̃g (4.7)

Qsvq : c +→ c̃, c̃ ∈ X̃svq (4.8)
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Figure 4.2: Volume of unit sphere over dimension Lv.
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DecoderEncoder

Figure 4.3: Parallel quantization of the gain and shape component in LSVQ.

with the codebooks X̃g and X̃svq for the SQ of the gain component and the VQ of the
shape component, respectively. From the quantized shape and gain components,
the quantized overall signal vector is reconstructed as

x̃ = c̃ · g̃. (4.9)

The overall LSVQ

Qlsvq : x +→ x̃, x̃ ∈ X̃lsvq = X̃g × X̃svq (4.10)

is hence defined as the combination of both quantizers,

Qlsvq = Qg©Qsvq (4.11)

with X̃lsvq as the overall codebook. The combination of Qg and Qsvq, represented
by the operator©, is based on a parallel or independent approach as demonstrated
by Figure 4.3. Variants of LSVQ based on a sequential and a joint approach for
the combination of the two quantizers are discussed in detail in Section C of the
supplement document [Krü09]. All codevectors in codebook X̃svq have unit absolute
value and are therefore located on the surface (shell) of a unit sphere of dimension
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Lv. These codevectors will be denoted as the spherical codevectors in the following.
Given the effective bit rate per vector coordinate for the two quantizers as Reff,g and

Reff,svq, the number of quantization reconstruction levels of Qg is Ng = 2Reff,g ·Lv ,

and the number of spherical codevectors related to Qsvq is Nsvq = 2Reff,svq·Lv ,
respectively. The overall number of codevectors related to the combination of both
quantizers, referred to as overall codevectors, is

Nlsvq = 2Reff,lsvq·Lv = Ng · Nsvq = 2(Reff,svq+Reff,g)·Lv (4.12)

with the overall effective bit rate per vector coordinate Reff,lsvq.
In analogy to Figure 3.1, the quantizer Qg outputs an index iQ,g ∈ {0 . . . (Ng −
1)}, and the quantizer Qsvq an index iQ,svq ∈ {0 . . . (Nsvq − 1)}, representing one
quantization reconstruction level and spherical codevector, respectively. Following
the parallel approach from Figure 4.3 for a squared error criterion (2.7), given an
input signal vector x and its decomposition into the shape and the gain component,
g and c, the optimal quantization indices are determined in a nearest neighbor
approach in analogy to (3.30),

iQ,svq = arg min
0≤isvq<Nsvq

‖c− c̃isvq‖2 ∀ c̃isvq ∈ X̃svq (4.13)

iQ,g = arg min
0≤ig<Ng

|g − g̃ig |2 ∀ g̃ig ∈ X̃g. (4.14)

Since c and c̃isvq have unit absolute value, (4.13) can be rewritten as

iQ,svq = arg max
0≤isvq<Nsvq

cT · c̃isvq (4.15)

which is often used in the literature.
Both indices iQ,g and iQ,svq are combined to produce the overall codeword iQ,lsvq

with either

iQ,lsvq = iQ,g · Nsvq + iQ,svq or iQ,lsvq = iQ,svq · Ng + iQ,g. (4.16)

In practical applications, the overall codeword iQ,lsvq is transmitted from the en-
coder to the decoder to reconstruct the quantized vector. For the sake of simplicity,
however, the transmission of the codeword is not part of Figure 4.3.
Multiplying the spherical codevectors with different quantization reconstruction lev-
els for the gain factor corresponding to the entries in the codebook X̃g according
to (4.9), the overall codebook X̃lsvq is the aggregation of spherical codevectors on
spheres with different radius,

X̃lsvq :=
⋃

g̃∈X̃g

g̃ · X̃svq (4.17)

In Figure 4.4 an example distribution of overall codevectors (dots) is shown for
Lv = 2. In addition, also the quantization cell bounds with respect to the parallel
combination of the two quantizers (Figure 4.3) are shown.
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Figure 4.4: Example codevectors and quantization cells for the parallel approach of LSVQ
for Lv = 2.

4.2.3 A Qualitative Analysis for High Bit Rates

In the first part of the analysis of LSVQ, qualitative results are derived for the
assumption of a high bit rate and hence large number of spherical codevectors.
Given the spherical codebook X̃svq, the spherical quantization cells are defined as

Cc̃ := {c ∈ S(1.0)
Lv

: ‖c− c̃‖ ≤ ‖c− c̃′‖ ∀ c̃, c̃′ ∈ X̃svq and c̃′ (= c̃} (4.18)

with c̃ and c̃′ representing two independent codevector for which the index isvq is
skipped for the sake of simplicity. In analogy to the assumptions for VQ in general
in [Ger79] it is assumed that the complete surface is covered by quantization cells
of identical shape (the equivalent of the tessellation, restricted to be located on

the unit sphere surface). The area content of each spherical quantization cell S(I)
Cc̃

can be computed as a function of the overall surface content of a unit sphere (4.5),
divided by the number of spherical codevectors Nsvq:

B := S(I)
Cc̃

=
S(1.0)

SLv

Nsvq
= V (1.0)

SLv
· Lv

Nsvq
. (4.19)

An example with four spherical quantization cells on the surface of a sphere is shown
for Lv = 3 on the left side of Figure 4.5.
Considering the SQ for the gain factor g, the quantization intervals are defined as

Cg̃ := {g ∈ R
+ : |g − g̃| < |g − g̃′| ∀ g̃, g̃′ ∈ X̃g and g̃′ (= g̃}. (4.20)

For the construction of the overall codevectors x̃ according to (4.17), the spherical
codevectors c̃ are combined with different quantization reconstruction levels g̃, and
overall quantization cells Cx̃ result, defined as

Cx̃ := {x ∈ R
Lv : (c =

x

‖x‖ ∈ Cc̃) ∧ (g = ‖x‖ ∈ Cg̃)}. (4.21)
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Figure 4.5: Spherical quantization cells located on the surface of a sphere (left side) and
example overall quantization cell (right side) for Lv = 3.

On the right side of Figure 4.5, an example overall quantization cell is shown quali-
tatively for Lv = 3. Compared to the “flat” spherical quantization cells (denoted as
B in the figure and in (4.19) for simplicity), the overall quantization cells also have
a height in radial direction which is the distance between adjacent radius quantiza-
tion interval bounds or, in other words, the size of the radius quantization interval,
denoted as ∆g(g̃). The bottom and the upper side surface areas of that cell, B′

and B′′, respectively, are scaled versions of the spherical quantization cells B on
the unit sphere surface. For high bit rates a large number of spherical codevectors
exists so that the curvature of the sphere can be neglected, and the quantization
intervals ∆g(g̃) are small. In this case, the bottom and the upper side surface area
of the overall quantization cell are approximately identical (therefore B′ ≈ B′′ in
Figure 4.5). The overall codevector x̃ is located in the center of the quantization
cell and at the same time on the surface of a scaled version of the unit sphere with
the radius g̃ = ‖x‖. The respective surface area of the scaled unit sphere with the
radius g̃ is the unit sphere surface area content multiplied with the factor g̃(Lv−1)

(4.5). As a consequence of this, also the bottom and the upper side surface areas of
each cell are B′ ≈ B′′ ≈ B · g̃(Lv−1) (4.19). The complete vector space is filled by
quantization cells which are scaled versions of the cell shown in Figure 4.5. The cell
volume can be derived as a function of the gain quantization reconstruction level as

VCx̃
(g̃) ≈ B · g̃(Lv−1)

︸ ︷︷ ︸

B′≈B′′

·∆g(g̃) = S(I)
Cc̃

· g̃(Lv−1) · ∆g(g̃). (4.22)

Assuming that the gain SQ is operated in the logarithmic area of the A-Law com-
pression curve, ∆g(g̃) is approximately the quantization error related to A-Law
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quantization of the radius [JN84],

∆g(g̃) ≈ (1 + ln(A))

Ng
· g̃ (4.23)

with A as the A-Law quantization constant. Hence, with (4.23), (4.22), (4.19), and
(4.3), the overall quantization cell volume is approximately

VCx̃
(‖x̃‖) ≈ 2 · πLv/2 · (1 + ln(A))

Γ(Lv/2)
· (‖x̃‖)Lv

Nsvq · Ng
, (4.24)

expressed as a function of the absolute value of the corresponding overall codevector
x̃ with absolute value ‖x̃‖ = g̃. From this cell volume, the normalized quantizer
point density function can be derived as

λ(x̃) ≈ 1

VCx̃
(g̃) · Ng · Nsvq

=
Γ(Lv/2)

2 · πLv/2 · (1 + ln(A))
· (‖x̃‖)−Lv . (4.25)

Given p(x) as the PDF of the input signal source, it is a common assumption in high
bit rate VQ that p(x) ≈ p(x̃) and that λ(x̃) is a continuous function. According to
[Ger79], it follows with (4.12) that the mean of the overall quantization distortion
can be computed from (4.25) as

D(I)
lsvq = N−2/Lv

lsvq · Clsvq ·
∫

x̃∈RLv

p(x̃)

(λ(x̃))2/Lv
dx̃. (4.26)

Correspondingly, the SNR can be computed as

SNR(I)
lsvq =

N2/Lv
lsvq

Clsvq · π ·
(

Γ(Lv/2)

2 · (1 + ln(A))

)2/Lv

·

∫

x∈RLv

p(x) · ‖x‖2 · dx

∫

x̃∈RLv

p(x̃) · ‖x̃‖2 · dx̃

︸ ︷︷ ︸

≈1

(4.27)

with constant Clsvq in (4.26) and (4.27) depending on the (yet unknown) shape
of the overall quantization cells. As a conclusion, the SNR related to LSVQ is
approximately independent of the PDF of the input signal. 1

4.2.4 Quantitative Results

Based on the proof of a constant SNR in the previous section (4.27), w.l.o.g. only
a single overall quantization cell, a “prototype cell”, is considered in the following

1Note that for the case of high vector dimensions and a non-logarithmic SQ of the gain (e.g.
a LMQ (Section 3.1.1.4) as often used in speech coding), it can be shown that for high bit rates
gain-shape VQ leads to a nearly constant SNR. For example, in the denominator of the second

part of 4.27 the integral would be a function of ‖x‖2·(Lv−1)/Lv rather than ‖x‖2 for uniform SQ
of the gain).
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Figure 4.6: Types of spherical quantization cells, Lv = 3.

with the corresponding overall codevector located on the surface of the unit sphere.
A quantitative expression for the SNR rather than the qualitative one in (4.27)
with the unknown constant Clsvq shall be derived. In the first step, the quantization
distortion solely related to Qsvq will be computed. This result will then be combined
with the distortion related to Qg in the second step.
The per vector distortion D∗ (3.32) rather than the per vector coordinate
distortion D (3.31) and, correspondingly, the per vector rather than the per vector
coordinate mean of the squared absolute value of the signal to be quantized will
be considered in the following. Since the difference is only a multiplication with
the constant Lv, computing the SNR from the per vector measures instead of the
per vector coordinate measures does not affect the overall result (in the end, the
multiplication cancels out, and this procedure significantly simplifies the notation.).

4.2.4.1 Analysis of the “Idealized” SVQ

Since the exact shape of the spherical quantization cells is unknown, in analogy
to the sphere bound for VQ in general [Ger79], we define an “idealized” SVQ to
be composed of “spherical cap” quantization cells as illustrated on the left side
of Figure 4.7 for Lv = 3. A single spherical cap is shown in Figure 4.6 a). The
spherical codevector c̃ is located in the center (at the north pole), and the angular
radius βmax determines the size of the spherical cap. The spherical cap area content
[Ham96] is

S(II)
Cc̃

= V (1.0)
SLv−1

· (Lv−1) ·
βmax∫

0

(sin(β))(Lv−2)dβ. (4.28)

Note that the upper index (II) is used here to point out the difference to the cell
area content in (4.19).
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Figure 4.7: Covering of unit sphere surface by “spherical cap” quantization cells.

Given a normalized vector c which is located inside the spherical cap area as shown
in the example of Figure 4.6, the absolute value of the quantization error can be
computed by means of the cosine rule as a function of β,

‖c− c̃‖ = 2 · sin(β/2). (4.29)

Assuming that the number of spherical cap cells is high enough so that the distribu-
tion of c within the spherical cap quantization cell is uniform (constant PDF p(c))
and with (4.28), the per vector distortion as a function of angular radius βmax is

D∗(II)
svq =

∫

Cc̃

p(c) · ‖c− c̃‖2dc =

βmax∫

0
(2 · sin(β2 ))2 · (sin(β))(Lv−2)dβ

βmax∫

0
(sin(β))(Lv−2)dβ

(4.30)

with

p(c) = const = 1/S(II)
Cc̃

so that

∫

c∈Cc̃

p(c)dc = 1. (4.31)

βmax is the unknown parameter in (4.30) so far. In order to compute βmax, it is
assumed that the complete unit sphere surface is covered by spherical cap quantiza-
tion cells as shown on the left side of Figure 4.7. Given the angular radius such that
they do not overlap, the spherical caps do only cover a fraction of the complete sur-
face. This approach is the analogon to “sphere packing” in the literature [CS93] and
is demonstrated by Figure 4.7 a). Given a large number of codevectors, the sphere
surface can be assumed to be covered by approximately flat (Lv − 1)-dimensional
quantization cells. It is shown in [Ham96] that in this case the density δ ≤ 1 from
[CS93] for dimension (Lv − 1) is approximately the ratio between the area covered
by spherical caps and the unit sphere surface area.
If no uncovered space is allowed, the spherical caps overlap as shown in Figure
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4.7 b) which is the analogon to “sphere covering” in the literature. In analogy to
the definition of the density, the thickness θ ≥ 1 is defined as the proportion of the
overall space covered by the spherical caps in relation to the surface area of the unit
sphere.
It was described in Section 3.2.1.1 that spheres as the optimal shape of quantization
cells lead to the lowest normalized inertia (3.40) which is the basis for the derivation
of the “sphere lower bound” for VQ in general. In SVQ, the quantization cells are
restricted to be located on the surface of the unit sphere. In analogy to the sphere
as the optimum cell shape for VQ, the spherical cap is therefore identified as the
optimal cell shape for SVQ.
If the angular radius βmax is determined according to the “sphere packing” assump-
tion, the distortion (4.30) is certainly lower than the distortion achievable by any
distribution of codevectors on the sphere surface, denoted as the “realistic” SVQ:
The spherical quantization cells of the “idealized” SVQ have the optimal shape and
also are smaller than those achievable by any “realistic” SVQ. In contrast to this, in
the “sphere covering” approach, even though the cell shape is optimal in the sense
to minimize the normalized inertia, the distortion (4.30) is not a bound because the
cells are larger than those of a “realistic” SVQ.
The best option to compute βmax, however, is to define that the spherical caps do
not overlap and cover the complete surface at the same time. This assumption is
obviously unrealistic as shown for the example Lv = 3 in Figure 4.7 but is the basis
for a more accurate bound than that related to the “sphere packing” assumption:
Since the area content of the spherical quantization cells of the best “realistic”
SVQ may be identical to those of the “idealized” SVQ, the “idealized” SVQ has
no benefit due to smaller spherical quantization cells. Nevertheless, the distortion
achievable by the “idealized” SVQ is lower since it benefits from the optimal spher-
ical quantization cell shape which can not be achieved by a “realistic” SVQ for
finite dimensions. An example illustrates this on the right side of Figure 4.6 for
Lv = 3 where a “realistic” spherical quantization cell is shown which has the same
cell content as the “idealized” spherical cap on the left side but a suboptimal cell
shape. By computing the angle βmax according to this assumption, equation (4.30)
turns out to be a lower bound which is more realistic than the lower bound for the
“sphere packing” approach. Taking this into account, βmax can be computed from

S(1.0)
SLv

= Nsvq · S(II)
Cc̃

. (4.32)

Substituting (4.28) in (4.32) yields an equation from which the angular radius βmax

can be determined. Due to the integral, a direct computation is not straight forward.
It can, however, be solved numerically, e.g., by means of Newtons Method. Given
the computed angular radius βmax, the quantization distortion can be calculated
by numerically solving the integrals in (4.30). From the distortion, the SNR related
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Figure 4.8: Lv-dimensional quantization cell and quantization error vector e.

solely to Qsvq is

SNR(II)
svq =

E{‖c‖2}
D∗(II)

svq

=

βmax∫

0
(sin(β))(Lv−2) · dβ

βmax∫

0
(2 · sin(β/2))2 · (sin(β))(Lv−2) · dβ

(4.33)

since the mean of the squared absolute values of the normalized signal vectors c is

E{‖c‖2} = 1. (4.34)

4.2.4.2 Analysis of the “Idealized” LSVQ

As explained earlier, the combination of Qsvq and Qg leads to overall quantization
cells with a bottom and an upper side area and a height. Compared to Figure 4.5,
an example prototype overall quantization cell of the “idealized” LSVQ is shown for
Lv = 3 in Figure 4.8 where also the curvature of the sphere is considered. In order
to exactly compute the content of the bottom and the upper side content (B′′ in
the figure), the area content from (4.28) must be generalized for an arbitrary sphere
radius r′

S(II)
Cc̃

(r′) = V (1.0)
SLv−1

· (Lv − 1) ·
βmax∫

0

(r′ · sin(β))(Lv−2) · r′ · dβ (4.35)

It is assumed that the quantization reconstruction value for the gain factor related
to the overall codevector x̃, g̃ = 1.0, is in the middle of the quantization interval
∆g := ∆g(g̃ = 1.0) so that the sphere radius is in the range of

1− ∆g

2
≤ r′ ≤ 1 +

∆g

2
. (4.36)
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Correspondingly, the volume of the overall “prototype” quantization cell is

VCx̃
=

1+
∆g
2∫

1−
∆g
2

SCc̃
(r′)dr′

= V (1.0)
SLv−1

· (Lv − 1) ·

1+
∆g
2∫

1−
∆g
2

βmax∫

0

(r′ · sin(β))(Lv−2) · r′ · dβ · dr′.

(4.37)

With respect to all vectors x inside this cell, the distortion is

D∗(II)
lsvq = E{‖x− x̃‖2}

=

∫

x∈Cx̃

p(x) · ‖x− x̃‖2dx =

∫

x∈Cx̃

p(x) · ‖e‖2dx (4.38)

with the error vector e = x − x̃ as illustrated by the cut-out on the right side of
Figure 4.8. Further, it is assumed that the number of overall codevectors is high
enough so that the PDF p(x) of vectors x within the overall quantization cell is
constant (analog to (4.31)):

p(x) = const =
1

VCx̃

. (4.39)

With respect to Figure 4.8 or by applying the cosine rule, the absolute value of the
error related to all vectors x which are located inside the overall quantization cell,
‖e‖2, can be expressed as a function of β and r′:

‖e‖2 = (r′ · sin(β))2 + (1− r′ · cos(β))2 (4.40)

Substituting this in (4.38) yields the overall distortion,

D∗(II)
lsvq=

1+
∆g
2∫

1−
∆g
2

βmax∫

0
((r′ ·sin(β))2+(1−r′· cos(β))2)(r′ ·sin(β))(Lv−2)·r′ ·dβ ·dr′

1+
∆g
2∫

1−
∆g
2

βmax∫

0
(r′ · sin(β))(Lv−2) · r′ · dβ · dr′

(4.41)
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For the computation of the SNR, the variance of the signal x with respect to all
vectors located in the overall quantization cell is

E{‖x‖2} =

∫

x∈VCx̃

p(x)‖x‖2dx

=

1+
∆g
2∫

1−
∆g
2

βmax∫

0
r′2 · (r′ · sin(β))(Lv−2) · r′ · dβ · dr′

1+
∆g
2∫

1−
∆g
2

βmax∫

0
(r′ · sin(β))(Lv−2) · r′ · dβ · dr′

(4.42)

with p(x) from (4.39). Combining(4.41) and (4.42) leads to the SNR

SNR(II)
lsvq=

1+
∆g
2∫

1−
∆g
2

βmax∫

0
r′Lv+1 · (sin(β))(Lv−2)·dβ · dr′

1+
∆g
2∫

1−
∆g
2

βmax∫

0
((r′ ·sin(β))2+(1−r′ ·cos(β))2)(r′·sin(β))(Lv−2)· r′·dβ·dr′

. (4.43)

The final result is based on computations for the “prototype” overall quantization
cell. Because it was assumed that all spherical cells located around the unit sphere
surface are identical and due to (4.27), this result can be generalized for all cells
and hence LSVQ in general.
For a numerical evaluation of the presented results, given the number of spherical
codevectors Nsvq, the angular radius βmax can be calculated from (4.28) and (4.32)
in the first step. In the second step, with (4.23) and given the number of quan-
tization reconstruction levels Ng, the SNR related to LSVQ can be calculated by
numerically solving the integrals in (4.43). The derived expressions for the SNR
related to SVQ (4.33) and to LSVQ (4.43) are upper SNR bounds if the integrals
can be solved with sufficient precision. Note, however, that the assumption was
made for the sake of simplicity that the quantization reconstruction level g̃ is in the
middle of the gain quantization intervals. Due to the curvature of the sphere, the
respective codevector x̃ is not in the center of gravity of the cell which is suboptimal.

4.2.4.3 High Rate Approximations

In the following, approximations are introduced for high bit rate assumptions:

r′ ≈ 1.0 (4.44)

r′ · sin(β) ≈ sin(β) ≈ β (4.45)

1− r′ · cos(β) ≈ 1− r′. (4.46)
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These simplifications are related to the negligence of the curvature of the sphere
and enable to transform (4.35) and (4.32) into an expression to compute βmax

analytically as a function of Nsvq
2,

βmax =

(
2
√
π · Γ( Lv+1

2 )

Γ( Lv
2 ) · Nsvq

) 1
Lv−1

. (4.47)

The overall per vector distortion (4.41) for high bit rates is approximately3

D∗(III)
lsvq = E{‖x− x̃‖2} ≈

βmax∫

0
βLv dβ

βmax∫

0
β(Lv−2)dβ

+
∆2

g

12

=
Lv − 1

Lv + 1
· β2

max +
∆2

g

12

= E{‖c− c̃‖2} + E{|g − g̃|2}. (4.48)

The quantization errors related to the SVQ and the gain SQ part of LSVQ are
hence independent. This result is very intuitive since the error vector related to the
spherical codevectors (in tangential direction) and the quantization of the radius
(in radial direction) are orthogonal if the curvature of the sphere is negligible.
Substituting βmax from (4.47) and with the distortion related to A-Law SQ [JN84],

Dg =
Cg

N2
g

, (4.49)

(4.48) can be written as

D∗(III)
lsvq = Csvq · N

− 2
Lv−1

svq
︸ ︷︷ ︸

D∗(III)
svq

+ Cg · N−2
g

︸ ︷︷ ︸

Dg

(4.50)

with the constants

Csvq =
Lv − 1

Lv + 1
·
(

2
√
π · Γ( Lv+1

2 )

Γ( Lv
2 )

) 2
Lv−1

and Cg =
(1 + ln(A))2

12
(4.51)

By using the approximations rather than the exact solution, with respect to (4.41)4,
it can not be guaranteed that (4.50) is a bound. Therefore, all high rate results
must be considered as a performance estimate for LSVQ rather than a bound.

2The derivation of this equation is in detail explained in Appendix A.1
3The derivation of this equation is in detail explained in Appendix A.2
4By introducing the approximation for the sine function, the numerator and the denominator

are diminished simultaneously so that it is unknown whether the overall expression (4.41) is
increased or decreased.
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4.2.4.4 Optimal Bit Allocation

In order to find the optimal distribution of the overall bit rate to Qg and Qsvq,
the overall distortion (4.50) is minimized in a Lagrangian optimization, given the
constraint Nlsvq = Nsvq · Ng in (4.12). The auxiliary function is

χ =
Csvq

N
2

Lv−1
svq

+
Cg

N2
g

+ λ · (Ng · Nsvq −Nlsvq). (4.52)

Setting its partial derivatives with respect to Ng and Nsvq to zero and with (4.50)
an intermediate result5 is derived as

Dg
!
=

D∗(III)
svq

Lv − 1
. (4.53)

The optimal number of spherical codevectors and gain quantization reconstruction
levels is finally computed as

Nsvq =

(
1

Lv − 1
· Csvq

Cg

)Lv−1
2·Lv

· N
Lv−1

Lv
lsvq (4.54)

Ng =

(

(Lv − 1) · Cg

Csvq

)Lv−1
2·Lv

· N
1

Lv
lsvq. (4.55)

As the considered “prototype” quantization cell is located around the surface of
the unit sphere, for high bit rates, the per vector variance of signal vector x is
approximately E{‖x‖2} ≈ E{‖c‖2} = 1 since g̃ = 1. After substituting (4.54) and
(4.55) in (4.50), the overall logarithmic SNR in dB as a function of the overall bit
rate per vector coordinate Reff, lsvq for high bit rates is6

SNR(III)
lsvq |dB = 6.02 · Reff, lsvq

− 10 log10

(
Lv

(Lv−1)
Lv−1
Lv

·
[

2
√
π
Γ( Lv−1

2 )

Γ( Lv
2 )

] 2
Lv

[
(1 + ln(A))2

12

] 1
Lv

)

.
(4.56)

Considering the asymptotic case for infinite dimensions, it can be shown that

lim
Lv→∞

SNR(III)
lsvq |dB = 6.02 · Reff,lsvq. (4.57)

As a conclusion, LSVQ asymptotically reaches the rate distortion function for un-
correlated Gaussian sources for high bit rates and infinite dimensions. Note that
an intuitive explanation for this behavior is presented in Section 4.3.6.

5The derivation of these equations is in detail explained in Appendix A.3
6The derivation of this equation is in detail explained in Appendix A.4
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Figure 4.9: LSVQ SNR plots for dimensions Lv = 2, 8, 48 over the effective bit rate.
In addition, SNRQ,nu,A|dB (3.22) (A-Law non-uniform SQ, LSVQ for Lv = 1) and

limLv→∞ SNR
(III)
lsvq |dB (identical to rate distortion function for memoryless Gaussian

sources) are shown as reference curves. All results have been produced for A = 5000.

4.3 Evaluation of the Theory

The theoretical results related to SVQ and LSVQ presented previously, denoted as
the operational SVQ and LSVQ rate distortion functions, shall be evaluated in the
following. For this purpose, SNR plots for different dimensions Lv and effective
bit rates Reff,lsvq and Reff,svq are presented. In all evaluations the constant A (also
refer to Chapter 3.1.1.5) is set to a fixed value of

A = 5000. (4.58)

This value is chosen as an example here since it has been identified in informal
listening tests in the context of the audio codecs described in Chapter 6 as a rea-
sonable trade-off to achieve a high quantization performance as well as that the
quantization noise is inaudible in signal pauses.

4.3.1 SNR Plots related to LSVQ

At first SNR plots for the high rate approximations, SNR(III)
lsvq |dB according to (4.56),

and for the exact result SNR(II)
lsvq |dB according to (4.43) are shown for different

effective bit rates Reff,svq and dimensions Lv = 2, Lv = 8 and Lv = 48 in Figure 4.9.
For the computation of the exact SNR according to (4.43), in the first step, given a
value for Nsvq, the angular radius βmax from (4.28) and (4.32), and the distortion
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Figure 4.10: SNR for SVQ in dB for dimensions Lv = 2, 8, 48 over the effective bit rate
Reff,svq.

D∗(II)
svq from (4.30) are computed. Based on the intermediate result (4.53) from the

derivation of the optimal bit allocation, in the second step, Dg is computed from

D∗(II)
svq to determine ∆g in (4.43) and Ng (4.49). The asymptotic value for Lv →∞

which is also the rate distortion function for memoryless Gaussian sources and the
SNR related to A-Law SQ as the special case for LSVQ with Lv = 1 are shown as
reference curves.
The quantization performance increases for higher dimensions. Compared to the
case of Lv = 1, already very low values for Lv provide a significant benefit. A clear
difference between the high rate approximation and the exact solution is visible for
low bit rates.

4.3.2 SNR Plots related to SVQ

A relevant tool for the assessment of the suitability of spherical codes for SVQ is the
SNR curve for Qsvq. The SNR plots in Figure 4.10 for dimensions Lv = 2, Lv = 8
and Lv = 48 and different effective SVQ bit rates Reff,svq = log2(Nsvq)/Lv are

based on the distortion D∗(II)
svq determined according to the exact solution (4.30)

with the angular radius computed from (4.28), and the high rate approximation
D∗(III)

svq as the first part of (4.48). From the distortion, the SNR is computed with
(4.34). A difference between the exact SNR and the high rate approximation is
only visible for low bit rates. An interesting outcome of the diagram is that the
SNR grows faster than the 6-dB-per bit rule for lower values of Lv. The reason
for this behavior is that the bit rate per vector coordinate is computed from the
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Figure 4.11: Offset of quantization performance of LSVQ in comparison to the 6-dB-
per-bit bound.

dimension Lv whereas the SVQ is designed for a (Lv − 1)-dimensional surface area
and the relative difference between Lv and (Lv − 1) is more significant for lower
values of Lv than for higher. For infinite dimension, the SNR would exactly follow
the 6-dB-per-bit rule.

4.3.3 SNR over Dimension

In Figure 4.11, the difference of SNR(III)
lsvq for finite dimensions (4.56) and the asymp-

totic SNR for infinite dimensions (4.57),

O(Lv)= lim
Lv→∞

SNR(III)
lsvq |dB − SNR(III)

lsvq |dB, (4.59)

(SNR(III)
lsvq |dB is a function of Lv) is shown as a function of the vector dimension

Lv. For quantization in practice, this result indicates that, on the one side, an
increase of performance can be achieved by increasing the dimension Lv. However,
on the other side, the highest performance gain due to an increase of the dimension
is achieved for low values. Taking into account also that vector quantizers with
higher dimensions in general are connected to nearest neighbor codevector search
procedures with higher computational complexity and memory consumption, at
moderate dimensions already the additional computational effort involved in the
increase of the VQ dimension may no longer be justified. Given the results from
Section 3.1.2, the asymptotic performance of entropy constrained SQ for high bit
rates is approximately outperformed for Lv > 26. A variant of LSVQ where large
vector dimensions are achieved by means of concatenation of spherical codes to
increase the overall SNR is in detail discussed in Section C.3 of the supplement
document [Krü09].

4.3.4 Visualization of the Spherical Code Quality

A valuable tool for the assessment of the quality of different spherical codes for SVQ
is the visualization of the distribution of the quantization error related to Qsvq as
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it contains information about the average spherical quantization cell shape. Since
a direct visualization of multivariate distributions is not possible for Lv > 2, the
tool is based on indirect measures related to distribution of the absolute value of
the quantization error. Given a specific SVQ proposal, the histogram of measured
absolute values of quantization error vectors in comparison to the theoretical dis-
tribution computed for the assumption of spherical cap quantization cells yields a
qualitative evaluation criterion.
In order to get the reference of the theoretically achievable distribution of the abso-
lute value of the quantization error for the “idealized” SVQ, it is assumed that the
normalized vectors c are uniformly distributed within each spherical quantization
cell with the PDF

p(c) =







1

S
(II)
Cc̃

if c ∈ Cc̃

0 otherwise
(4.60)

with S(II)
Cc̃

from (4.28). The distribution of the absolute value of the quantization
error vectors can be computed as the probability that a vector c is located on the
surface of a ((Lv−1)-dimensional) shell around the codevector c̃ with radius ‖c− c̃‖
(and of course on the surface of the unit sphere simultaneously)7. The ((Lv − 1)-
dimensional) shell has a radius of rβ = sin(β) so that the theoretical distribution
of the absolute value of the quantization error vectors can be written as a function
of the angular radius β (see Figure 4.6) as

p(‖c− c̃‖) =











p(c) · S
(rβ)

SLv
= (sin(β))(Lv−2)

βmax∫

0
(sin(β′))(Lv−2)dβ′

for 0 ≤ β ≤ βmax

0 else

. (4.61)

An example PDF of the absolute value of the quantization error vector for Lv = 8
and Nsvq = 502 is given in Figure 4.12. Under the idealized assumption that
all spherical cap quantization cells are identical, non-overlapping and cover the
complete surface of the unit sphere, the PDF increases until the maximum value is
reached for β = βmax. This maximum is at the same time the outer boundary of
the spherical cap cell. Outside the spherical cap this PDF is of course zero. Given
the PDF of the absolute value of the error vector, in analogy to (4.30), the SVQ
quantization distortion is

E{‖c− c̃‖2} =

βmax∫

0

p(‖c− c̃‖) · (2 · sin(β/2))2

︸ ︷︷ ︸

‖c−c̃‖2

dβ (4.62)

7In a three-dimensional configuration this ((Lv − 1)-dimensional) shell would be circles which
concentrically surround the codevectors of each cell and are restricted to be located on the surface
of the three-dimensional unit sphere.
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Figure 4.12: Example of the PDF of the absolute value of the quantization error vector
p(‖c − c̃‖) over angle β for Lv = 8, A = 5000, Nsvq = 502 and βmax = 0.56.

Given a measured histogram of the absolute value of the quantization error, the
assessment of the code quality is based on a comparison to the theoretically achiev-
able distribution given in Figure 4.12. The more similar the measured distribution
is to the theoretic curve, the higher is quality of the spherical code for quantization.

4.3.5 Optimal Bit Allocation

The optimal bit allocation from (4.56) is illustrated by Figure 4.13 where different
bit allocation mismatch situations are investigated for Lv = 8 and A = 5000. Given
a fixed value of Nsvq, the optimal number of quantization reconstruction levels
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Figure 4.13: SNR for LSVQ with a bit allocation mismatch for Lv = 8 and A = 5000.
The mismatch factor 0.2 ≤ ξ ≤ 10 is used to parameterize different points of operation.
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for the gain factor can be computed according to (4.54) and (4.55) as Ng. The
mismatch is achieved by computing a suboptimal number

N ′
g = ξ · Ng (4.63)

to be used for LSVQ for different values of the mismatch coefficient ξ. Based on
N ′

g and Nsvq a bit rate as

Reff, lsvq = 1/Lv · log2(N ′
g · Nsvq) (4.64)

and the SNR from the distortion according to (4.50) are computed to produce points
of the solid lines in the figure.
Two SNR curves have been determined for Nsvq = 256 and Nsvq = 4096 in Figure
4.13, parameterized by the mismatch factor 0.2 ≤ ξ ≤ 10 as indicated by the black
arrows. In addition the maximum achievable SNR in dB for LSVQ according to
(4.56) (which was computed for the assumption of the optimal bit allocation and
arbitrary values of Nsvq) is shown for Lv = 8 and different effective bit rates as the
dotted line. Obviously, the higher the number Ng, the higher is also the quantization
SNR and the overall bit rate. The most efficient and therefore optimal configuration
in rate distortion sense, however, is achieved at the positions where the two curves
touch the dotted line. These points are reached for ξ = 1.0.

4.3.6 Plausibility for Infinite Dimension

According to (4.57), for infinite dimension, LSVQ reaches the rate distortion func-
tion for Gaussian sources. This result is at the first glance not necessarily obvious
since LSVQ was introduced only as an approximation of the optimal codevector
density in (4.1) but can be well understood due to the “Sphere Hardening” effect
[GS88]: Recalling the results from high rate VQ theory, for infinite dimension, the
quantizer codevector density function is

lim
Lv→∞

λLv (x) = p(x) (4.65)

This density is related to a vector x but can be transformed also into a sphere
density which is a function of the absolute value of vector x in analogy to Section
4.3.4

λLv,sp(‖x‖) = λLv (x) · SSLv
(‖x‖) (4.66)

with SSLv
(‖x‖) as the surface area content of a sphere with radius ‖x‖. The sphere

density λLv,sp(‖x‖) for different dimensions Lv is depicted in Figure 4.14 for the
assumption of a Gaussian source with

σ2
x =

1

Lv
(4.67)
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Figure 4.14: (Qualitative) sphere density function computed for the Gaussian PDF for
dimensions Lv = 2, Lv = 8, Lv = 128, and Lv = 256.

in order to achieve a unit mean absolute value of signal vectors independently from
the vector dimension. With increasing dimensions the sphere density function more
and more has the characteristic of a peak around ‖x‖ = 1.0 which asymptotically
approaches a Dirac. This result is actually well-known as for long analysis segments
the short-term power of a stochastic signal tends to be identical to the variance of
the signal if stationary. For LSVQ, this effect can be interpreted such that given
a stationary Gaussian source and for infinite dimensions, according to the optimal
codevector density, all codevectors should be located on the surface of the same
unit sphere and hence Ng = 1.

4.4 LSVQ Application Examples

In the following, three realizations of LSVQ based on different spherical codes shall
be explained and investigated at first. In the second step, measured quantization
results will be presented and rated in the context of the theoretical results from
Section 4.2.
Numerous contributions have been made on applications of spherical quantization,
starting with [Pea79], and [BJ79] where quantization concepts based on a rep-
resentation in polar coordinates for bivariate circularly symmetric densities were
proposed. This concept was generalized to multi-dimensional spherical quantiza-
tion in polar coordinates in [ST83]. Considering lattice based spherical quantization
for speech coding, SVQ realizations were proposed based on the eight-dimensional
Gosset Lattice [ALL84], binary and Reed-Muller codes [AL87], the 16-dimensional
Barnes-Wall Lattice [LAMM89], and the 24-dimensional Leech Lattice [AB88].
These concepts were part of a hunt for vector quantizers of very high dimension
with low bit rates finally resulting in the algebraic codebooks already mentioned at
the beginning of this chapter. Outside the speech coding community, applications
of lattice based SVQ have also been investigated, e.g., in [SG93] where the Gosset
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Lattice is proposed as one application of SVQ for the purpose of image sequence
coding. As an additional output of the theoretical work of Hamkins [Ham96], SVQ
based on two spherical codes, denoted as Wrapped [HZ97a] and Laminated [HZ97b]
Lattices, was proposed.
Besides lattice based approaches contributions have also been made on unstructured
spherical codes. For example in [GHSW87], the design of a spherical code based
on a simulated annealing approach is described for the purpose of channel coding.
As an appendix of the referenced paper, the Apple Peeling spherical code was in-
troduced. A novel application of the Apple Peeling principle for SVQ for source
coding is given in [KV06b] and [KV06a]. A very similar principle is the basis for
another approach for SVQ, denoted as Spherical Logarithmic Quantization (SLQ),
as proposed in [HM04], [MBH06], and [Mat07].
In the following section, three realizations of SVQ will be presented: The first can-
didate, SVQ (A), is based on a generalization of the Gosset Lattice. It achieves a
very high quantization performance for memoryless sources and dimensions which
are multiples of eight. The second candidate, SVQ (B), is a generalization of the
algebraic codebooks and the basis for various standardized speech codecs designed
for very low bit rates. The last candidate, SVQ(C), is based on the mentioned Ap-
ple Peeling code and the most flexible approach. This candidate is also well suited
for the quantization of correlated signals with low computational complexity (see
Section 6.1).
New computationally efficient nearest neighbor codevector search procedures and
index to codevector mapping algorithms will be proposed in the following and in
Section D of the supplement document [Krü09]. Therefore, all three approaches
have a high relevance for applications of source coding in practice. The different
candidates for SVQ principally can be combined with logarithmic (A-Law) SQ of
the gain factor following the parallel, the sequential, or the joint approach as de-
scribed in Section C of the supplement document [Krü09].
In this chapter only the basic principle of the approaches SVQ (A) and SVQ (B)
shall be presented. More details on these approaches and the algorithms for near-
est neighbor quantization are provided in Section D of the supplement document
[Krü09].

4.4.1 SVQ (A): Gosset Low Complexity Vector Quantizer
(GLCVQ)

The Gosset Low Complexity Vector Quantizer (GLCVQ) is based on codevectors
taken from a generalized version of the eight-dimensional Gosset Lattice E8 which
was at first described in [Gos00]. In contrast to other approaches from the litera-
ture based on the Gosset Lattice, the GLCVQ is applicable in various dimensions.
Novel nearest neighbor quantization procedures which can be realized with very
low complexity and memory consumption even for higher bit rates and dimensions
are in detail explained in [KGV08] and Section D.2 of the supplement document
[Krü09].
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The Gosset Lattice is known to have the highest possible density of vectors in eight
dimensions (providing a solution for the Kissing Number Problem [Bli35]). In order
not to be restricted to this dimensionality, the GLCVQ is based on the generaliza-
tion of the Gosset Lattice for arbitrary dimensions.
The GLCVQ is principally based on a lattice (Lattice VQ, LVQ) but, as a can-
didate for SVQ, it can be efficiently realized as a permutation code VQ (PCVQ).
Both, LVQ and PCVQ, are more in detail explained in Section B of the supplement
document [Krü09].

4.4.1.1 The GLCVQ Spherical Codebook

The Gosset Lattice is defined as the superposition of the checkerboard lattice DLv

and a shifted version thereof for Lv = 8,

ELv := DLv ∪
(

DLv + v

)

, v =
[

1
2 . . . 1

2

]T
. (4.68)

The checkerboard lattice is defined as

DLv :=

{

x =
[

x0 . . . xLv−1

]T ∈ Z
Lv : (

Lv−1
∑

i=0

xi)mod 2 ≡ 0

}

. (4.69)

Both formulas (4.68) and (4.69) can be easily generalized for arbitrary dimensions
Lv. Lattice vectors with a constant distance to the origin define a shell of a lattice,

S. Different shells of the Gosset Lattice are labeled S(ELv )

N(A)
with the code construc-

tion parameter N(A) = 1, 2, · · · ∈ N as the shell index. For Lv being a multiple of

eight, the shell radius is r
(ELv )

N(A)
=

√

2 · N(A) and the vectors located on each shell

are defined as

S(ELv )

N(A)
:= {x ∈ ELv : ‖x‖ = r

(ELv )

N(A)
}. (4.70)

A Gosset Lattice spherical codebook, X̃ (ELv )

svq,N(A)
, is composed of all vectors related to

a specific shell with index N(A), normalized to have unit absolute value,

X̃ (ELv )

svq,N(A)
:= {c̃ =

x
√

2 · N(A)
∀ x ∈ S(ELv )

N(A)
} (4.71)

An example for shells of a lattice for the D2 lattice is shown in Figure 4.15. The
number of codevectors located on a shell of the ELv lattice is

N
(ELv )

svq,N(A)
= |X̃ (ELv )

svq,N(A)
| (4.72)

and is a function of N(A). Examples for the number of codevectors for different
values of N(A) for the E16 lattice are listed in Table 4.1 together with the effective
bit rate

R
(E16)
eff,svq,N(A)

=
1

16
· log2(N

(E16)
svq,N(A)

) (4.73)
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r
(D2)
1 S(D2)

3

Figure 4.15: Example to illustrate three shells of the D2 lattice. The radius of the inner

most shell is labeled as r
(D2)
1 , the third shell as S

(D2)
3 .

Shell index, Number of codevectors, Effective bit rate per coordinate,

N(A) N
(E16)
svq,N(A)

R
(E16)
eff, svq,N(A)

1 480 0.556

2 61920 0.994

3 1050240 1.25

4 7926240 1.432

5 37500480 1.572

6 135480960 1.688

7 395301120 1.784

8 1014359200 1.86

9 2296875360 1.943

10 4837451920 2.02

15 82051050240 2.26

20 619245426240 2.44

Table 4.1: Codebooks related to different shells of the 16-dimensional (generalized) Gosset
Lattice E16.

in bits per vector coordinate to address all spherical codevectors for Lv = 16.

Note that if the vector dimension is not multiples of eight, the vectors produced in
the context of the checkerboard lattice (first part of (4.68)) and those produced by
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the shifted version of the checkerboard lattice (second part of (4.68)) are not located
on shells with the same radius (4.70). In this case, a codebook can be determined
but the codevectors are not from the Gosset Lattice but from the checkerboard
lattice DLv instead, and the resulting quantization performance is somewhat lower.
Also, codevectors are not necessarily located on all shells with the radius according
to (4.70) for lower dimensions.
The GLCVQ has recently been proposed as part of the speech and audio codec that
has been submitted to ITU-T by Huawei and ETRI as a candidate for the upcoming
super-wideband and stereo extensions of Rec. G.729.1 and G.718 [GKL+09].

4.4.2 SVQ (B): Algebraic Low Bit Rate Vector Quantizer
(ALBVQ)

The algebraic low bit rate vector quantizer (ALBVQ) is a modification of the vector
codebooks employed in speech coding known as the algebraic codebooks. Those were
designed principally for very low bit rates to quantize the linear prediction residual
signal in linear predictive coding [LASM90].
In order to be efficiently applicable for higher bit rates and for quantization in
general, new nearest neighbor quantization procedures and codeword-to-codevector
mapping algorithms are proposed and in detail explained in Section D.3 of the
supplement document [Krü09]). These new techniques deviate from those known
from the literature. In this section only the basic principle of the ALBVQ vector
quantizer will be briefly summarized. Very similar to the GLCVQ, the high coding
efficiency of this approach is based on the fact that the ALBVQ can be realized as
a permutation code VQ (refer to Section B.2 of the supplement document [Krü09]).

4.4.2.1 The ALBVQ Spherical Codebook

The algebraic codebook is defined as the amount of codevectors that can be con-
structed by setting a specific number of ternary pulses at arbitrary positions. In
practice, the number of ternary pulses which have non-zero amplitudes is often
very low, therefore these codebooks are often referred to as sparse codebooks. An
example codevector of length Lv = 16 is shown in Figure 4.16. Among all available
positions, at positions νpos,0 = 4 and νpos,1 = 7 ternary pulses are set to the ampli-
tude of xνpos,0 = +1 and xνpos,1 = −1. The number of non-zero constant amplitude
pulses is the code construction parameter N(B) with N(B) = 2 in the example in the
figure. Among the Lv positions in the pulse train, not all are necessarily allowed.
Therefore Ipos is defined as the amount of valid positions with

νpos,κ ∈ Ipos = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} (4.74)

in the example of the figure to allow all positions. If all positions are allowed with
a maximum of one pulse to be set at each position8, valid codevectors are defined

8This restriction is not necessarily given in standardized speech codecs which are based on
algebraic codebooks.
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Figure 4.16: Algebraic codevector: Example with ternary pulses at two positions.

as

S(ALv )

N(B)
:=

{

x =
[

x0 . . . xLv−1

]T ∈ Z
Lv : xi ∈ {−1, 0, 1} :

Lv−1
∑

i=0

|xi| = N(B)

}

.

(4.75)

In this case all valid codevectors x are located on the surface of a sphere with radius

r
(ALv )

N(B)
=

√

N(B). The spherical codebook X̃ (ALv )

svq,N(B)
is composed of all vectors in

S(A)
N(B)

, normalized to have unit absolute value,

X̃ (ALv )

svq,N(B)
:= {c̃ =

x
√

N(B)
∀ x ∈ S(ALv )

N(B)
} (4.76)

The number of codevectors depends on the vector dimension Lv and the number
N(B) of ternary pulses to be set. In Table 4.2 this number is listed together with
the corresponding effective bit rate

R
(A16)
eff,svq,N(B)

=
1

16
· log2(N

(A16)
svq,N(B)

) (4.77)

in bits per vector coordinate for Lv = 16 to address all codevectors and different
values of N(B). In contrast to the GLCVQ where the number of codevectors more or
less monotonically increases for increasing values of the code construction parameter
N(A), in this case, the number of codevectors increases with increasing values of
N(B), then reaches a maximum number and finally decreases to reach an effective

bit rate of R
(ALv )

eff,svq,N(B)
= 1 if N(B) = Lv. In this case, only the signs of the pulses

at all position are coded.

4.4.3 SVQ (C): Apple Peeling Vector Quantizer (APVQ)
The Apple Peeling spherical code was introduced originally as a channel code in
[GHSW87]. In order to employ the same spherical code for VQ, efficient quantiza-
tion algorithms (also in combination with linear prediction), codebook representa-
tions, and index-to-codeword mapping algorithms have been proposed in [KV06b]
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Number pulses, Number of codevectors, Effective bit rate per coordinate,

N(B) N
(A16)
svq,N(B)

R
(A16)
eff,svq,N(B)

1 32 0.3125

2 480 0.5566

3 4480 0.758

4 29120 0.9268

6 512512 1.18

8 3294720 1.353

10 8200192 1.435

12 7454720 1.426

14 1966080 1.3

15 524288 1.187

16 65536 1

Table 4.2: Number of codevectors for the 16-dimensional ALBVQ as a function of the
number of ternary pulses.

and [KV06a]. The resulting LSVQ is denoted as the Apple Peeling Vector Quan-
tizer (APVQ). Due to its high coding efficiency, the APVQ is also the basis for the
SCELP and the W-SCELP low delay audio codecs which will be described in Chap-
ter 6. The principle of the APVQ shall at first be explained based on the example
for Lv = 3 and will then be generalized for arbitrary dimensions afterwards.
A specific nearest neighbor quantization procedure as for SVQ(A) and (B) does
not exist. Instead, a low complexity quantization procedure for memoryless sources
can be derived from the weighted vector search explained in the context of CELP
coding in Section E.1 of the supplement document [Krü09].
The APVQ can be realized by means of history specific uniform quantization in
polar coordinates. The term history specific indicates that different uniform scalar
quantizers are employed for each polar coordinate depending on the history of pre-
viously quantized polar coordinate(s). The impact of the uniform scalar quantizers
for all polar coordinates will be analyzed in the context of the resulting overall

spherical vector codebook X̃ (APLv )

svq,N(C)
in the following.

4.4.3.1 Cartesian to Polar Coordinate Transform

The Apple Peeling spherical code is related to a representation of vectors in polar
coordinates. Therefore, the cartesian to polar coordinate transform plays an im-
portant role for the construction of the APVQ codevectors and is shortly reviewed.
A vector given in cartesian coordinates,

xcartesian =
[

x0 x1 . . . xLv−1

]T
, (4.78)
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is written in polar coordinates as

xpolar =
[

rx ϑx,0 . . . ϑx,(Lv−2)

]T
. (4.79)

The polar coordinates based representation is composed of a radius rx and (Lv−1)
angles ϑx,ν . Given the normalized vector c from (4.6), the radius is rc = 1 . Since
the spherical codevectors to be constructed in the following are all located on the
surface of a unit sphere, we will mainly focus on the angles ϑc,ν for normalized
vectors c in the codevector definition.
In order to cover the complete surface of a unit sphere in Lv dimensions, the angles
are in the range of

ϑc,ν ∈
{

[0,π] for ν (= 0

[0, 2π) for ν = 0
(4.80)

Given a polar representation of a vector c and thus angles ϑc,ν , in order to recon-
struct all coordinates of vector c in cartesian coordinate representation, a recursive
algorithm to calculate all cartesian coordinates for decreasing indices
ν = (LV − 2), . . . , 0 can be written as (e.g. [Coo52]):

cLv−2−ν = cos(ϑc,ν) · rc,ν+2

rc,ν+1 = sin(ϑc,ν) · rc,ν+2. (4.81)

Finally, the coordinate with index (Lv − 1) is reconstructed as

cLv−1 = rc,1. (4.82)

Since vector c has unit length, the start value for the radius is

rc,Lv = rc = 1.0. (4.83)

This algorithm can be interpreted as follows: According to (4.81), for each ν, a
vector of length rc,ν+2 and dimension ν + 2 is decomposed into a height cLv−2−ν

and a projection of the vector into a plane of dimension ν + 2 − 1 spanned by all
remaining coordinates cLv−2−ν+1, cLv−2−ν+2, . . . , cLv−1. The height cLv−2−ν is
calculated in the first, and the length of the projected vector in the second part of
(4.81).
In Figure 4.17, an example for the polar to cartesian coordinate transform for a
normalized vector c is shown for Lv = 3 with rc,3 = 1.0 and

c0 = cos(ϑc,1) · rc,3 rc,2 = sin(ϑc,1) · rc,3

c1 = cos(ϑc,0) · rc,2 rc,1 = sin(ϑc,0) · rc,2

c2 = rc,1 (4.84)
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Figure 4.17: Polar to cartesian coordinate transform, example for Lv = 3.

Given a normalized vector c in cartesian coordinates, the recursive algorithm (4.81)
can also be used the other way around to calculate all angles in the polar represen-
tation for ν = (LV − 2), . . . , 0:

ϑc,ν = arccos

(
cLv−2−ν

rc,ν+2

)

rc,ν+1 = sin(ϑc,ν) · rc,ν+2 (4.85)

with the start value given in (4.83).

4.4.3.2 The APVQ Spherical Codebook for Lv = 3

The construction of the codevectors c̃ of the APVQ will be shown for the example
of Lv = 3. The design target of the codevector construction is to place all spherical
codevectors uniformly on the surface of the unit sphere. The overall number of
spherical codevectors depends on the choice of code construction parameter N(C)

to be defined in the following.
For the explanation of the code construction, the upper half of an exemplary unit
sphere is shown in Figure 4.18 for Lv = 3. It is sufficient to show the upper half of
the sphere only because the codevectors are generated symmetrically on the upper
and the lower half. In the figure, the angles ϑc̃,0 and ϑc̃,1 are shown in analogy to
Figure 4.17. The big black dots labeled as c̃a-c̃e are example spherical codevectors.
For the construction of codevectors in three dimensions, at first, the angle ϑc̃,1 ∈
[0,π] is uniformly quantized. In this context, the code construction parameter N(C)

is defined as the number of reconstruction levels at the positions

ϑ̃
(mϑ1

)

c̃,1 = (mϑ1 +
1

2
) · π

N(C)
with 0 ≤ mϑ1 < N(C) (4.86)
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Figure 4.18: Construction of Apple Peeling spherical codevectors, example for Lv = 3
and N(C) = 5.

yielding constant angle quantization intervals of width

∆ϑc̃,1
=

π

N(C)
(4.87)

Considering the transform from polar to cartesian coordinates in (4.81), based on
the quantizer reconstruction levels for the first angle also the first cartesian coordi-
nate of the codevectors can be computed as

c̃
(mϑ1

)

0 = cos(ϑ̃
(mϑ1

)

c̃,1 ) (4.88)

By quantizing their first cartesian coordinate, all codevectors are restricted to be
located on one among N(C) planes which are parallel to the c1-c2-plane at heights of

c0 = c̃
(mϑ1

)

0 for 0 ≤ mϑ1 < N(C). Combining these planes with the sphere surface,
circles S∗

(mϑ1
) are the result which are depicted in the figure for mϑ1 = 0, 1, 2. The

closest distance from one circle to its neighbor is δ1 as shown in the figure,

δ1 = 2 · sin(∆ϑc̃,1
/2) · rc̃ = 2 · sin(∆ϑc̃,1

/2) ≈ ∆ϑc̃,1
=

π

N(C)
(4.89)

with rc̃ = 1 because all codevectors have unit absolute value. The approximation of
the distance by the circular arc is made because ∆ϑc̃,1

is assumed to be very small.

The radius r
(mϑ1

)

c̃,2 of each circle S∗
(mϑ1

) is the projection of the overall radius rc̃

according to the second part of (4.81) and depends on the quantization index mϑ1

r
(mϑ1

)

c̃,2 = sin(ϑ̃
(mϑ1

)

c̃,1 ) · rc̃ = sin(ϑ̃
(mϑ1

)

c̃,1 ) (4.90)
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In the next step, the angle ϑc̃,0 is quantized to ϑ̃c̃,0. Again, a uniform quantization

is employed here with N
(mϑ1

)
as the (yet unknown) number of quantization recon-

struction levels which may be different for each of the circles S∗
(mϑ1

) with index

mϑ1 . With respect to the overall range of angle ϑc̃,0 ∈ [0, 2π), the quantization
reconstruction levels are

ϑ̃
(mϑ1

,mϑ0
)

c̃,0 = (mϑ0 +
1

2
) · 2 · π

N
(mϑ1

)
. (4.91)

with 0 ≤ mϑ0 < N
(mϑ1

)
. The corresponding quantization interval width is

∆
(mϑ1

)

ϑc̃,0
=

2 · π
N

(mϑ1
)
. (4.92)

Given the quantization index mϑ0 , all remaining coordinates of the spherical code-
vectors can be calculated in analogy to (4.81) as

c̃
(mϑ1

,mϑ0
)

1 = cos(ϑ̃
(mϑ1

,mϑ0
)

c̃,0 ) · r
(mϑ1

)

c̃,2

c̃
(mϑ1

,mϑ0
)

2 = sin(ϑ̃
(mϑ1

,mϑ0
)

c̃,0 ) · r
(mϑ1

)

c̃,2 . (4.93)

Each spherical codevector is identified uniquely by a tuple of indices
[

mϑ1 mϑ0

]

.

Note that the variable N
(mϑ1

)
is still unknown. In order to compute it, the quanti-

zation interval ∆
(mϑ1

)

ϑc̃,0
is transformed into a distance on the sphere surface between

adjacent codevectors on each circle, δ
(mϑ1

)

0 . In analogy to (4.89), this distance can
be approximated by the circular arc

δ
(mϑ1

)

0 ≈ ∆
(mϑ1

)

ϑc̃,0
· r

(mϑ1
)

c̃,2 =
2 · π

N
(mϑ1

)
· r

(mϑ1
)

c̃,2 (4.94)

Recalling the global target to distribute codevectors uniformly over the surface of
the sphere, the Apple Peeling constraint specifies that the distance between circles
(4.89) shall be identical to the distance between the codevectors on each circle
(4.94),

δ
(mϑ1

)

0
!
= δ1 ≈

π

N(C)
, (4.95)

exemplified in Figure 4.18. Since N
(mϑ1

)
must be an integer, it is computed as

N
(mϑ1

)
= 42 · N(C) · sin(ϑ̃

(mϑ1
)

c̃,1 )5. (4.96)

and is a function of the quantization history which is the quantized angle ϑ̃
(mϑ1

)

c̃,1
here.
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4.4.3.3 Generalization of the APVQ for Arbitrary Dimensions

In order to generalize the concept described for Lv = 3 to arbitrary dimensions, the
aggregation of indices for previously quantized angles is written as one vector Ξν

(the quantization history) for the purpose of simplification of the notation,

Ξν =
[
mϑLv−2

mϑLv−3
. . . mϑν

]T
. (4.97)

In addition, a partial codevector is defined as

c̃(Ξν ) =
[

c̃(Ξν )
0 c̃(Ξν )

1 . . . c̃(Ξν )
(Lv−1−ν)

]T
. (4.98)

For the construction of the APVQ codevectors, a recursive algorithm is defined in
Figure 4.19 with the start values

ν = (Lv − 2)

Ξν+1 = Ξ(Lv−1) =
[ ]

r
(Ξν+1)
c̃,ν+2 = r

(Ξ(Lv−1))

c̃,Lv
= rc̃ = 1.0

c̃(Ξν+1) = c̃
(Ξ(Lv−1))

=
[ ]T

N (Ξν+1) = N
(Ξ(Lv−1))

= N(C). (4.99)

The described procedure can also be interpreted in the context of a code construc-
tion tree as shown in Figure 4.20 for the example of Lv = 3. Each node in the tree
(except for the root) corresponds to one step of the recursive algorithm. From each
node, each branch represents one index value mϑν . The copy and update function-
ality is shown for the history Ξν and the partial codevector c(Ξν ) for two example
nodes. Each of the leafs of the codevector tree corresponds to one spherical code-
vector. This tree representation of the codevector construction will also be reviewed
for the development of the efficient quantization procedure described in Section E.1
of the supplement document [Krü09]. Note that for an efficient employment of the
APVQ for quantization, a compact version of the overall vector codebook must be
stored based on a technique published in [KV06a]. The proposed technique enables
an exemplary reduction of the required read-only-memory (ROM) by a factor of
approximately 1390 compared to conventional lookup tables.

Given a value N(C), the number of spherical codevectors N
(APLv )

svq,N(C)
cannot be calcu-

lated analytically. In Table 4.3, for the example of Lv = 16 and different values of
N(C), the number of spherical codevectors is presented together with the effective
bit rate

R
(AP16)
eff,svq,N(C)

=
1

16
· log2(N

(AP16)
svq,N(C)

) (4.114)

in bits per vector coordinate.
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Recursive Algorithm to Generate Apple Peeling Codevectors

1. Produce the indices for the quantization of the angle ϑc̃,ν ,

mϑν = 0 . . . (N(Ξν+1) − 1). (4.107)

2. For each index mϑν ,

• create an updated copy of the quantization history Ξν+1,

Ξν =
[

Ξν+1 mϑν

]

, (4.108)

• produce the quantized angles (uniform SQ) in analogy to (4.86)

ϑ̃
(Ξν )
c̃,ν = (mϑν +

1

2
) ·

1

N(Ξν+1)
·

{

2 · π if ν = 0

π if ν #= 0
, (4.109)

• calculate the next cartesian coordinate and create an updated copy of the

partial codevector cΞν+1

c̃
(Ξν )
Lv−2−ν = cos(ϑ̃

(Ξν )
c̃,ν ) · r

(Ξν+1)
c,ν+2

c̃(Ξν ) =
[

c̃(Ξν+1) c̃
(Ξν )
Lv−2−ν

]T
, (4.110)

• update the radius for each projection onto a sub sphere in analogy to (4.90),

r
(Ξν )
c̃,ν+1 = sin(ϑ̃

(Ξν )
c̃,ν ) · r

(Ξν+1)
c̃,ν+2 , (4.111)

• update the number of quantization reconstruction levels for the next angle in

analogy to (4.96)(N(Ξ0) is not required),

N(Ξν ) =







$2 · N(Ξν+1) · sin(ϑ̃
(Ξν )
c̃,ν )% if ν = 1

$N(Ξν+1) · sin(ϑ̃
(Ξν )
c̃,ν )% if ν > 1

, (4.112)

• if ν > 0: for each copy of the history and the partial codevector, restart
the algorithm in 1. with ν = ν − 1 (reduce the dimension by one),

if ν = 0: in analogy to (4.84), compute the last coordinate to finalize one
additional codevector c̃ in the codebook,

c̃ =
[

c̃(Ξ0) r
(Ξ0)
c̃,1

]T
. (4.113)

Figure 4.19: Update step for the recursive algorithm to generate APVQ codevectors for
arbitrary dimensions.

4.4.4 Measured Results

Figures to demonstrate the properties and achievable quantization performance of
the three example LSVQ realizations shall be shown in the following. All presented
SNR plots are based on simulations in which (quasi) stationary memoryless i.i.d.
Gaussian signals were quantized, and the output SNR values were measured for
different effective bit rates.
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...

...

root

ν = 1

ν = 0

c̃a = c̃Ξ0 c̃b = c̃Ξ0

[

Ξ2 c̃Ξ2
]

=
[

[ ] [ ]
]

mϑ1 = 0:
[

Ξ1 c̃Ξ1
]

=

[
Ξ2 cΞ2

mϑ1=0 c̃(0)
0

]

mϑ1 = 1:
[

Ξ1 c̃Ξ1
]

=

[
Ξ2 c̃Ξ2

mϑ1=1 c̃(1)
0

]

Figure 4.20: Apple Peeling codevector construction tree.

Start parameter, Number of codevectors, Effective bit rate per coordinate,

N(C) N
(AP16)
svq,N(C)

R
(AP16)
eff,svq,N(C)

1 2 0.0625

2 4 0.125

3 90 0.40

4 176 0.46

6 2502 0.7

8 1142908 1.25

10 42707208 1.58

11 231267586 1.73

13 3074430078 1.96

Table 4.3: Number of APVQ codevectors for Lv = 16 and different values of start
parameter N(C).

4.4.4.1 Achievable Bit Rates

In the three approaches, the number of codevectors and hence the effective bit rate
Reff,svq related to Qsvq depends on the code construction parameters N(A), N(B),
or N(C), respectively. The achievable effective bit rate of each proposed approach
controls the quantization quality and hence its applicability for different application
types. In Figure 4.21 the achievable effective bit rates are shown for the example
of Lv = 16 over the code construction parameter N(A), N(B), or N(C).
The GLCVQ can be operated only at bit rates higher than Reff,svq > 0.5 bits per
vector coordinate. With increasing values of N(A), also the bit rate increases. The
ALBVQ can be operated only at low bit rates. The maximum bit rate is achieved
for N(B) = 10 for Lv = 16. The APVQ is capable to generate codebooks for low
and for high bit rates and is also the most flexible approach.
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Figure 4.21: Effective bit rate Reff,svq over code construction parameter N(A/B/C) for
Lv = 16.

4.4.4.2 SNR Plots related to SVQ

At first, only the SVQ part of the three proposed approaches for LSVQ is assessed.
Therefore, the SNR solely related to the quantization of normalized vectors c (see
Figure 4.3) is measured in simulations with different effective bit rates Reff, svq.
The results are shown in Figure 4.22 for Lv = 16. Note that the SNR was not
evaluated for all values of the start parameters N(A), N(B), and N(C). In addition

to the measured curves, the theoretical SNR according to (4.33), SNR(II)
svq , is shown

as a reference. The performance related to the GLCVQ is closest to the theoretical
bound. The ALBVQ also has a high performance for low values of N(B). A very
interesting fact is that in case of the lowest bit rate the codevectors related to the
GLCVQ and the ALBVQ are identical. For higher values of N(B), however, the
SNR for the ALBVQ displaces from the theoretical bound. The maximum bit rate
and SNR is finally reached for N(B) = 8. The APVQ achieves slightly lower SNR
values than the GLCVQ. Very similar results are observed for Lv = 8.

4.4.4.3 SNR Plots related to LSVQ

SNR values for LSVQ based on the three candidate SVQ approaches are shown in
Figure 4.23 for Lv = 16. For each of the candidates, an optimal bit allocation was
computed on the basis of (4.53), the A-Law constant was set to A = 5000 in analogy
to Section 4.3. In addition to the measured values, the theoretical value from (4.43)

is depicted as SNR(II)
lsvq |dB. Also, the asymptotic performance for Lv → ∞, and

SNRQ,nu,A|dB as LSVQ for Lv = 1 are shown as reference curves.



4.4 LSVQ Application Examples 79

0.5 1 1.5 2

2

4

6

8

10

12

 

 

 
 
 

                                 
 
  

SNR(II)
svq |dB

GLCVQ, SVQ (A)

ALBVQ, SVQ (B)
APVQ, SVQ (C)

Reff,svq [bits]

S
N

R
| d

B
[d

B
]

N(B) = 2

Figure 4.22: SNR for SVQ of normalized vectors c for Lv = 16 and different effective bit
rates for the GLCVQ, the ALBVQ, and the APVQ. The curve for the ALBVQ is depicted
for N(B) = 2, 4, 6, 8, 10, 12, 14, 15 (starting for N(B) = 2 for the left most point).

4.4.4.4 GLCVQ versus Leech Lattice SVQ

The Leech Lattice [Lee64], [Lee67] is known to have the highest codevector density
in 24 dimensions. An approach for SVQ based on the Leech Lattice was proposed
in [AB88]. The disadvantage of the described approach is that the nearest neighbor
quantization procedures proposed in the Literature are too complex for practical
applications. Naturally, even though it can be adapted for 24 dimensions, the
GLCVQ approach can not reach the same performance. Nevertheless, SNR values
were measured for the GLCVQ for Lv = 24 to see how well the GLCVQ performs.
The result is shown in Figure 4.24. The reference curve for the Leech Lattice SVQ
is based on the results given in [AB88] for a memoryless Gaussian source. The
comparison measured for a Gaussian source is somewhat unfair since the Leech
Lattice SVQ is combined with a source optimized gain SQ to adapt to the special
case of a Gaussian source whereas logarithmic gain SQ is used in the context of the
GLCVQ to be applicable for sources with unknown PDFs. In both cases instead of
the parallel combination of the quantizers for the shape and the gain components,
a sequential approach (refer to Section C of the supplement document [Krü09]) is
followed. In addition to the measured SNR curves, the theoretical LSVQ bound

SNR(II)
lsvq |dB for Lv = 24 is shown in the figure.

The curves measured for the Leech Lattice SVQ are higher than the theoretical
performance bound. This is surprising at the first glance but can well be explained:
According to Section C of the supplement document [Krü09], SVQ in a sequential
approach is superior to the parallel approach, and a combination with a gain SQ
optimized for a Gaussian source naturally leads to a higher SNR for Gaussian
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Figure 4.23: SNR for LSVQ over the effective bit rate for the GLCVQ, the ALBVQ,
and the APVQ (Lv = 16). The curve for the ALBVQ is for N(B) = 2, 4, 6, 8, 10, 12, 14, 15.
The A-Law constant is set to A = 5000.

sources. As a conclusion of the comparison, despite the principal advantages of the
Leech Lattice based approach, the GLCVQ in 24 dimensions reaches a performance
which is asymptotically only 0.2 dB lower than the SNR for the Leech Lattice SVQ.

4.4.4.5 Visualization of the Measured Quantization Error

The distribution of the absolute value of the quantization error vector was computed
in Section 4.3.4 and is a tool for the qualitative visualization of average quantization
cell shapes. In Figure 4.25 a) and b), two example measured distributions of the
absolute quantization error vectors are shown for Lv = 8. The example in Figure
4.25 a) was computed from the histogram of the absolute value of the quantization
error for the APVQ and the example in Figure 4.25 b) from the histogram related
to the GLCVQ. The theoretical result for the PDF of the absolute value of the
quantization error derived in Section 4.3.4 for the “idealized” SVQ is shown as a
reference and was computed for the same number of spherical codevectors, Nsvq,
with respect to Figure 4.25 a) and b), respectively.
From the comparison of the two plots, obviously in b), the distribution is more
similar to the theoretical distribution than in a). This observation is well consistent
with the measured SNR values in comparison to the SNR for the “idealized” SVQ
as presented in Table 4.4.

4.5 Discussion

In this chapter, Logarithmic Spherical Vector Quantization (LSVQ) was investi-
gated. In the first part, the principle of LSVQ was introduced, and theoretical



4.5 Discussion 81

0.4 0.6 0.8 1 1.2 1.4 1.6

2

4

6

8

10
SNR(II)

lsvq |dB

GLCVQ, SVQ (A)
Leech Lattice SVQ (Λ24)

Reff,lsvq [bits]

S
N

R
| d

B
[d

B
]

Figure 4.24: Comparison of the measured SNR related to the GLCVQ (Candidate SVQ
(A)) in comparison to the results from [AB88] for a Leech lattice (Λ24) based SVQ.

Example SVQ (C) Example SVQ (A)

(SNR in dB) (SNR in dB)

SNR for “idealized” SVQ 6.26 dB 5.31 dB

measured SNR 5.64 dB 5.21 dB

effective bit rate Reff,svq 1.12 bits 0.988 bits

number of spherical codevectors 502 240

Table 4.4: SNR for SVQ calculated from the measured and the theoretical PDF of the
absolute value of the quantization error.

results were derived. At first it was shown that the SNR related to LSVQ is inde-
pendent from the PDF of the signal to be quantized for the assumption of high bit
rates. Following, an upper bound for the achievable SNR was derived based on the
assumption of an “idealized” SVQ. Approximations introduced for high bit rates
enabled to derive an analytical expression for the optimal allocation of bits to the
gain and the shape component.
In the second part, the theoretical results from the first part were put in a con-
text with practical realizations of LSVQ based on three different principles, the
GLCVQ, the ALBVQ, and the APVQ introduced as candidates SVQ (A), (B), and
(C), respectively. SNR curves were measured for uncorrelated Gaussian sources to
assess all three candidates. As a conclusion of the measurements, it was shown that
SVQ based on the algebraic codebooks nowadays used in speech coding, introduced
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Figure 4.25: (Qualitative) measured histogram of the absolute value of the quantiza-
tion error for two example spherical codes (APVQ and GLCVQ) and the PDF computed
according to (4.61). The APVQ was operated at a bit rate of Reff,svq = 1.12 bits, the
GLCVQ at a bit rate of Reff,svq = 0.988 bits for Lv = 8.

as the ALBVQ, candidate SVQ (B), has good performance for very low bit rates
but can not be employed in every situation since the achievable bit rate is limited.
The GLCVQ, candidate SVQ (A), has the highest quantization performance, and
a nearest neighbor codevector search procedure can be realized with low compu-
tational complexity and memory consumption. It is also very flexible as it can be
used for any vector dimension but outstanding performance is reached for dimen-
sions which are multiples of eight. The design of the APVQ, candidate SVQ (C), is
independent of the vector dimension which makes this the most flexible approach of
all. The quantization performance is only marginally worse than that of the other
candidates. The specific properties of the APVQ make it the best candidate for
efficient combination with linear prediction techniques and is therefore also the
basis for the SCELP and the W-SCELP codec.



5

Coding of Sources with
Memory

In the previous chapter, it was shown that LSVQ is well suited for lossy source cod-
ing, and its performance is independent from the characteristics of the input signal
in a wide dynamic range. However, being optimized for memoryless sources, LSVQ
does not benefit from the correlation immanent to the input signal. In the liter-
ature, quantizers designed for memoryless sources are often combined with other
techniques such as Transform Coding (TC) [HS63], [JN84], Subband Coding (SBC)
[CR83], or Linear Predictive Coding (LPC) [MG76], [KP95] to exploit linear corre-
lation.
TC and SBC are the basis for most state-of-the-art standardized audio codecs for
music storage. Unfortunately, large transforms (in TC) and long finite impulse re-
sponse (FIR) filters (in SBC) are in general required to achieve a sufficiently high
spectral selectivity [PS00] so that these approaches are not suitable for audio cod-
ing with low algorithmic delay. Hence, LPC is the only technique which fulfills the
delay constraints as it does not require any transform and, instead, is operated in
the time domain on the basis of minimum phase digital filters. The use of LPC
in speech coding is in general motivated by the fact that it mimics the physical
process of human speech production [Fan60], [Fla72], [RS78].

In the first part of this chapter, LPC will be revisited, and the principle of linear
prediction (LP) shall be combined with VQ in general and the LSVQ approach in
particular. It will be motivated that LPC is indeed suitable also for low delay audio
coding, but, in comparison to speech coding, new aspects have to be considered
for low bit rates due to specific characteristics of audio signals and the adaptations
to achieve low algorithmic delay. In this context, investigations are based on a
novel quantization noise production and propagation model in the second part of
this chapter and yield new theoretical results for closed-loop linear predictive quan-
tization which, in contrast to the common theory on LPC for high bit rates, are also
valid for lower bit rates. Resulting from the new model, a modified optimization
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Figure 5.1: Principle of Linear Predictive Coding.

criterion for the computation of the involved filter coefficients is derived to realize
the reverse waterfilling known from Section 2.3.

5.1 Linear Predictive Coding (LPC)

A typical scenario for Linear Predictive Coding (LPC) is shown in Figure 5.1.

5.1.1 Linear Prediction (LP)

Linear prediction (LP) [AS67], [MG76], [VM06] is a functional component of LPC,
shown in Figure 5.1 as the gray block in the encoder. The target of linear prediction
is to decorrelate the input signal x(k) by means of linear filtering. For this purpose
an estimate x̂(k) is calculated on the basis of previous signal values of x(k) in the
encoder as

x̂(k) =

Nlpc
∑

i=1

ai · x(k − i) (5.1)

with the Nlpc LP coefficients ai and the estimation block denoted by the system
function A(z) in Figure 5.1. The signal d(k) is the estimation error or LP residual
signal and hence the output of the LP analysis filter with system function

HA(z) = 1−A(z) = 1−
Nlpc
∑

i=1

ai · z−i. (5.2)

The filter coefficients ai are calculated in the LP analysis block with the optimiza-
tion target to minimize the variance (zero mean and stationarity of the signal x(k)
are assumed) of the LP residual signal d(k),

E{d2(k)} = E{(x(k)− x̂(k))2}→ min . (5.3)
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The optimal coefficients ai are determined as the solution of the normal linear
equations,





ϕx,x(1)
. . .

ϕx,x(NLPC)



 =







ϕx,x(0) . . . ϕx,x(1−NLPC)
ϕx,x(1) . . . ϕx,x(2−NLPC)

. . . . . . . . .
ϕx,x(NLPC − 1) . . . ϕx,x(0)













a1

a2

. . .
aNLPC







(5.4)

with

ϕx,x(κ) = E{x(k) · x(k + κ)} (5.5)

as the autocorrelation function (ACF) related to x(k). The autocorrelation matrix
has symmetric Toeplitz form, and the normalized linear equations can be efficiently
solved by means of the Levinson-Durbin algorithm [Lev47][Dur60] to produce the
optimal LP coefficients.

5.1.2 Block Adaptive LP

Since practical audio and speech signals are only short-term stationary, the LP
coefficients are computed for short segments of the input signal in most modern
speech codecs. In this context, the autocorrelation function is approximated by
the short-term (energy) autocorrelation coefficients, denoted as the autocorrelation
method [Mak75],

ϕ̂x,x(κ) ≈ ϕx,x(κ) (5.6)

with

ϕ̂x,x(κ) =

Llpc−κ−1
∑

i=0

xw(i− κ) · xw(i). (5.7)

xw(i) is an overlapping signal segment of length Llpc which is extracted from the
input signal x(k) and often weighted by a window function w(k) [KP95].
Alternative approaches for the calculation of the coefficients ai are the auto covari-
ance method, the Burg algorithm [dWB00] and also backward adaptive approaches,
e.g., based on gradient descend algorithms [VM06]. Also, different realizations of
the LP analysis filter in a direct form or a lattice based approach are known from
the literature, e.g. [Kei06]. The alternative approaches shall not be discussed in
the following.

5.1.3 LP and Quantization

In the LPC scheme in Figure 5.1, the LP residual signal d(k) is quantized in the
encoder. In order to reconstruct it at the decoder side, the quantized LP residual
must be transformed into a binary index which is then transmitted to the decoder.
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For the sake of simplicity, however, the transmission of the index is not shown in
the figure.
The quantized LP residual signal in the decoder is signal

d̃(k) = ∆(k) + d(k). (5.8)

In that context, the quantizer is in general modeled as an additive noise source
with the quantization error signal ∆(k). In the following, the quantization is at
first based on SQ. This concept will then later be extended toward VQ in general
in Section 5.1.7 and LSVQ in Section 5.1.8.
From the reconstructed LP residual signal d̃(k), the decoded version of the input
signal x̃(k) is produced as the output of the LP synthesis filter with system function

HS(z) =
1

1−A(z)
= (HA(z))−1. (5.9)

Due to the introduced quantization error, the quantization SNR is defined as

SNR0 =
E{d2(k)}

E{(d(k)− d̃(k))2}
(5.10)

and characterizes the employed quantizer. Considering the impact of the quantizer
with respect to the encoder input and the decoder output signals, SNR0 must be
distinguished from the overall SNR,

SNR =
E{x2(k)}

E{(x̃(k)− x(k))2} (5.11)

related to the processed quantization noise in the decoder output signal. In this
context the most important questions to be answered in the following are:

• What is the maximum achievable overall SNR given a specific quantizer and
hence fixed quantization SNR0?

• How do we achieve this maximum overall SNR?

In order to have access to the LP coefficients at the decoder side, in block adaptive
LPC, the filter coefficients must be transmitted as side information. The transmis-

sion of these coefficients, denoted as vector a =
[

a1 . . . aNlpc

]T
in Figure 5.1,

is assumed to be possible at low bit rates [PA93] and will not be discussed in the
following. A theoretical analysis of the distribution of rate to the LP coefficients
and the LP residual signal is given in [KO07]. A new practical concept for the
efficient quantization of LP coefficients in the context of audio signals is described
in [KSV06].
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5.1.4 LPC and Audio Signals

The use of linear prediction in speech coding is often motivated by the modeling of
the physics of human speech signal generation as an auto-regressive (AR) process:
The excitation source of this process corresponds to the sound wave produced by
the airflow through the vocal folds, and the evolution of formant frequencies in the
human vocal tract is modeled by a time variant AR (all-pole) filter [MG76][VM06].
In contrast to this, no generic approach is known to model the variety of audio
signals. Nevertheless, there are good arguments that linear prediction is also a
promising candidate for audio coding: At first, a lot of natural and artificial audio
signals are produced in a way very similar to the principles of human speech gener-
ation, e.g., in the context of a source-filter model as known from music synthesizers
[Moo65], [FR00]. Inaccuracies of the AR model are also known from speech coding,
e.g., the disregard of the nasal cavity, and do not lead to significant problems there
either. Secondly, an audio signal is in general characterized by its local spectral
maxima. If those are very strong, the rest of the signal may even be inaudible
for humans [Zwi82]. In that context, the role of linear prediction is to efficiently
represent the spectral envelope of a signal and especially the local spectral maxima
by an all-pole filter rather than the identification of speech model parameters. In
the context of Figure 5.1, the approximation of the spectral envelope of the input
signal is realized by the LP synthesis filter HS(z) in the decoder block. Accounting
for its role to approximate the spectral envelope of the input signal, HS(Ω) com-
puted from HS(z) for z = ejΩ will be denoted also as the LP filter spectrum in the
following.
The length of the LP analysis signal segments has a strong impact on the overall
algorithmic delay of the codec and is therefore usually short to achieve a sufficiently
low algorithmic in low delay audio coding, e.g., Llpc ≈̂ 10 ms. In comparison to
this, in speech coding, a higher algorithmic delay is allowed so that the analysis
segment lengths are in general longer, e.g., Llpc ≈̂ 20− 25 ms.

5.1.5 Zero-Mean Property of the LP Filter Spectrum

A property of the linear prediction analysis and synthesis filters which will be im-
portant in the following is denoted as the zero-mean property: Given the LP filter
spectrum as the magnitude spectrum |Hs(Ω)| related to the system function Hs(z),
the average of the logarithmic magnitude spectrum is zero if the poles of Hs(z) are
located inside the unit circle [MG76],

π∫

−π

ln(|Hs(Ω)|)dΩ

2π
= 0. (5.12)
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Figure 5.2: Closed-loop LPC.

5.1.6 Closed-loop SQ

In Figure 5.1, in the encoder, the estimation signal x̂(k) is calculated from the
input signal x(k), whereas the estimation signal ˜̂x(k) in the decoder is calculated
from the quantized output signal x̃(k) because x(k) is not available in the decoder.
In order to avoid this mismatch, the decoder can be simulated in the encoder to
make the quantized output signal x̃(k) available as the basis for the estimation
signal in the encoder as well. In Figure 5.2 a), a modified realization of the LPC
encoder is therefore shown, also known as quantization in the loop or closed-loop
quantization. By feeding back the quantization error signal ∆(k), the estimated
signal ˜̂x(k) is now available also in the encoder. A modification of the decoder is
not required. In contrast to this, the codec structure in Figure 5.1 is denoted as
open-loop quantization.
In Figure 5.2 b), a generalization of a) is shown with the error weighting (or noise
feedback) filter with system function F (z). Assuming that the z-transforms related
to all signals and also the quantization noise exist, the z-transform of the overall
signal reconstruction error in the decoder output is

x̃(k)− x(k) ! "X̃(z)−X(z) =
1− F (z)

1−A(z)
· ∆(z). (5.13)

The quantization error signal ∆(k) is commonly assumed to be spectrally flat. Cor-
respondingly, the spectral envelope of the processed version of the quantization
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Figure 5.3: Principle of a Code-Excited Linear Prediction (CELP) Encoder.

noise in the reconstructed decoder output signal can be directly controlled by sys-
tem function F (z). This principle is known as noise-shaping (NS). A conventional
technique known from the literature [SAH79] is to derive F (z) from A(z),

F (z) = Fconv(z) = A(z/γ) with 0 ≤ γ ≤ 1.0. (5.14)

The constant γ controls the shift of the roots of the filter system function 1−F (z)
toward the origin in the z-domain compared to the roots of 1 − A(z) to create a
flattened version of the LP filter spectrum, e.g., [VM06].
In the next section it will be shown that Figure 5.2 b) is equivalent to the analysis-
by-synthesis approach in linear predictive VQ (LPVQ) under certain conditions and
for the special case of vector dimension Lv = 1. The error weighting filter F (z) will
be discussed in detail in Sections 5.1.7.2 and 5.2.6.

5.1.7 Code-Excited Linear Prediction (CELP)

To combine linear prediction and VQ is straightforward in the case of open-loop
quantization. The SQ (block Q in Figure 5.1) is simply replaced by the VQ, and the
quantization is based on a nearest neighbor vector search. This approach, however,
can not fully exploit linear dependencies as shown in [KV05].
Following the closed-loop approach, the aggregation of samples of the LP residual
signal into vectors for quantization is contradictory to a sample-by-sample linear
filtering of the quantization error in the feedback loop of Figure 5.2. Therefore,
a new method for closed-loop linear predictive VQ was proposed in [SA85]. It is
denoted as Code-Excited Linear Prediction (CELP), and forms the basis for today’s
most efficient speech coding algorithms, e.g., [ETS00], [ITU96]. A typical CELP
encoder is shown in Figure 5.3. For the quantization of the signal x(k), it is assumed
that the LP coefficients have been determined previously in the LP analysis block
(refer to Section 5.1.2). For the CELP encoding, all (non-overlapping) sequences
of signals are transformed into vectors of dimension Lv. Note that it is a common
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practice that one set of LP coefficients is computed for more than one signal vector,
hence Lv (= Llpc in general. In order to determine the optimal VQ codevector index
iQ,vq for one signal vector x, in the local decoder all Nvq codevectors d̃ivq taken
from the VQ codebook are tested as candidate vectors for the LP residual signal.
Each candidate vector is addressed by the index ivq by the VQ control block and
transformed into a signal candidate vector x̃ivq by means of filtering in the LP
synthesis filter HS(z). The difference between x and x̃ivq (position III) is the error
vector eivq . The weighted error vector ew,ivq is produced by filtering eivq in the
error weighting filter with system function W (z) to be discussed later. In order
to find the optimal codevector index, all weighted error vectors are compared to
find that candidate which produces the (weighted) minimum mean squared error
(MMSE),

iQ,vq = arg min
0≤ivq<Nvq

‖ew,ivq‖2. (5.15)

The generation of codevectors, the filtering of each candidate, the computation
of the weighted error vectors, and the determination of the optimal codevector
index are denoted as the index iteration procedure in the following. The overall
computational complexity can be very high as the number of codevectors in the VQ
codebook grows exponentially with the effective bit rate Reff,vq and the dimension
Lv.

5.1.7.1 Modification of the CELP Approach

Targeting the reduction of the computational complexity involved in the CELP
approach, at first, the encoder in Figure 5.3 is modified as proposed in [KV06b].
The result is shown in Figure 5.5 and will be explained in the following. Note that
for the sake of simplicity, the LP analysis block is no longer shown in this figure.
Considering the required modifications, at first the filter with system function

HW (z) = HS(z) · W (z) (5.16)

is introduced to combine the LP synthesis filter HS(z) and the weighting filter W (z)
in the combined weighting filter with system function HW (z). For the combination
of both filters, in Figure 5.3, the weighting filter is relocated in each of the signal
paths labeled as I and II in Figure 5.3. In path I, to form the combined weighting
filter, the LP analysis filter HA(z) must be additionally introduced as shown in
Figure 5.5 at position I since

W (z) = HA(z) · HS(z) · W (z)
︸ ︷︷ ︸

HW (z)

with HA(z) · HS(z) = 1. (5.17)

Due to the possibly long tails of the impulse responses of the combined weighting
filter which can significantly exceed the vector dimension, the quantization of one
vector has an impact on the quantization of successive signal vectors. In this con-
text, it is beneficial to pry open the interaction across vector bounds so that the
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Figure 5.4: Decomposition of the combined weighting filter HW (z) with respect to the
filter states (a)) and resulting modified CELP encoder (b)).

“history” of previously quantized vectors can be handled independently from the
actual index iteration procedure. Consequently, the signal related to the “history”
is computed only once for all codevector candidates rather than for all candidates.
For this reason, the combined weighting filters HW (z) in the signal paths I and II
are decomposed into two filters HW,SA

(z) and HW,SB
(z) as illustrated by Figure

5.4 a).

• Filter H
W,S

(I)
A

(z) and H
W,S

(II)
A

(z) hold states which are zero: S(I)
A = 0 and

S(II)
A = 0, respectively.

• The filter H
W,S

(I)
B

(z) and H
W,S

(II)
B

(z) hold the states S(I)
0 and S(II)

0 from

HW (z) in signal path I and II at the beginning of the quantization procedure

for one vector x. Both are fed by a vector composed of Lv zeros. H(I)
W,SB

(z)

in path I and H(II)
W,SB

(z) in path II are linear and therefore can be realized as

one filter HW,S(z) with the superposed states

S := S(I)
B − S(II)

B . (5.18)

The resulting modified version of the CELP encoder is shown in Figure 5.4 b).
The block HW,S(z) with the combined states S from (5.18) is highlighted by the
yellow color. The input signal of this block is a vector composed of zeros, and
the states depend on the “history” of previously quantized vectors only (and not
on the quantization process of the current vector). HW,S(z) is handled outside the
actual index iteration procedure with the corresponding output denoted as the filter
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ringing signal xfr.
The remaining filters H

W,S
(I/II)
A

(z) in path I and II with the states set to zero do

not depend on any quantization history and therefore can be written as matrix

HW =







hW (0) 0 . . . 0
hW (1) hW (0) . . . 0

. . . . . . . . . . . .
hW (Lv − 1) hW (Lv − 2) . . . hW (0)







. (5.19)

The filtering is hence realized as a convolution of the input signal vectors with the
truncated impulse response

hW (k) ! "HW (z) ∀ 0 ≤ k < Lv. (5.20)

In the next step, the modifications are completed by substituting

dfr = H−1
W · xfr (5.21)

and setting

d′′ = d + dfr = d + H−1
W · xfr, (5.22)

shown at position IV in Figure 5.5. The weighted error vector can be expressed as

ew,ivq = x′
0 − x̃′

ivq = x′
0 −HW · d̃ivq = HW · (d′′ − d̃ivq). (5.23)

The search procedure to determine the optimal index (5.15) can hence be expressed
as

iQ,vq = arg min
0≤ivq<Nvq

(x′
0 −HW · d̃ivq)T · (x′

0 −HW · d̃ivq)

= arg min
0≤ivq<Nvq

(d′′ − d̃ivq)T · HT
W · HW · (d′′ − d̃ivq) (5.24)

Both matrices, HW and H−1
W , and the signal vector d′′ can be easily computed prior

to the index iteration procedure. Due to the weighting of the quantization error,
in comparison to (3.30) and (4.13), (5.24) can no longer be realized as a nearest
neighbor quantization.
Once the optimal codevector has been found, in order to properly prepare the
quantization of the next vector, the states S must be updated by filtering the LP
residual error vector

∆ = d− d̃iQ,vq
. (5.25)

This state update procedure is shown as the update arrow in Figure 5.5. Note that in
the figure, d̃ivq is used to address all possible codebook entries in the index iteration

procedure whereas d̃iQ,vq
denotes the optimal codevector which was selected.

Due to the modified structure of the CELP encoder, the codevector search procedure
can be realized as a three step procedure involving the
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Figure 5.5: Modified approach for the Code-Excited Linear Prediction (CELP) encoder.

1. Pre-processing: Computation of the matrices HW (5.19) and H−1
W and

production of the filter ringing signal xfr and its transformed version dfr in
(5.21) to compute d′′.

2. Weighted codevector search (5.24) involving matrix HW

3. Post-processing: Filter update procedure based on ∆ from (5.25).

Due to the modified CELP encoder, the filtering of each codevector candidate is
replaced by a convolution which leads to a reduction of the involved computational
complexity compared to the approach as described in Section 5.1.7 for vector di-
mensions and orders of the combined weighting filter as used in the SCELP codec
(Section 6). More important than this, however, is that the signal d′′ is available
which is an important and necessary starting point for the efficient realizations of
the index iteration procedure in the SCELP codec to be investigated in Section
6.1.3. In addition to that, the three step procedure enables to better understand
methods for low complexity realizations of CELP coding as discussed in Section E
of the supplement document [Krü09] and to enhance the overall coding concept by
means of frequency warping which is described in Section 6.2.
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Figure 5.6: Modified CELP encoder for Lv = 1.

5.1.7.2 Error Weighting Filter W (z)

The error weighting filter W (z) in CELP coding is the generalization of the error
weighting filter F (z) (5.14) for LPC and SQ to control the spectral envelope of the
processed quantization noise in the decoder output signal. It is often chosen as

W (z) =
1−A(z/γ1)

1−A(z/γ2)
(5.26)

with 0 < γ2 ≤ γ1 ≤ 1.0. It is a common assumption that the signal ew(k), given
in vector notation as ew,ivq , is spectrally flat. In that case the spectral envelope
related to the processed quantization noise in the decoder output signal is a function
of the filter system function W −1(z). Putting this into a relation to (5.14), W (z)
should be chosen as

W (z) =
1−A(z)

1− F (z)
(5.27)

with γ1 = 1.0 and γ2 = γ in (5.26) to be equivalent to the SQ approach from Section
5.1.6.

5.1.7.3 Comparison of SQ based LPC and CELP Encoder for Lv = 1

For a vector dimension of Lv = 1 and choosing W (z) according to (5.27), the CELP
encoder in its modified structure from Figure 5.5 is identical to the generalized
closed-loop encoder as shown in Figure 5.2 b). This can be shown as follows:
Given a vector dimension of Lv = 1, the matrices containing the truncated impulse
response of the combined weighting filter are

HW = H−1
W = 1. (5.28)

The filter ringing part in Figure 5.5, including the state update operation, can be
written as a linear filter with system function HW (z) − 1 as shown in Figure 5.6.
For Lv = 1 all vectors are scalars and can be rewritten as a function of time index
k. Since the matrices HW and its inverse do not have any impact due to (5.28), the
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index iteration procedure is identical to conventional (nearest neighbor) SQ (block
Q at position II/III in Figure 5.6). Assuming that the z-transforms related to all
signals exists, the resulting block diagram is analyzed in the z-domain: Setting the
weighting filter according to (5.27), the combined weighting filter is

HW (z) =
1

1−A(z)
· 1−A(z)

1− F (z)
=

1

1− F (z)
. (5.29)

The z-transform of signal d′′(k) is

d′′(k) ! "D′′(z) = D(z) +

(
1

1− F (z)
− 1

)

· (D(z)− D̃(z))

D′′(z) = D(z)− F (z) · (D̃(z)−D′′(z)) (5.30)

By comparing this result to Figure 5.2 b), it is obvious that d′(k) = d′′(k) so that
both realizations are identical for Lv = 1.

5.1.7.4 Mapping of CELP Coding to an SQ based LPC Model

In both, LPC combined with SQ and with VQ, the quantizer transforms every se-
quence of samples of the LP residual signal d(k) into a sequence of quantized output
samples d̃(k). Given signal vectors d, d′′, and d̃iQ,vq

in the quantization process of a
CELP encoder in the structure of Figure 5.5, the quantization reconstruction levels
d̃(k) and the quantization error ∆(k) can be reproduced on a sample-by-sample (or
coordinate-by-coordinate) basis. Based on this vector decomposition, every CELP
quantization process of arbitrary dimension can be mapped to the special case of
Lv = 1 as shown in Figure 5.6 and, due to the the proof given in the previous
section, to the SQ based LPC as shown in Figure 5.2 b). Necessary condition that
both, the CELP approach and the SQ based closed-loop LPC approach, produce
the same overall output signal x̃(k) is that the SQ outputs the same quantization
reconstruction levels d̃(k) as the VQ and that the noise-shaping filter F (z) is chosen
according to (5.27). Therefore, a scalar model according to Figure 5.5 will be the
common basis for all theoretical investigations on combined LP and SQ and CELP
coding as described in the following.
But what is the advantage of the CELP approach compared to a closed-loop SQ
approach in LPC then? At first, a VQ can be more flexible than a SQ as it does
not rely on the same output alphabet for each vector coordinate. This was the
basis for the shape advantage described in Section 3.2.1.2. Hence, in a practical
application, the SQ can not necessarily output the same sequence d̃(k) as the VQ.
In the following, however, this practical aspect does not have any impact on the
theoretical analysis of LPC1.
In addition to that, an SQ determines each quantization reconstruction level one
after the other according to the sequence of signal amplitudes to be quantized.

1If d̃(k) is known, the SQ can always be assumed to be realized as a SQ with a “switchable scalar
reconstruction alphabet”. For example, the APVQ from Section 4.4.3 is based on this concept.
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Therefore, if an optimal reconstruction level as the output at one moment proves
itself as a bad choice later on, this first decision can never be withdrawn. In com-
parison to this, a VQ determines the optimal quantization reconstruction levels
for all vector coordinates at the same time. In the context of the combination of
VQ and LPC and the scalar LPC model, this principle enables to introduce an
“implicit error weighting filter” which will be in detail discussed in Section 5.2.7.
One step towards the correction of previously made decisions in SQ is the so-called
delayed-decision quantization [JN84] which, however, shall not be discussed here.

5.1.8 CELP Coding and Gain-Shape Decomposition

So far, the modified CELP approach was developed for VQ in general. Overall goal,
however, is to combine LPC with the concepts for LSVQ from Section 4.4. In LSVQ,
the codevectors to approximate the LP residual signal d(k) are denoted as d̃ilsvq

.

Each vector d̃ilsvq
is computed in analogy to (4.9) from a spherical codevector c̃isvq

and a quantizer reconstruction level for the radius, g̃ig ,

d̃ilsvq
= g̃ig · c̃isvq (5.31)

with ilsvq to be calculated from ig and isvq according to (4.16). In analogy to
the definition of LSVQ from Section 4.2.2, the decomposition of codevectors into
a gain factor and a spherical codevector enables to realize an efficient codevector
search procedure. Besides the parallel approach discussed in Section 4.2.2, the
joint and the sequential approach as variants of LSVQ are described for a nearest
neighbor quantization in Section C of the supplement document [Krü09]. Both
approaches must be modified in the context of the weighted codevector search
procedure given in (5.24) and will be briefly described in the following. More
detailed investigations on these approaches and other aspects related to efficient
codevector search procedures will be presented in the context of the SCELP codec
in Section 6.1.3 and in Section E of the supplement document [Krü09].

5.1.8.1 The Joint Approach

The joint approach is used in most standardized CELP speech codecs and is de-
scribed in, e.g., [Pau96], [HSW01]. The weighted codevector search procedure in
(5.24) to find the optimal codevector index can be written as

iQ,svq = arg min
0≤isvq<Nsvq

MJ
isvq . (5.32)

with the metric MJ
isvq given as

MJ
isvq = (x′

0 −HW · gopt · c̃isvq)T · (x′
0 −HW · gopt · c̃isvq)

= x′
0

T
x′

0−2 · gopt · x′
0

T · HW · c̃isvq+g2
opt · c̃T

isvq · HT
W · HW · c̃isvq .(5.33)
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In this equation, the optimal gain gopt rather than the quantized version g̃ig is used
at first. gopt is computed by setting the derivative of (5.33) with respect to gopt to
zero to yield

gopt =
x′

0
T · HW · c̃isvq

c̃T
isvq

· HT
W · HW · c̃isvq

. (5.34)

It is the optimal gain factor given a vector x′
0 and a codevector c̃isvq . Substituting

gopt in (5.33) yields

MJ
isvq = x′

0
T · x′

0 −
(x′

0
T · HW · c̃isvq)2

c̃T
isvq

· HT
W · HW · c̃isvq

. (5.35)

Therefore, MJ
isvq depends only on the spherical codevector c̃isvq .

Since MJ
isvq and x′

0
T ·x′

0 by definition are positive, the determination of the optimal
spherical codevector can be written as

iQ,svq = arg max
0≤isvq<Nsvq

MJ′

isvq (5.36)

involving the alternative metric

MJ′

isvq =
(x′

0
T · HW · c̃isvq)2

c̃T
isvq

· HT
W · HW · c̃isvq

(5.37)

If the index iQ,svq and correspondingly the optimal spherical codevector c̃iQ,svq

have been determined, the optimal gain factor is computed according to (5.34) and
quantized in the A-Law SQ to produce the index iQ,g.

5.1.8.2 The Sequential Approach

Given the signal d′′, in the first step of the sequential quantization procedure, a
gain factor is computed as

gd′′ =‖ d′′ ‖ (5.38)

and quantized in the A-Law SQ to produce g̃iQ,g
. In the next step, the quantized

gain is used to find the optimal spherical codevector index as

iQ,svq = arg min
0≤isvq<Nsvq

MS
isvq (5.39)

based on the metric

MS
isvq = (x′

0 − g̃iQ,g
· HW · c̃isvq)T · (x′

0 − g̃iQ,g
· HW · c̃isvq). (5.40)
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If the index iQ,svq and correspondingly the optimal spherical codevector c̃iQ,svq
have been determined, finally, the optimal gain factor is computed in analogy to
(5.34) as

g′
d′′ =

x′
0 · HW · c̃iQ,svq

c̃T
Q,isvq

· HT
W · HW · c̃Q,isvq

(5.41)

which is quantized to produce an update of the index iQ,g. The second quantization
of the gain factor is denoted as the “requantization”.
It will be explained in Section 6 that the sequential approach is the more efficient
technique for high performance quantization with low computational complexity
in the SCELP codec (for more details also refer to Section E.1 of the supplement
document [Krü09].).

5.2 Theoretical Analysis of LPC

Theoretical analyses of LPC for speech coding are in the most cases based on the
assumption of high bit rates, e.g., [GR92]. In practical applications, the high rate
theory is not sufficient to explain specific phenomena observed for low bit rates such
as encoder instabilities. The observation of instabilities in LPC indeed seems to be
very astonishing since for simple variants of LPC such as Delta Modulation [Ger72],
Differential Pulse Code Modulation (DPCM), and Adaptive Differential Pulse Code
Modulation (ADPCM) [GL77], [Kie82], [KD83] deterministic and stochastic stabil-
ity has been proven. Despite these proofs, for the more complex approaches based
on block adaptive LPC with higher order linear prediction and feedback of the
quantization noise, unstable behavior at very low bit rates was already described in
[Ata82]. As a solution there, a technique to manipulate the LP spectrum at high
frequencies is proposed. In [JN84], it is described that in noise-feedback coding
(NFC), which is identical to the closed-loop approach in Figure 5.2 b), a limiter is
required to guarantee stability. It is stated that the codec tends to become unstable
because of overload effects in the quantizer.
In order to explain the described phenomena, a new theoretical analysis of LPC is
developed in the following. Key element of this analysis is a novel scalar quantization
noise production and propagation model which is valid for open- and closed-loop SQ
and VQ (CELP). In the new model, the error introduced by the quantization of the
LP residual signal is modeled by a gain-controlled additive noise source, motivated
by the results from Section 2 (rate distortion theory) and 4 (LSVQ) that optimal
and universal quantizers produce a constant quantization SNR. The processing of
the quantization noise by the combination of error weighting filter F (z)/W (z) and
LP synthesis filter HS(z) is modeled by a noise propagation network. The new
model confirms the results known from the literature derived for high bit rates but
is valid also for lower bit rates as it also accounts for the interaction between the
feedback of the quantization error and the quantizer. This interaction is commonly
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neglected in conventional analyses of LPC.
The model explains why closed-loop quantization can become unstable and enables
to compute a theoretical overall coding SNR (5.11) which deviates from the SNR
predicted by the conventional theory. As a conclusion, a modified concept for closed-
loop quantization at low bit rates is finally derived based on a new optimization
criterion which is well applicable in practice. It is shown that the described aspects
are related to the effect of reverse waterfilling which was introduced in the con-
text of the rate distortion theory in Section 2 but, so far, has not been intensively
investigated in the context of LPC.

5.2.1 Prerequisites
The new scalar quantization noise production and propagation model assumes that
all signals are stationary with zero mean in the following. The goal is to compute
relations between signal variances to determine the overall SNR (5.11) as a function
of the quantization SNR, SNR0 (5.10).
The impact of all filters will be considered as filtering gains. The filtering gains
are derived from the Wiener-Lee Relation and the Parseval Theorem [Lük95] which
state that, if an uncorrelated stationary signal x(k) with constant power spectral
density (PSD)

φx(Ω) = σ2
x (5.42)

is filtered by a filter with system function H(z), the energy of the filter output
signal y(k) is

E{y2(k)} =
1

2π

π∫

−π

φy(Ω)dΩ =
1

2π

π∫

−π

|H(Ω)|2σ2
xdΩ. (5.43)

In this context, the filtering gain Gx,y is defined as the relation between the variances
of the filter output and the filter input,

Gx,y :=
E{y2(k)}
E{x2(k)} =

1

2π

π∫

−π

|H(Ω)|2dΩ (5.44)

5.2.2 Definition of the Quantization Noise Production and
Propagation Model

The (quantization) noise (production and) propagation model is depicted in Figure
5.7 and follows the generalized closed-loop approach from Figure 5.2. In analogy to
(5.11), the overall coding SNR is defined as the relation between the variance of the
signal to be encoded x(k) (position PI in the figure) and that of the quantization
noise in the decoder output, (x̃(k)− x(k)) (position PII in the figure),

SNRlpc =
E{x2(k)}

E{(x̃(k)− x(k))2} . (5.45)

The model consists of the following five components:
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Figure 5.7: Noise production and propagation model for LPC. Only the propagation of
the quantization noise in the decoder is considered rather than the reconstruction of the
decoder output signal x̃(k).

• The signal generation block: The stationary signal x(k) to be coded is
assumed to be the output of an AR process in the signal generation block.
The AR process is realized as an AR (all-pole) filter of order Nar with system
function

Har(z) =
1

H0(z)
=

1

1−
∑Nar

i=1 aar,i · z−i
(5.46)

with the AR coefficients aar =
[

aar,1 · · · aar,Nar

]

which is fed by an (uncor-
related) excitation signal d0(k) with variance σ2

d0
(and zero mean)2. Note that

since all poles of Har(z) are located inside the unit circle, the corresponding
magnitude spectrum has zero-mean property (refer to Section 5.1.5).

• The LP analysis filter block: The LP filter coefficients are computed from
signal x(k) in the LP analysis as described in Section 5.1.2 (which is not part
of the figure) and used in the LP analysis filter HA(z) of order Nlpc. The
output of the LP analysis filter HA(z) is the LP residual signal d(k). The
LP analysis filter is assumed to be of a similar order as H0(z) (Nlpc ≈ Nar).
Then, HA(z) is a good approximation of H0(z):

HA(z) ≈ H0(z). (5.47)

Therefore, signal d(k) is similar to signal d0(k).

• The quantization with noise feedback block: This block consists of the
quantizer Q and the error weighting filter F (z). The signal d′(k) to be quan-
tized is computed from the signals d(k), the output of the LP analysis filter,
and signal ef (k). The quantizer output signal would be signal d̃(k). However,

2A motivation why the results derived in the context of an AR model are also valid for the
coding of audio signals was given in Section 5.1.4.
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∆ E{(x̃(k)− x(k))2}E{e2

f (k)}
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Gd0,d

G′
d′,∆

G∆,ef G∆,x̃−x

Figure 5.8: Block diagram based on variances and filtering gains. Variances marked by a
black frame are related to spectrally flat (uncorrelated) signals. The variances related to
signal ef (k) and signal d(k) are assumed to be independent and therefore must be added.

signal d̃(k) is not of importance in our noise propagation model and hence not
considered in all subsequent blocks. Instead, only the quantization error sig-
nal ∆(k) is shown in Figure 5.7. In general, the quantization error is assumed
to be independent of the input signal of the quantizer and uncorrelated if the
bit rate is high enough, e.g. [JN84]. This is assumed to be true also for our
model and will be discussed more in detail in Section 5.2.5. With respect to
the fact that our quantizer produces a constant SNR0, however, the variance
of the quantization error depends on the variance of the quantizer input sig-
nal d′(k). Therefore, the core quantizer is modeled as a power controlled noise
source with variance σ2

∆ = E{d′2(k)}/SNR0. The dependence between the
variances of signal d′(k) and ∆(k) is highlighted by the Noise control arrow in
the figure. ∆(k) is filtered in the error weighting (noise feedback) filter F (z)
to produce signal ef (k).

• The noise shaping block: Signal d̃(k)−d′(k) is a filtered version of the quan-
tization noise ∆(k) in our noise propagation model due to the error weighting
filter F (z) in the encoder. With respect to Section 5.1.6, the involved transfer
function to compute d̃(k)− d′(k) from ∆(k) is HNS(z) = 1− F (z).

• The LP synthesis filter: The LP synthesis filter is the inverse of the LP
analysis filter, HS(z) = (HA(z))−1. In our model, it is assumed that the same
coefficients are available in encoder and decoder and hence for the LP analysis
and the synthesis filters.

For the computation of the overall SNR (5.45), Figure 5.7 is transformed into the
diagram in Figure 5.8. In that diagram, instead of the signals and filters, the
variances and filtering gains are shown. The signals d0(k) and ∆(k) are assumed to
be uncorrelated signals and spectrally flat. Therefore the corresponding variances
are highlighted by the circles with a black frame in the figure. Based on this
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assumption, the filtering gains shown in the figure are calculated as follows:

Gd0,x =
1

2π

π∫

−π

∣
∣
∣
∣

1

H0(Ω)

∣
∣
∣
∣

2

dΩ (5.48)

Gd0,d =
1

2π

π∫

−π

∣
∣
∣
∣

HA(Ω)

H0(Ω)

∣
∣
∣
∣

2

dΩ (5.49)

G∆,ef
=

1

2π

π∫

−π

|F (Ω)|2 dΩ (5.50)

G∆,x̃−x =
1

2π

π∫

−π

|HNS(Ω) · HS(Ω)|2 dΩ =
1

2π

π∫

−π

∣
∣
∣
∣

1− F (Ω)

1−A(Ω)

∣
∣
∣
∣

2

dΩ (5.51)

G′
d′,∆ =

1

SNR0
(5.52)

Note that HNS(z) and HS(z) are combined in a single filtering gain G∆,x̃−x. G∆,ef

is the filtering gain with respect to the error weighting (noise feedback) filter F (z)
and will in the following be denoted as the feedback gain. G′

d′,∆
contributes for the

gain-controlled noise source to model the quantizer with SNR0 as defined in (5.10)
so that

E{∆2(k)} = σ2
∆ =

E{d′2(k)}
SNR0

. (5.53)

The LP coefficients are assumed to be constant since x(k) is stationary (H0(z) is
constant). Therefore also all filtering gains are assumed to be constant.

5.2.3 Computation of the overall coding SNR (SNRlpc)
For the determination of the overall SNR according to (5.45), E{(x̃(k) − x(k))2}
shall be computed as a function of the variance of the signal to be coded E{x2(k)}.
With respect to the signal generation model, E{x2(k)} is given as

E{x2(k)} = E{d2
0(k)} · Gd0,x = σ2

d0
· Gd0,x (5.54)

Based on this, the variance of the LP residual signal d(k) can be written as

E{d2(k)} = E{d2
0(k)} · Gd0,d =

E{x2(k)}
Gd0,x

· Gd0,d. (5.55)

The signals ef (k) and d(k) are assumed to be uncorrelated (refer to Section 5.2.5).
Therefore, the corresponding variances are added to produce the variance of signal
d′(k),

E{d′2(k)} = E{d2(k)} + E{e2
f (k)}. (5.56)
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The relation between the variance of the quantization error ∆(k) and its filtered
version ef (k) is given as

E{e2
f (k)} = E{∆2(k)} · G∆,ef

, (5.57)

and the variance of the quantization error inherent to the decoder output signal as

E{(x̃(k)− x(k))2} = σ2
∆ · G∆,x̃−x. (5.58)

Substituting (5.53) in (5.57) in the first and the result in (5.56) in the second step
yields

E{d′2(k)} = E{d2(k)} · 1

1−
G∆,ef
SNR0

, (5.59)

and, with (5.55) and (5.58), (5.59) can be written as

E{(x̃(k)− x(k))2} = E{x2(k)} · G∆,x̃−x

SNR0
·

Gd0,d

Gd0,x
· 1

1−
G∆,ef
SNR0

. (5.60)

From this equation the overall coding SNR as defined in (5.45) can finally be derived
as

SNRlpc =
E{x2(k)}

E{(x̃(k)− x(k))2} =
Gd0,x

G∆,x̃−x · Gd0,d
· (1−

G∆,ef

SNR0
) · SNR0. (5.61)

5.2.4 Evaluation of the Noise Propagation Model

By defining different constraints for HA(z), HS(z) and F (z), the noise propagation
model can be configured for open- and closed-loop quantization. The open-loop
case for F (z) = 0 has been investigated in [KV05]. As an outcome it is shown that
open-loop quantization can benefit from correlation in the signal to be quantized
by only partially decorrelating signal x(k) in the LP analysis filter. The highest
SNR is achieved by a “half-whitening” LP analysis filter which, however, is lower
than the SNR achievable by closed-loop quantization.
For the generalized closed-loop quantization with the choice of F (z) (= 0, the LP
analysis filter is commonly configured to decorrelate the input signal as much as
possible, hence HA(z) ≈ H0(z). A system stability constraint is derived as follows:
By definition, the variance of the quantization noise in the decoder output must be
positive. According to (5.60), however, this variance is only positive if

G∆,ef

SNR0
< 1.0. (5.62)

Therefore, the overall system is only stable if this constraint is fulfilled. If the
stability constraint is not fulfilled, an unstable feedback loop evolves:
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• The variance of signal ef (k) increases if the variance of the quantization error
∆(k) increases.

• The variance of the quantization error ∆(k) increases if the variance of signal
d′(k) increases since the quantizer produces a constant SNR0.

• The variance of signal d′(k) increases if the variance of signal ef (k) increases.

The resulting quantization error asymptotically has infinite variance3.
If the system is stable the overall SNR for closed-loop LPC with respect to the
definition of the filtering gains (5.48-5.52) is

SNRlpc =
Gd0,x

G∆,x̃−x · Gd0,d
· (1−

G∆,ef

SNR0
) · SNR0 (5.63)

=

1
2π

π∫

−π
| 1

H0(Ω) |2dΩ

1
2π

π∫

−π
dΩ · 1

2π

π∫

−π
dΩ

· (1−

1
2π

π∫

−π
|F (Ω)|2dΩ

SNR0
) · SNR0. (5.64)

This equation shall in the following be discussed for different application constraints.

5.2.4.1 Methodology

For the evaluation of the derived noise propagation model, assumptions must be
made about the correlation immanent to the signal to be quantized. In the new noise
propagation model, the correlation of x(k) can be controlled by defining sets of filter
coefficients aar to configure the AR filter with system function H0(z) (5.46) related
to the AR process signal generation block. In the literature, most assumptions
about signal correlation are based on AR processes of order Nar = 1 (AR(1) with
H0(z) = 1−ρ ·z−1) and the coefficient ρ close to 1.0, e.g. [T.C06]. Realistic signals,
however, are much more complex than this. From narrowband speech coding it
is well known that an LP predictor of order ten is a good choice to achieve a
reasonable decorrelation of speech. Therefore, the correlation of speech should at
least be modeled by an AR-process of order ten (AR(10)). Besides a realistic order
of the AR process, realistic sets of AR filter coefficients aar (to configure H0(z)) are
required to simulate typical characteristics of correlation in audio signals.
The way to achieve realistic results which was followed in this thesis is to analyze
short-term stationary signal segments of real audio signals to produce example sets
of AR filter coefficients as the basis for H0(z). Two such example sets of order 18
are listed in Appendix B.1 as aar,1 and aar,2. Given a set of AR filter coefficients
and assuming that the input signal is perfectly decorrelated by the LP analysis
filter (HA(z) = H0(z)) most system relevant parameters for an evaluation of the
theoretical investigations can be easily computed. In that context the filtering gains

3This is obvious from (5.60) especially for
G∆,ef
SNR0

= 1.



5.2 Theoretical Analysis of LPC 105

Set Gd0,x in dB Gd0,d in dB γ G∆,ef
in dB G∆,x̃−x in dB

aar,1 19.62 dB 0 dB
1.0 15.46 dB 0 dB

0.9 12.14 dB 2.45 dB

Table 5.1: Model parameters for example fixed set of AR filter coefficients aar,1 and
for different configurations of the error weighting filter F (z) = A(z/γ) with γ = 1.0 and
γ = 0.9.

in (5.48-5.52) are computed from the approximation of the corresponding magnitude
spectra by means of a (long) Discrete Fourier Transform (DFT). Since the DFT
spectrum is not continuous, the integral in (5.43) is approximated by the sum
over the DFT coefficients. For one exemplary set of coefficients, aar,1, all relevant
model parameters are listed in Table 5.1 for F (z) = A(z/γ) with γ = 1.0 (closed-
loop quantization without noise shaping) and γ = 0.9 (closed-loop quantization
with moderate noise shaping). aar,1 was chosen as an example here as it well
demonstrates the behavior of the new model and the corresponding different results
compared to those related to the conventional theory of LPC and at the same time
is very typical for segments of audio signals.

5.2.4.2 Closed-loop Quantization for High Bit Rates

At first, for the evaluation of the LPC model for closed-loop quantization, high bit
rates are assumed and the error weighting filter is set to F (z) = A(z/γ) = A(z)
with γ = 1.0 (no noise shaping). Due to the high bit rate, the quantization error
signal variance can be assumed to be very low, hence SNR0 7 G∆,ef

for realistic
signals. In this case, the overall coding SNR is

SNRlpc,hr = Gd0,x · SNR0 =
1

2π

π∫

−π

| 1

H0(Ω)
|2dΩ · SNR0 (5.65)

since 1−
G∆,ef
SNR0

≈ 1, Gd0,d = 1, and G∆,x̃−x = 1 in (5.63). Taking into account the

zero-mean property of the AR filter H0(z) in the signal generation process (Section
5.1.5), (5.65) can be written as

SNRlpc,hr =

1
2π

π∫

−π
| 1

H0(Ω) |2σ2
d0

dΩ

exp

(

1
2π

π∫

−π
ln(| 1

H0(Ω) |2σ2
d0

)dΩ

)

︸ ︷︷ ︸

=Gp

·SNR0. (5.66)

The first part of the term on the right hand side is known as the maximum prediction
gain Gp, expressed as the inverse of the spectral flatness measure (SFM) [MG76] of
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signal x(k),

1

Gp
= ΞSF(x(k)) =

exp

(

1
2π

π∫

−π
ln(| 1

H0(Ω) |2σ2
d0

)dΩ

)

π∫

−π
| 1

H0(Ω) |2σ2
d0

dΩ
. (5.67)

The resulting logarithmic SNR in dB is

10 · log10(SNRlpc,hr)γ=1.0 = 10 · log10(Gp) + 10 · log10(SNR0) (5.68)

which is the result known from the literature for high bit rate assumptions, e.g.,
[MG76], [GR92], [VM06]. The correlation of the signal to be quantized can hence
be transformed into a benefit with respect to the overall coding SNR. Both parts
in (5.68) are independent from each other so that this result is a good motivation
afterwards to develop a quantizer optimized for memoryless sources independently
from its application in the context of LPC. The term (5.68) is consistent with rate
distortion theory (2.50).
In the next step, the new model is configured for closed-loop quantization with
noise shaping, that is, to spectrally shape the quantization noise in the decoder
output to increase the perceived coding quality with respect to the properties of
the human auditory system, e.g., [VM06]. For this purpose, the error weighting
filter is chosen as F (z) = A(z/γ) with γ = 0.9. However, it is well-known that the
choice of γ < 1.0 also reduces the overall coding SNR. This is visible also in Table
5.1, since the filtering gain G∆,x̃−x is increased in comparison to the closed-loop
LPC without noise shaping (γ = 1.0) due to the chosen value of γ. The overall
logarithmic SNR is hence

10 · log10(SNRlpc,hr)γ=0.9 = 10 · log10(Gp) + 10 · log10(SNR0)− log10(G∆,x̃−x)

< 10 · log10(SNRlpc,hr)γ=1.0 (5.69)

5.2.4.3 Closed-loop Quantization for Low Bit Rates

For the theoretical evaluation of a low bit rate scenario, the quality of the quantizer
is assumed to be

10 log10(SNR0) = 16 dB, (5.70)

According to the conventional high rate theory, given the example set of filter
coefficients aar,1 with the filtering gains as given in Table 5.1 and the assumption
of the quality of the quantizer according to (5.70), the overall logarithmic SNR
according to the high rate theory (5.68) would be

10 · log10(SNRlpc,hr)γ=1.0 = 35.62 dB (5.71)

for γ = 1.0 and

10 · log10(SNRlpc,hr)γ=0.9 = 33.17 dB. (5.72)
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for γ = 0.9 (5.69).
For the analysis of closed-loop quantization at low bit rates based on the new
model, at first, the choice of γ = 1.0 for the error weighting filter F (z) = A(z/γ)
is considered. Given the filtering gains in Table 5.1 for the example set of filter
coefficients aar,1 and the quality of the quantizer according to (5.70), the overall
system is stable as the stability constraint (5.62) is fulfilled, G∆,ef

/SNR0 = 0.883 <
1.0, and the overall logarithmic SNR according to the new model is

10 · log10(SNRlpc,lr)γ=1.0 = 26.28 dB. (5.73)

This is significantly lower than the value as predicted according to the conventional
theory on LPC for high bit rates (5.71).
If the new model is configured for closed-loop quantization with the error weighting
filter computed as F (z) = A(z/γ) with γ = 0.9, according to Table 5.1, besides the
modified filtering gain G∆,x̃−x, the feedback gain G∆,ef

is reduced. As a result,

the overall logarithmic SNR according to the new model with the filtering gains
as given in Table 5.1 for the example set of filter coefficients aar,1 and the quality
of the quantizer according to (5.70), is

10 · log10(SNRlpc,lr)γ=0.9 = 30.86 dB > 10 · log10(SNRlpc,lr)γ=1.0. (5.74)

and hence higher than the SNR for γ = 1.0. In addition, the value is lower than
the value according to the theory of LPC known from the literature (5.69). As a
conclusion, according to our new model and in contrast to the results as given for
high bit rates, the choice of γ < 1.0 is not only beneficial due to psychoacoustical
reasons but also increases the overall coding SNR for low bit rates.

5.2.4.4 Encoder Stabilization by Noise Shaping

Considering a configuration with another quantizer with a quantization SNR of

10 · log10(SNR0) = 13 dB (5.75)

compared to the value of 16 dB as before (5.70), the overall system would be unstable
for γ = 1.0 and set aar,1 since the stability constraint (5.62) would no longer be
fulfilled. In this case the choice of γ = 0.9 would be the solution to stabilize the
complete system since the feedback gain G∆,ef

is reduced, and (5.62) is fulfilled.

5.2.4.5 Measurements of Closed-loop Quantization Result

In order to verify the model and validate the new noise propagation model, the
theoretical results were confirmed by measurements in the context of a real LP based
coding scheme following the diagram in Figure 5.4 b). Compared to the results from
the previous evaluations, a practical confirmation of the overall SNR (5.10) requires
to produce a stationary signal with the same statistical properties as given by the
definition of AR filter coefficients in the model. For this reason, an artificial signal
was produced based on the set aar,1 of filter coefficients for H0(z) and a Gaussian
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noise excitation d0(k) with unit variance and zero mean as the output of an AR
process following the principle of the signal generation block in Figure 5.7. The
artificial signal was quantized and the overall SNR measured afterwards for both
considered scenarios, F (z) = A(z/γ) with γ = 1.0 and γ = 0.9. In order to realize
the quantizer with a constant quantization SNR0 (5.10), a logarithmic SQ according
to Section 3.1.1.5 was employed. The compressor curve of a logarithmic SQ in
practice has a logarithmic and a linear part. If signal amplitudes to be quantized
fall into the linear part, SNR0 would no longer be constant. In order to avoid that
this falsifies the measurements, the quantizer was realized as a mathematical rule,

d̃(k) = Q(d′′(k)) = sign(d′′(k)) · exp(Clog ·
⌊

log(|d′′(k)|)
Clog

+ 0.5

⌋

). (5.76)

Naturally, a finite bit rate for this type of quantizer can not be calculated since
the quantizer resolution would become infinite for amplitudes approaching zero.
Nevertheless, the measurement of the quantization SNR0 for different values of the
parameter Clog is sufficient for a validation of the noise propagation model since
SNRlpc was given as a function of SNR0 in all previous evaluations as well.
In parallel to the measured values for the overall SNRlpc (directly computed from
the power of the input signal and the power of the quantization noise in the decoder
output), the variances which are required to compute “real” values for filtering gains
G∆,ef

and Gp were approximated by measurements of the signal powers of signal

x(k), d(k), ∆(k) and ef (k), respectively. Based on these “real” values for filtering
gains SNR values could be computed according to equation (5.63) to validate the
theoretical results in comparison to the measured ones. The results are shown for
the cases F (z) = A(z/γ) with γ = 1.0 and γ = 0.9 in Figure 5.9. In addition
to all that, also the SNR predicted by the high rate approximation in Section
5.2.4.2 (conventional high rate theory, (5.71)) and the values according to (5.74)
and (5.73) (marked by the red bullets) are shown for 10 · log10(SNR0) = 16 dB for
comparison. These values are slightly different than the measured values since the
“real” filtering gains marginally deviate from those given in Table 5.1. The area
of values SNR0 < 15.5 dB for which the model predicts that the overall encoder
becomes unstable for γ = 1.0 is highlighted by the gray background color. In that
area, the overall system is no longer linear.
The presented curves confirm that the new model is significantly more consistent
with the measured results than the conventional theory of LPC and demonstrates
that LPC does not benefit from the full prediction gain for lower bit rates.

5.2.5 Discussion of the Model

The new quantization noise production and propagation model is the basis for
the generalization of the conventional high rate theory for LPC towards lower bit
rates. In particular, it was shown that for lower bit rates, the overall logarithmic
SNR is significantly lower than the value predicted by the conventional theory for
high bit rates and that the closed-loop encoder (the combination of quantization,
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Figure 5.9: Logarithmic SNR in dB measured and predicted by the new model for
F (z) = A(z/γ) with γ = 0.9 and γ = 1.0. The SNR according to the conventional (high
rate) theory of LPC is shown as a reference. Values for SNR0 in which the overall encoder
can become unstable for F (z) = A(z/γ) with γ = 1 are highlighted by the gray background
color. For higher bit rates, the achievable SNR is identical to what the conventional theory
of LPC predicts. For lower bit rates, however, the quantization error feedback plays a more
and more important role, and the computed overall SNR deviates from the SNR computed
according to the conventional theory. The red bullets are the computed theoretical results
according to (5.71), (5.74) and (5.73). Note that the system is no longer predictable in
the (unstable operation) area SNR0 ≤ 15.5 dB due to non-linear behavior.

noise feedback and linear prediction) can become unstable. Some open questions,
however, still need to be discussed in the following.

5.2.5.1 Symptoms for Unstable Operation Conditions

It was described that the closed-loop LPC encoder can become unstable. This,
however, is not clearly visible in Figure 5.9. So, what happens if the encoder is
unstable? The answer is that nothing must happen but terrible things can happen.
In quantization, in practice, the variance of the quantization error signal is a mean
value. That means that quantization errors with smaller and with larger error
amplitudes occur. The development of a noticeable artifact due to an instability in
general has the duration of more than one sample interval if the stability constraint
(5.62) is marginally unfulfilled. Therefore, in order to be noticeable as such, the
instability requires that a sequence of large quantization errors occurs. Artifacts
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Figure 5.10: Example for artifacts as the result of an unstable operation condition.

develop more quickly if the feedback gain is high and are more likely to occur if
SNR0 is low.
An example for the typical symptoms of an instability is shown in Figure 5.10 for an
example sequence of the artificial stationary signal from Section 5.2.4.5. The signals
x(k) and x̃(k) are very much alike for a long time but suddenly a peak occurs.
This peak is a very annoying acoustical artifact and is not tolerable. Unstable
operating situations therefore should definitely be avoided. A rule of thumb to
avoid instabilities is that the error feedback signal ef (k) should not have a higher
power than signal d(k) for a longer time. Unfortunately, it is hard to distinguish
between wanted behavior (e.g., sudden decay of signal d(k)) and the development
of instabilities just by observing the two signals in practice.

5.2.5.2 Relevance for Practical Coding Concepts

The evaluation results presented so far are based on reproducible, artificially gener-
ated quasi-stationary signals originating from an auto-regressive (AR) source model
simulator. Practical audio signals are indeed significantly more complex than this.
For example, quasi-stationarity is only present for short segments, and a lot of
coding concepts exploit properties of types of signals to increase coding efficiency
which are much more specific than the short-term correlation (e.g. the exploitation
of long-term correlation in speech coding). So, are these results relevant for coding
in practice then? The answer is yes: If already for very weak assumptions about the
signals and under idealized conditions artifacts can occur, these artifacts definitely
occur while quantizing real audio signals which are more complex either, together
with other problems such as filter switching artifacts in the case of time variant LP
synthesis filters etc.. The very simple signal model has helped to isolate the problem
of instabilities in LPC with closed-loop quantization and to develop a theory. It
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therefore indeed has a high significance for the development of the W-SCELP codec
(Section 6).

5.2.5.3 Validity of the Model

A very important assumption made in the derivation of the new model was that
two signals are uncorrelated, signal d0(k) as the excitation of the AR process and
the quantization error ∆(k). Signal d0(k) by definition is uncorrelated as it is the
output of an uncorrelated noise source. In order to model ∆(k) as a spectrally
flat uncorrelated signal a bit rate which is sufficiently high is assumed, but the
new model claims to be valid for lower bit rates also. Therefore, the assumption
made here seems to be questionable at the first glance. Considering the results
from Figure 5.9, however, it is pretty obvious that we have to distinguish between
low bit rates for quantization in general and low bit rates in the context of coding
of correlated signals: Starting from high values for SNR0, the area in which the
new theory starts to differ from the results according to the conventional theory
begins at values of SNR0 ≈ 24 dB. Taken into account the results from Section
3.1.1.5, a practical A-Law quantizer requires an effective bit rate of approximately
5-6 bits per sample to reach this (and approximately 4 bits to reach SNR0 ≈ 16),
and nobody would doubt that a quantizer still produces a quantization error which
is independent of the input signal at these bit rates. As a conclusion, the bit
rate at which the quantization error is no longer uncorrelated (the low bit rate in
quantization in general) is much lower than the low bit rate at which the new model
is valid and for which stability of the error feedback loop is given.

5.2.5.4 Conclusion of the Model

The definition of low bit rate areas in the context of the quantization of sources
with memory has already been described in Section 2.3.4 in the context of the rate
distortion theory. The new model confirms that the achievable performance gain
due to an exploitation of correlation is lower for lower bit rates than the value
predicted by the high rate asymptotic theory. In rate distortion theory, the loss
toward lower bit rates was due to the impact of the reverse water filling. In this
section, it was due to the feedback of quantization noise. The reverse waterfilling
behavior is related to valleys of the spectrum of a signal (see Section 2.3.3), and
it can be shown that mostly deep valleys in the spectrum F (z = ejΩ) of the error
weighting filter are responsible for high feedback gains. Therefore and due to the
following investigations, it will become more and more clear that, indeed, the reverse
waterfilling is related to the feedback gain in LPC and that instabilities of the LPC
encoder are a direct consequence of the disregard of the reverse waterfilling.
Two main conclusions can be derived from the evaluation of the new model that
will be discussed in detail in the following:

• For lower bit rates, the quantizer and the surrounding signal processing should
no longer be optimized independently in closed-loop LPC.
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• One possible way to improve the system behavior of the LPC encoder is to
employ the error weighting filter F (z) = A(z/γ) with γ < 1.0 to be controlled
adaptively in order to adapt to different signal types.

We can conjecture that, given a signal with a specific correlation, certainly there
is an optimum γ to maximize the SNR. This optimal γ, unfortunately, cannot
be calculated analytically. Nevertheless, an alternative method to determine the
coefficients of the noise feedback filter F (z) will be developed next.

5.2.6 A Novel Optimization Criterion for Closed-loop LPC

An important observation in the analysis of the new model in the previous section
is that the signals d(k) and d′(k) in Figure 5.2 b) (d′(k) computed from d′′(k) in
Figure 5.6 for VQ) can significantly differ. With the assumption of a constant
quantization SNR0 produced by the quantizer, the quantization noise power in
the decoder output signal is always proportional to the short-term power of signal
d′(k). Taking this fact into account, a new optimization criterion which targets the
computation of the optimal LP coefficients for closed-loop quantization is

E{d′2(k)}→ min (5.77)

which differs from the optimization criterion for linear prediction as proposed in
the literature (5.3), E{d2(k)}→ min. Also, HA(z) and F (z) are no longer assumed
to necessarily employ the same or a similar set of filter coefficients. With ai as the
coefficients of the LP analysis filter system function HA(z) (5.2) and the coefficients
bi as the coefficients of the error weighting filter F (z) (same order Nlpc in both
cases), signal d′(k) is computed as (see Figure 5.2 a))

d′(k) = x(k)−
Nlpc
∑

i=1

ai · x(k − i)−
Nlpc
∑

i=1

bi · ∆(k − i)

︸ ︷︷ ︸

ˆ̃x(k)

. (5.78)

A trivial solution for the problem from (5.77) is to set bi = 0 for all i = 1, . . . , Nlpc

and to compute the ai as in conventional linear prediction. This solution, how-
ever, is undesired since it is identical to open-loop quantization. A solution for
closed-loop quantization can be derived by introducing the additional constraint
to minimize the noise gain G∆,x̃−x in order to maximize the overall SNR. Unfortu-
nately, this constraint can only be formulated in the frequency domain (5.51) since
filter HS(z) is an IIR (infinite impulse response) filter.
An alternative solution can be realized as the following two-step-procedure:

• In the first step, the coefficients bi of filter system function F (z) and ai of filter
system function A(z) are coupled by the relation bi = ai. Correspondingly,
F (z) = A(z) and the second constraint is perfectly fulfilled (G∆,x̃−x = 1). Due
to the modified optimization criterion, the resulting LP analysis is different
to the conventional approach.
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• In the second step, the coefficients ai to be used in the LP analysis filter
HA(z) are computed according to the conventional LP analysis.

The two steps are in detail realized and motivated as follows:

Step I: Modified LP Analysis

Signal d′(k) is written as

d′(k) = x(k)−
Nlpc
∑

i=1

bi · x(k − i)−
Nlpc
∑

i=1

bi · ∆(k − i). (5.79)

Assuming that the signals x(k) and ∆(k) are independent one from the other and
that signal ∆(k) is uncorrelated (see Section 5.2.5.3), the new optimal filter coeffi-
cients are calculated from the following set of equations:





ϕx,x(1)
. . .

ϕx,x(Nlpc)



 = (Φx +Φ∆) ·







b1

b2

. . .
bNlpc







(5.80)

with

Φx =







ϕx,x(0) . . . ϕx,x(1−Nlpc)
ϕx,x(1) . . . ϕx,x(2−Nlpc)

. . . . . . . . .
ϕx,x(Nlpc − 1) . . . ϕx,x(0)







(5.81)

and

Φ∆ =







ϕ∆,∆(0) . . . 0
0 . . . 0

. . . . . . . . .
0 . . . ϕ∆,∆(0)







(5.82)

The first part of this equation involving Φx is identical to the conventional approach
in linear prediction, and the second part involving Φ∆ is related to the feedback
of the quantization error due to the error weighting filter F (z). In matrix Φ∆, the
term ϕ∆,∆(0) depends on the performance of the quantizer, SNR0, and the power
of the signal d′(k) which again depends on the coefficients bi. (5.80) would hence
no longer be a linear set of equations and a solution not straight forward.
A reasonable approximation of the quantization noise power, however, is to set it
to a constant value ϕ∆,∆(0) = C∆ · ϕx,x(0) for the computation of the coefficients
bi. The resulting approach is well-known as white-noise-correction (WNC) which,
however, was introduced to avoid ill-conditioned autocorrelation matrices in the LP
analysis, e.g., [KP95]. The corresponding new error weighting filter is denoted as

Fnew(z) =

Nlpc
∑

i=1

bi · z−1. (5.83)
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Note that the order of Fnew(z) is not required to be equal to Nlpc.

Step II: Minimization of d(k)

In order to furthermore optimize the overall system performance, another conclusion
is derived from the new noise production and propagation model: From (5.57) it
is obvious that only F (z) but not HA(z) has an impact on the variance of signal
ef (k) and hence the term (1 − G∆,ef

/SNR0)−1 in (5.60). Therefore, if the error

weighting filter F (z) is fixed, the maximum overall quantization performance is
achieved by minimizing filtering gain Gd0,d (refer to (5.55) and (5.59).). In order to
minimize Gd0,d the coefficients ai should be computed according to the conventional
LP analysis (to approximate H0(z) by HA(z) as good as possible) whereas the
proposed white-noise-correction should only be considered for the computation of
the coefficients bi of the error weighting filter Fnew(z).

In a practical application, the two-step-procedure can be efficiently realized, e.g.,
by computing the two sets of LP coefficients in two subsequent executions of the
Levinson Durbin algorithm. It is applicable for combined LP and SQ as well as for
CELP coding since, with respect to (5.27) and Section 5.1.7.3, the error weighting
filter W (z) and the error weighting filter F (z) are equivalent. Constant C∆ still is
an unknown parameter which should be adapted to the quantizers bit rate. In the
context of the W-SCELP and the SCELP codec (Section 6), the best choice for C∆

was determined based on the evaluation of simulations.
In order to better understand the impact of the proposed two-step procedure, it will
be analyzed in the frequency domain for the exemplary spectrum related to a set of
AR filter coefficients in the following. It will be shown that the proposed method
involving the new error weighting filter Fnew(z) is the time domain approximation of
the reverse waterfilling procedure according to the rate distortion theory (Chapter
2) and therefore produces a higher coding SNR than the method involving the
conventional error weighting filter Fconv(z) from (5.14).

5.2.6.1 Reverse Waterfilling according to the Rate Distortion Theory

The reverse waterfilling principle was introduced in the context of the optimal
quantization of correlated signals according to the rate distortion theory in Section
2.3. In this section, the knowledge about this principle in general will be refreshed,
and its realization in practice will be explained based on a qualitative plot of the
magnitude spectrum of an exemplary signal. In the next section, it will then be
described why the modified LP analysis from the previous section is the realization
of reverse waterfilling in closed-loop LPC.
For the explanation of the reverse waterfilling principle based on an exemplary
magnitude spectrum, it is more useful to consider only spectral envelopes of signals
rather than the exact fine structure of a high resolution magnitude spectrum. In
Figure 5.11 an exemplary log spectral envelope SEX(Ω) is shown as the blue line
with the triangle markers. Again, with respect to the motivation given in Section
5.2.5.2, the shown spectral envelope is related to a stationary signal that originates
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Figure 5.11: Reverse waterfilling principle according to the rate distortion theory illus-
trated for two example bit rates, Reff,1 = 3.6 bits per sample and Reff,2 = 1.9 bits per
sample. All curves are constructed from the spectral envelope SEX(Ω) according to (5.84)
for an exemplary set of AR filter coefficients in analogy to Section 5.2.4.1.

from an AR process. The spectral envelope is derived from the corresponding
exemplary set of AR filter coefficients for the AR filter with system function 1

H0(z)

based on the substitution z = ejΩ, e.g. [VM06], as

SEX(Ω) = 10 · log10

(∣
∣
∣
∣

1

H0(Ω)

∣
∣
∣
∣

2)

. (5.84)

The log spectral envelope can be computed by means of a Discrete Fourier Trans-
form (DFT) and is a normalized approximation of the logarithmic Power Spectral
Density (PSD) which was the basis for the explanation of the reverse waterfilling in
Section 2. It is normalized because the AR filter has zero-mean property (Section
5.1.5) which is not necessarily the case for the PSD. Since, according to the results
from rate distortion theory, only relative level differences of variances are relevant,
the normalization has no impact on the investigated issues. The zero-mean property
has two consequences:

• SEX(Ω) is located around the 0-dB-line in Figure 5.11.

• A decorrelation of the signal, e.g., by means of LP analysis filtering, produces
a signal with the normalized log spectral envelope

SED(Ω) = 0 dB. (5.85)

The shown example has low pass characteristic which is typical for audio signals.
For the following explanations, two scenarios are considered to demonstrate the re-
verse waterfilling, one based on the assumption of a high effective bit rate, Reff,hr =
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3.6 bits per sample, and one for a low effective bit rate of Reff,lr = 1.9 bits per
sample.

In the high bit rate example, the quantization is controlled according to the
reverse waterfilling such that the quantization error variance is constant over fre-
quency (2.50). Very generally, the quantizer is modeled by the 6-dB-per-bit rule
(2.18) in Figure 5.11, so that the level of the quantization error in the decoder out-
put, SEX−X̃(Ω), is 10 · log10(SNR0) = 6.02 · Reff,hr dB lower than SED(Ω), that is,
at −6.02 · Reff,hr = −21.6 dB on the y-axis. SEX−X̃(Ω) is shown as the solid line
with the square markers for the high bit rate in Figure 5.11.

In the low bit rate example, based on the 6-dB-per-bit rule (2.18) quantization
model and the location of the spectral envelope SED(Ω), the spectral envelope of the
quantization noise SEX−X̃(Ω) could be expected to be located 10 · log10(SNR0) =
6.02 · Reff,lr dB lower than SED(Ω), that is, at −6.02 · Reff,lr = −11.5 dB on the
y-axis for all Ω in analogy to the case for high bit rates. This curve is shown
as the dotted line in the figure. However, the reverse waterfilling prescribes that
the quantization noise level can never be higher than the level of the signal to be
quantized (in rate distortion, this case is equivalent to 0 dB SNR). Considering
this, the spectral envelope of the quantization noise is reduced in the areas denoted
as the LP critical areas to follow the spectral envelope SEX(Ω) (denoted as the
“reduce” operation), and in all other areas, the quantization noise level is slightly
raised (denoted as the “raise” operation). The resulting “correct” spectral envelope
(according to RDT) is shown as the dash-dotted curve with the circle markers. The
impact of the described procedure for lower bit rates is a reduced SNR compared
to the SNR related to the dotted line. This behavior is also well documented in
Section 2.3.4 by the SNR plots in Figure 2.4.

5.2.6.2 Reverse Waterfilling in Closed-loop Quantization

In closed-loop quantization the spectral envelope of the processed quantization noise
in the decoder output is influenced by the weighting filter F (z) according to the
magnitude spectrum with respect to (5.13).

For the high bit rate example from the previous section, to configure the error
weighting filter such that A(z) = F (z) is well possible as feedback problems do not
occur due to the fulfillment of the stability constraint (5.62). The spectral envelope
of the quantization noise is constant for all Ω and located at the same position as
in Figure 5.11 if the quantizer performance is assumed to follow the 6-dB-per-bit
rule again.Since this case is trivial, it is not shown in the figure.

For the lower bit rate example, setting A(z) = F (z) would lead to coding
artifacts since the overall system is unstable due to the low quantizer SNR and the
unfulfilled constraint (5.62). Instead, Fnew(z) (= A(z) is computed according to the
new optimization criterion from Section 5.2.6 and equation (5.77). As a conclusion,
the log spectral envelope of the processed quantization noise in the decoder output
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Figure 5.12: Reverse waterfilling in closed-loop quantization based on the filter Fnew(z)
for the new approach (circle markers) and the conventional approach based on filter
Fconv(z) according to (5.14).

is

SEX−X̃,new(Ω) = 10 · log10

(∣
∣
∣
∣

1− Fnew(Ω)

1−A(Ω)

∣
∣
∣
∣

2)

, (5.86)

shown in Figure 5.12 as the solid line marked by gray circles. Obviously, the spectral
envelope very well approximates the optimal curve for the low bit rate example
(dash-dotted curve with circle markers in Figure 5.11). The curves are not identical,
though, since the frequency response is approximated by a time domain filter. It
can be shown that the “raise” operation defined in the previous section is related
to the white-noise-correction and hence the first step in the two-step procedure
to compute Fconv(z), whereas the “reduce” operation is related to the difference
between Fconv(z) and A(z) and hence the second step.
In addition to the spectral envelope related to the choice Fnew(z), the log spectral
envelope based on the approach proposed in the literature with a choice of the error
weighting filter such that Fconv(z) = A(z/γ) according to (5.14) is shown in Figure
5.12 as the dashed line with the square markers,

SEX−X̃,conv(Ω) = 10 · log10

(∣
∣
∣
∣

1− Fconv(Ω)

1−A(Ω)

∣
∣
∣
∣

2)

, (5.87)

In order to have a comparable impact as with Fnew(z), γ was chosen such that the
spectral envelope of the processed quantization noise is below the spectral envelope
of the input signal at all frequencies and in particular in the LP critical areas from
Figure 5.11 (γ = 0.55).
As a conclusion of this diagram, the new approach approximates the spectral en-
velope which is optimal according to RDT much better than the conventional ap-
proach. The quantization noise level is significantly lower in the low frequency
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areas, and the overall SNR is approximately 6 dB higher for the new approach than
for the conventional approach for the example from the figure.
So far, in the discussion of LPC, effects related to human perception in audio coding
were not considered since all investigations were solely based on the computations
of SNRs. In order to take human perception into account in a practical coding
scheme, the two concepts for the error weighting filter F (z) can be combined. This
and other aspects related to human perception will be subject of Section 6.
For the examples in Figure 5.12, the constants C∆ and γ were tuned manually. In
the application for coding, in general fixed values are used which are not optimal
but offer a reasonable quality. In order to improve the concept, especially γ should
be controlled adaptively for different segments of the input signal.

5.2.7 Adaptation of the Scalar Noise Model for CELP
Coding

In the new noise propagation model for LPC the quantizer is modeled by a scalar
additive noise source. The motivation to generalize the results from the scalar model
also to CELP coding was explained in Section 5.1.7.3 where it was shown that
closed-loop LPC with SQ and VQ are equivalent if W (z) is configured according to
(5.27). Also, it is clear that for the same effective bit rate per sample VQ has higher
performance than an SQ due to the VQ advantages (Section 3.2.1). But besides
these facts, are there any other differences between SQ and VQ in the context of
the new model for closed-loop linear predictive coding, or, in other words, does the
scalar model really also apply for CELP coding?
In order to find the answer to this question, the measurements from Section 5.2.4.5
were repeated involving a CELP encoder (based on the APVQ LSVQ candidate
from Section 4.4.3 involving the testing of all codevectors in the codebook (full
search) for quantization) to replace the logarithmic SQ and for W (z) = 1 (hence
F (z) = A(z) in the equivalent scalar model.). The measured results showed that, on
the one side, the CELP encoder behaves as predicted by the derived new model: For
lower bit rates, the quantization error signal is fed back due to the error weighting
filter, the (equivalent) signal d′(k) deviates from signal d(k), the overall system can
be unstable, and the error weighting filter Fnew(z) is also a good choice for VQ. On
the other side, however, a CELP coder seems to be less sensitive against feedback
problems than an SQ based approach.
The reason for this well-tempered behavior is that a CELP encoder benefits from
the fact that more than one quantization reconstruction level is determined at once
in the closed-loop codebook search. Due to the joint optimization of sequential
samples, the search for the best codevector implies the introduction of a certain
dependence between the samples of each quantized vector which can not be achieved
by SQ. The introduction of dependence between samples has an impact similar to
that of a filter. In order to model this filtering characteristic, the implicit error
weighting filter W ′(z) is introduced in the CELP encoder model in Figure 5.13 and
is responsible for a spectral shaping of the quantization noise. Consequently, W ′(z)
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Figure 5.13: Basis for the extension of the scalar noise model for CELP coding: The
encoder involving a full codevector search has the impact of an implicit error weighting

filter W ′(z) which is due to the introduction of a specific dependence between subsequent
samples in the quantized LP residual signal vectors caused by the full codevector search.

must also be considered in the equivalent scalar noise production model in order
to be valid for CELP coding and helps to better match the reverse waterfilling
to reduce the variance of signal ef (k). However, the impact of the implicit error
weighting filter can only be validated indirectly:

• The measurements of signal powers during the simulation of CELP encoding
with a choice of W (z) = 1 ( and hence F (z) = A(z) in the equivalent scalar
model) show that the “real” filtering gain G∆,ef

differs significantly from the

theoretical values derived from the filter coefficients of filter F (z) (according
to (5.51)). This behavior can only be explained by a quantization error ∆(k)
which is not spectrally flat.

• The quantization noise in the decoder output is expected to be spectrally flat
(SEX−X̃,conv(Ω) = const) for W (z) = 1. However, the measurements showed
that this is not the case but, instead, the spectral shape was very similar
to the spectral shape according to the reverse waterfilling procedure. This
behavior can only be explained by the implicit error weighting filter W ′(z).

The impact of the implicit error weighting filter, however, is limited for VQ vector
dimensions used in practice, similar to the effect of truncated impulse responses in
FIR filters for the approximation of desired frequency responses. Therefore it is not
a good replacement for the near-optimal weighting filter as proposed in Section 5.2.6
in practical applications and for realistic vector dimensions. In addition to that,
the computational complexity for a full codevector search is prohibitive for very
low dimensions already so that most optimized CELP quantization procedures can
afford to test only a fraction of the overall number of vectors in the VQ codebook.
In these cases the impact of the implicit error weighting is almost imperceptible.

5.2.8 Encoder Stabilization in Speech Coding
LPC has received much attention in the speech coding community during the last
decades. The issue related to the feedback of the quantization error, however, has
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not been addressed by many researchers. One reason is that speech signals do not
have such extreme characteristics as audio signals (e.g., segments with very high
prediction and feedback gains for artificial and low pass filtered audio signals) and
that codec parameters such as the length of the LP analysis segments are configured
in a different way in low delay audio coding (e.g., to fulfill the low delay constraints).
Furthermore, a lot of common techniques are employed in state-of-the-art speech
codecs which prevent the evolution of artifacts caused by unstable feedback loops.
These techniques, however, were introduced for other reasons:

• White-noise-correction has been introduced to avoid ill-conditioned matrices
[KP95]. It was shown that this technique is the most important approach to
combat feedback problems and to maximize the SNR.

• Spectral bandwidth widening in the LP spectrum has been introduced to better
match formant frequencies [KP95]. This technique also reduces the feedback
gain in LPC and hence feedback problems.

• The weighting filter F (z) = A(z/γ) was introduced to achieve a better per-
ceptual speech quality [SAH79]. It was shown that a value of γ < 1.0 leads to
performance benefits also with respect to the SNR as a (suboptimal) alterna-
tive to the white-noise-correction.

• Very large vector dimensions (e.g., Lv = 40 based on the interleaved con-
catenation of vectors as described in Section C.3 of the supplement document
[Krü09] in the AMR speech codec [ETS00]) for the quantization of the LP
residual signal [SA89] are employed. It was explained that VQ with large
vector dimensions also reduces the feedback gain due to the implicit error
weighting filter.

• Longer LP analysis segments lead to moderate prediction and, in particular,
feedback gains in conventional speech coding compared to low delay audio
coding.

Tests based on the generic state-of-the-art JMEDIA ACELP speech codec developed
in [KV02] showed that also speech coders can become unstable due to error feedback
effects if the mentioned common techniques are not employed.

5.3 Discussion

In this section, linear predictive coding was investigated as an approach to exploit
linear correlation within audio signals to increase the coding performance. In the
first part, the principle of linear prediction was briefly reviewed. It was motivated
that LPC is useful for speech signals as well as for audio signals and a good choice
for low delay source coding. Combined closed-loop linear prediction and SQ was
explained, and it was shown that this concept can be generalized as analysis-by-
synthesis VQ which is denoted also as Code-Excited Linear Prediction (CELP).
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Targeting the reduction of the complexity related to the CELP encoder, a modified
encoder structure was developed which will be the basis for a significant reduction
of complexity of the CELP encoder to be investigated in Section 6.1.3.
In the second part, novel aspects related to source coding at lower bit rates were
investigated which are of high relevance for low delay audio coding as well as for
a deeper fundamental understanding of LPC in general. A new model which, in
contrast to the conventional theory of LPC given in the literature, is valid for high
as well as for low bit rates showed that the interaction between the quantizer and
the feedback of the quantization error can lead to encoder instabilities and overall
performance losses. In order to combat these undesired effects, a novel optimization
criterion was introduced to enable the computation of the error weighting (noise
feedback) filter Fnew(z) for closed-loop linear predictive quantization. It was shown
that this novel approach much better considers the reverse waterfilling known from
rate distortion theory than the conventional error weighting filter known from the
literature.



6

The SCELP and the
W-SCELP Low Delay Audio
Codecs
In Section 4, the theory and concepts for practical realizations of LSVQ were de-
veloped. In Section 5, the combination of linear prediction and LSVQ for linear
predictive coding (LPC) was investigated. In this chapter, the results from the two
chapters shall be combined in order to develop the Spherical Code-Excited Linear
Prediction (SCELP) low delay audio codec. Special attention is at first drawn to
practical aspects, in particular to achieve a low computational complexity of the
SCELP encoder. It will be shown that a huge reduction of computational com-
plexity is possible by exploiting properties of the LSVQ codevectors with tolerable
degradation of the coding performance.
In order to realize audio coding with high perceived quality, also design aspects re-
lated to human perception will be briefly discussed in the next step. As a result, the
SCELP codec is enhanced by means of Warped Linear Prediction (WLP), denoted
as the W-SCELP codec [KV07b].
In the last part of this chapter, results for the W-SCELP audio codec based on
objective audio quality measurements will be presented. It will be shown that the
SCELP low delay audio codec outperforms the ITU-T G.722 audio codec [ITU88b].

6.1 The SCELP Low Delay Audio Codec

The SCELP low delay codec was developed as a candidate for a digital solution
for wireless audio-links in hearing aids as described in Section 1.1.2. Accordingly,
low algorithmic delay, computational complexity and high perceived audio quality
as well as transmission robustness were important constraints that needed to be
fulfilled. It was explained in previous sections that LP combined with LSVQ is a
promising candidate for audio coding with low algorithmic delay. In this section,
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the computational complexity and the achievable audio quality will be investigated.
The aspect of transmission robustness is discussed in detail in [KSV06] and shall
not be examined here.
The computational complexity in CELP coding is mainly an issue of the encoder
and, in particular, of the weighted codevector search procedure according to (5.24).
The methods for complexity reduction discussed in the following are therefore based
on simplifications of this functional part.
But why would the complexity be an issue here once more if highly efficient ap-
proaches for nearest neighbor quantization were proposed earlier for the LSVQ
concepts? The answer is that it definitely is a big practical issue since the proposed
nearest neighbor quantization approaches can not be reused due to the weighting
matrix HW in (5.24). All investigations about the theoretically achievable coding
performance related to CELP coding in the previous chapters were based on the
assumption that all codevectors in the LSVQ codebook are tested in analysis-by-
synthesis manner as described in Section 5.1.7. This approach, denoted as the full
search strategy in the following, is prohibitive already for low dimensions and bit
rates. Therefore, the overall concept of combined linear prediction and LSVQ pre-
sented in this thesis would be of no practical use if a realization of the codevector
search procedure with low complexity would be impossible.
Other researchers have identified this issue before: In the literature, efficient search
strategies for combined linear prediction and VQ were in particular published in the
context of the algebraic codebooks for speech coding, denoted as Algebraic Code-
Excited Linear Prediction (ACELP), e.g., [LAS+91], [SLAM94]. The published
strategies exploit the sparseness of the codebooks to achieve a high performance
and a reasonable computational complexity at the same time. It was shown in Sec-
tion 4.4.1, however, that this type of VQ is only useful to achieve moderate quality
for very low bit rates, e.g., 10 · log10(SNR0) = SNR(II)

svq |dB < 7 dB for bit rates of
Reff < 1.5 bits per sample for the ALBVQ as shown in Figure 4.231. A reuse of
the proposed techniques for low delay audio coding with higher quality constraints
is hence not possible. Besides this, theoretical or more general publications on effi-
cient weighted vector search procedures, unfortunately, are barely available.
The other approaches from Chapter 4, the GLCVQ and the APVQ, were developed
for the quantization of memoryless sources at higher bit rates (Reff > 2 bits per
sample to achieve 10 · log10(SNR0) = SNR(II)

svq |dB > 10 dB) to enable higher quality
VQ. In order to employ these concepts also for CELP coding, new efficient search
strategies for the weighted vector search had to be developed. Among the two con-
cepts, the GLCVQ has the higher performance as documented in Section 4.4, and
a nearest neighbor quantization procedure can be realized with low computational
complexity (refer to Section D.2 of the supplement document [Krü09]). Unfortu-
nately, all attempts to develop a low complexity version of the weighted codevector
search in the context of CELP coding failed since the resulting loss of quality com-

1Indeed, the proposed efficient codevector search methods assume that only very few pulses are
non-zero. Correspondingly, the number of pulses in the standardized speech codecs is very low so
that in ACELP coding, the quality of the base quantizer is even lower.
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Standard configuration of the SCELP codec

Effective Vector Sample- Number of Number of Overall number

bit rate Dim. rate spherical A-Law quan- of LSVQ

in bits in Hz codevectors tizer levels codevectors

Reff,lsvq Lv fs Nsvq Ng Nlsvq = Ng · Nsvq

2.0 11 22050 105328 27 2843856

Table 6.1: Standard configuration of the SCELP low delay audio codec to illustrate the
possible reduction of complexity and corresponding quantization performance loss.

pared to a full codevector search was unacceptable [Sch06]. Therefore, an efficient
realization of the codevector search for combined CELP coding and LSVQ was de-
veloped for the APVQ from Section 4.4.3 as well. The APVQ was shown to have
only a marginally lower performance than the GLCVQ for memoryless sources. It
is the better choice for CELP coding, however, since the underlying Apple Peeling
spherical code enables to realize a reduced complexity codevector search to save
huge amounts of complexity while at the same time decreasing the quality only
marginally compared to the full search approach.
The highly efficient combination of CELP and APVQ forms the SCELP codec and
is explained in detail in [KV06b]. In this section, only a brief summary of the re-
sults is presented which is derived from more detailed investigations about efficient
codevector search procedures in CELP coding based on principal considerations.
Detailed measurements for artificial quasi-stationary signals and visualization of
quantization cell shapes for a simple two-dimensional VQ are presented in Section
E of the supplement document [Krü09].

6.1.1 The SCELP Standard Configuration

The SCELP codec is applicable for a wide variety of applications. In order to illus-
trate the efficiency of the proposed techniques, the reduction of the computational
complexity and the corresponding loss of quantization performance due to the re-
duced codevector search effort shall be demonstrated by a concrete example:
In its standard configuration (all relevant parameters of the SCELP standard config-
uration are summarized in Table 6.1), the SCELP low delay audio codec is operated
with an effective bit rate of Reff,lsvq = 2.0 bits per sample, a vector dimension of
Lv = 11, and a sample rate of fs = 22050 Hz. For the given effective bit rate and
under consideration of the optimal bit allocation for LSVQ from Section 4.2.4.4,
the number of codevectors located on the sphere surface is Nsvq = 105328, and
the number of quantization reconstruction levels for the gain factor Ng = 27. The
computation of the LP coefficients and the filter coefficients of the error weighting
filter F (z) was realized according to the approach proposed in Section 5.2.6 to con-
tribute for the novel optimization criterion for linear predictive quantization with
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error feedback from (5.77). All other parameters of the SCELP encoder such as,
e.g., the LP order do not have a significant impact on the computational complexity
of the CELP codevector search procedure and are therefore not listed in Table 6.1.
The SCELP standard configuration is also the basis for the investigations in Section
E.1 of the supplement document [Krü09]:

6.1.2 Maximum Theoretical Complexity and the Definition
of a Quality Loss Measure

For a comparison of different codevector search strategies in CELP coding it is very
important to know the maximum achievable performance given unlimited computa-
tional power. The maximum SNR is achieved by following the full search approach
for the determination of the optimal codevector, denoted as SFS. The involved
computational complexity, indeed, is very high and prohibitive for practical appli-
cations:
Given the SCELP standard configuration listed in Table 6.1, according to the mod-
ified CELP approach from Section 5.1.7.1, metric

Milsvq
= (x′

0 −HW · d̃ilsvq
)T · (x′

0 −HW · d̃ilsvq
). (6.1)

must be computed for each of the Nlsvq = Nsvq · Ng = 2843856 LSVQ codevectors.
The optimal codevector index iQ,lsvq is determined by metric comparison in analogy
to (5.24) as

iQ,lsvq = arg min
0≤ilsvq<Nlsvq

Milsvq
. (6.2)

The convolution of one LP residual vector candidate dilsvq
with the truncated im-

pulse response in HW is assumed to be realized in (Lv+1)·Lv/2 multiply-accumulate
instructions. Since the VQ is composed of spherical codevectors and gain factors, in
order to construct dilsvq

, each (spherical) vector coordinate must be multiplied with
a quantized gain factor which adds Lv multiply operations per candidate vector,
and the evaluation of the quantization error is realized in Lv subtract instructions.
The computation of Milsvq

and the metric comparison in (6.2) are finally done
in one subtract, one test and Lv multiply-accumulate instructions per candidate
vector so that the resulting theoretical complexity is approximately

CSFS
= ((Lv + 1) · (

Lv

2
+ 2) + Lv)

︸ ︷︷ ︸

Instructions per vector

· Ng · Nsvq
︸ ︷︷ ︸

Number of
candidates per

vectors

· fs

Lv
︸︷︷︸

Vectors
per second

≈ 549 GIPS (6.3)

with GIPS standing for Giga-instructions per second (1GIPS=̂230 instructions per
second).
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The corresponding highest achievable SNR in dB is defined as SNRSFS
|dB. In order

to get a reference value for the standard configuration from Table 6.1 SNRSFS
|dB

was determined in very time consuming (offline) simulations based on quasi-statio-
nary signals which have been artificially generated as described in Section 5.2.4.5
(more details on the methodology are described in Section E.1.1 of the supplement
document [Krü09]). In comparison to this reference value, given the same signal
to be quantized and the same codec configuration but another search strategy SX

with reduced complexity CSX
< CSFS

, naturally the achievable SNR in dB is equal
to or lower than this reference value, SNRSX

|dB ≤ SNRSFS
|dB. Accordingly, a

logarithmic quality loss measure is defined as

qSX
|dB = SNRSFS

|dB − SNRSX
|dB ≥ 0. (6.4)

6.1.3 Complexity Reduction Methods

The gain-shape decomposition (strategy SGS) was already developed in Section 5.1.8
and is a method for the reduction of the computational complexity of the SCELP
encoder. It is applicable for LSVQ and CELP coding in general. In contrast to
this, the other techniques, the pre-selection (strategy SPS), the efficient metric
computation (strategy SMC) and the candidate exclusion (strategy SCE) exploit the
properties of the Apple Peeling spherical code described in Section 4.4.3 and are in
detail explained in Section E.1 of the supplement document [Krü09]. Relying on the
knowledge of signal d′′ and the specification of the weighted vector search (5.24),
the proposed techniques can be employed only in combination with the modified
CELP approach from Section 5.1.7.1.
The possible reduction of complexity together with the corresponding loss of quan-
tization performance (6.4) is summarized for the listed strategies in Table 6.2. De-
tails on the presented values are given in Section E.1 of the supplement document
[Krü09]. The results are based on measurements for quasi-stationary signals which
have been artificially generated as described in Section 5.2.4.5 and Section E.1 of
the supplement document [Krü09]. Since it was observed that the quantization per-
formance loss compared to the full search approach depends on the characteristic of
the signal to be quantized, an interval of loss measures is provided: The minimum
quantization performance loss from Table 6.2 has been measured for uncorrelated
signals whereas the maximum loss occured for highly correlated signals. From left
to right in Table 6.2, more and more of the methods for complexity reduction are
activated to furthermore reduce the complexity. At the same time, the loss of quan-
tization performance increases, only the efficient metric computation is lossless. In
the end, with all methods active, the theoretical complexity is as low as 4.5 MIPS.
Compared to the full search approach, this means that a complexity reduction of
factor

CSFS

CSCE-S

= 122222 ≈ 1.2 · 105 (6.5)
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Strategy SX SFS SGS SGS+SPS
SGS SGS+SPS

+ SPS+SMC +SMC+SCE

Estimate of

549 GIPS 19 GIPS 185 MIPS 35 MIPS 4.5 MIPS
theoretical

complexity

CSX

min. loss

0 dB 0 dB 0 dB 0 dB 0.5 dB
∑

qSX
|dB

max. loss

0 dB 1 dB 2 dB 2 dB 2.5 dB∑

qSX
|dB

Table 6.2: Summary of performance loss due to different codevector search strategies.
The minimum loss is the estimate for uncorrelated signals, the maximum for highly cor-
related signals. GIPS =̂ Giga-instructions Per Second, MIPS =̂ Million Instructions Per
Second.

can be achieved while introducing only a quantization performance loss of

0.5 dB ! qSSCELP
! 2.5 dB. (6.6)

Note that the techniques for reduced complexity codevector searches can princi-
pally be combined with both, the joint (Section 5.1.8.1) and the sequential (Section
5.1.8.2) approach for the gain-shape decomposition. However, the described mini-
mum computational complexity and quality loss can only be achieved if combined
with the sequential approach.
The overall performance loss for correlated sources may seem to be high enough to
motivate the search for different approaches for quantization. From another point
of view, however, an SNR loss of 2.5 dB is not very significant in cases where the
achieved audio coding quality already is very high as for highly correlated sources.
Most important for the overall quality of a codec is in general the behavior for
signals which are hard to be coded. Since the SNR is low for signals which have a
low prediction gain (uncorrelated sources), the performance loss of 0.5 dB due to
the proposed complexity reduction methods does not have a relevant impact on the
overall audio quality achieved by the SCELP codec.

6.2 W-SCELP: Extending SCELP by Warped

Linear Prediction

So far, aspects of human perception were only marginally considered. In perceptual
audio coding, however, these aspects are of very high importance [PS00]. The noise
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shaping due to the error weighting filter from (5.14) or (5.26) is commonly the basis
for perceptual masking in speech coding and has been intensively investigated in the
literature. It was shown in the previous chapter, however, that the conventional
error weighting filter (5.14) at the same time can be considered as a suboptimal
technique for reverse waterfilling (Section 5.2.6.2). The new optimization criterion
from Section 5.2.6 leads to a better approximation of the reverse waterfilling be-
havior in LPC but, nevertheless, can be combined well with the conventional noise
shaping. In this context, another degree of freedom is available in the SCELP and
the W-SCELP codecs to control reverse waterfilling and perceptual noise masking
independently.
In conventional LPC, the approximation of the spectral envelope of the input signal
is based on a uniform resolution of the frequency scale. Considering the perceptual
properties of human hearing, a uniform resolution is known to be inferior compared
to a non-uniform resolution of the frequency scale [ZF99]. Therefore, the approach
of (frequency) warped linear prediction (WLP) shall in the following be introduced
and adapted for the purpose of CELP encoding to contribute for improved percep-
tual noise masking. The principle of warped signal processing and WLP was at first
presented in [Str80]. Realization aspects related to WLP were, e.g., presented in
[H9̈8] and [H0̈0]. An example for WLP in source coding is explained in [HL99], and
in [HL01], a formal comparison between warped and conventional linear prediction
points out the advantages of WLP in the context of audio coding. The application
of WLP for audio coding is mostly straightforward but requires a few important
modifications which are described in [KV07a]. Only the principle shall be briefly
discussed here.
The weighted vector search involving only the truncated impulse response of the
combined weighting filter in the modified structure of the CELP encoder from Sec-
tion 5.1.7.1 allows to combine WLP with the SCELP techniques without significant
additional computational effort. This combination is denoted as the Warped Spher-
ical Code-Excited Linear Prediction (W-SCELP) codec.

6.2.1 Principle of Warped Linear Prediction (WLP)

A non-uniform resolution of the frequency scale can be achieved by frequency warp-
ing which, given a system function in the z-domain, can be realized by replacing all
unit delay elements by the allpass filter Aw(z),

z−1 → Aw(z) =
z−1 − λw

1− λw · z−1
|λw| < 1; λw ∈ R. (6.7)

The employment of this principle in the context of LP is denoted as warped linear
prediction (WLP). The non-uniform resolution of the frequency scale is controlled
by warping constant λw [SA99]: For positive values the spectral resolution is high
for lower and low for higher frequencies. A warping coefficient of, e.g., λw = 0.57
was described in [HL01] to best approximate the well known Bark frequency scale
[Zwi61] in wideband coding (sample rate fs = 16 kHz).
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All important aspects involved in LPC can be easily extended towards warped linear
prediction (refer to [KV07a] also),

• the LP analysis based on the autocorrelation method (see Section 5.1.2).

• the LP analysis and synthesis filter.

• the error weighting filter W (z) from (5.26).

• the reverse waterfilling in CELP coding (Section 5.2.6.2).

6.2.2 Implementation Aspects for WLP and Source Coding
Nevertheless, a direct application of the warped LP analysis, synthesis and error
weighting filters is prohibitive. Therefore, the following modifications must be in-
troduced in the W-SCELP low delay audio codec:

• Removal of the zero-delay path in the feedback loop of the LP synthesis and
the error weighting filter.

• Introduction of the zero-mean property for all WLP filters.

• Spectral tilt compensation for the WLP filters.

• Combination of WLP and CELP Coding.

These aspects are discussed in detail in [KV07a].

6.2.3 Conventional and Warped LP: A qualitative
Comparison

A qualitative comparison of conventional LP and WLP is exemplified by Figure
6.1. In that figure, it is shown how the conventional LP synthesis filter (HS(z))
and the warped LP synthesis filter (Hw

S (z)) approximate the spectral envelope of
an example signal x(k). The (qualitative) squared magnitude spectrum |X(Ω)|2
for signal x(k) in dB is shown as the gray line, the magnitude spectra |HS(Ω)|2
and |Hw

S (Ω)|2 related to the LP and WLP synthesis filter spectra computed from
the corresponding transfer functions with z = ej·Ω in dB are depicted as the solid
and the dotted black line, respectively. The LP order for the approximation of the
spectral envelopes is Nlpc = 10. All magnitude spectra have been computed based
on large DFTs and are shown for the complete range of normalized frequencies
0 ≤ Ω ≤ π. The warping factor for the WLP based approximation is λw = 0.5.
Clearly, the WLP based approximation is significantly more accurate for lower fre-
quencies than the approximation based on conventional LP.
Comparing the achievable prediction gain as a measure for signal decorrelation,
WLP provides only an insignificantly higher value than conventional LPC. Never-
theless, WLP leads to a higher perceived quality since it is better consistent with
the properties of human perception than conventional LP. The difference compared
to conventional LP is significant especially for audio signals with a sparse spectrum
with strong low-frequency components, for example the sound of a flute.
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Figure 6.1: Example for the approximation of the spectral envelope of an example signal
by means of the LP and WLP synthesis filters.

W-SCELP Codec SCELP Codec

Encoder Decoder Encoder Decoder

Estimated Complexity
23-28 2-3 20-25 1-2

in WMOPS

Table 6.3: Measured overall computational complexity of the W-SCELP and the SCELP
low delay audio codec for the standard configuration (Table 6.2). The given values were
measured for an implementation in fixed point arithmetic based on the set of fixed point
operations specified by the ITU-T in [ITU00].

6.3 Measured Computational Complexity in
Practice

Both, the W-SCELP and the SCELP codec were realized in floating and fixed point
arithmetic. Since no specific signal model is employed, the floating point version of
both codecs is highly scalable and can adapt to various application scenarios and
constraints. In contrast to this, only a specific configuration (the standard configu-
ration from Table 6.1) was realized in fixed point arithmetic based on the set of fixed
point operations as proposed by the ITU in [ITU00]. This set of operations enables
to realize algorithms in digital signal processing in fixed point arithmetic based on
a virtual instruction-set-architecture (ISA). In order to represent the effort to real-
ize it on state-of-the-art DSPs, each employed computational operation is weighted
to yield the overall computational complexity in Weighted Million Operations Per
Second (WMOPS). The measured results are not an exact estimate of the complex-
ity to be expected when porting the W-SCELP codec to a specific DSP platform
but more useful for first estimates of the involved complexity than the theoretical
complexity discussed earlier. The measured complexity of the W-SCELP and the
SCELP codec is listed in Table 6.3. More details describing the realization of the
W-SCELP and the SCELP codec in fixed point arithmetic are given in [KSV06].
In order to demonstrate the high efficiency of the SCELP and the W-SCELP codec,
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real-time prototypes for both codecs were created by means of the RTProc system
[KLEV03], [KV08c], [KJLV09], and [KSE+09].

6.4 Quality Assessments

The overall audio quality of the SCELP and the W-SCELP low delay audio codecs
was evaluated in assessments based on objective audio quality measures for a com-
parison with the ITU-T G.722 audio codec [ITU88b] at the three supported bit
rates of 48, 56 and 64 kbit/sec. The ITU-T G.722 codec was chosen as a reference
codec because of its algorithmic delay in the magnitude of that of the W-SCELP
codec (below 10 ms). Another alternative codec with a comparable algorithmic
delay would have been the Advanced Audio Codec - Ultra Low Delay (AAC-ULD)
[Fra07]. This codec, however, is not freely available and could thus not be consid-
ered here.
In order to be comparable to the ITU-T G.722 codec for wideband audio, the
SCELP and the W-SCELP codec were operated at a sample rate of fs = 16 kHz
and a bit rate of approximately 48 kbit/sec rather than in the standard configura-
tion from Table 6.2 and were configured to achieve an algorithmic delay of 9 ms. A
warping factor of λ = 0.46 was determined in informal listening tests to configure
the W-SCELP codec for higher perceived audio quality.
In order to form a complete codec, besides the quantization of the LP residual signal,
a dedicated quantizer was developed to encode the LP coefficients. The quantization
of LP coefficients in speech coding was intensively investigated in the literature, and
is in general possible at very low bit rates [PA93]. Most of the approaches from the
literature are based on the transformation of the LP coefficients into Line Spectral
Frequencies (LSFs), e.g., [Ita75], and intensive training of VQ codebooks for large
speech databases. For audio coding, however, due to the different characteristics
of audio signals compared to speech, new approaches for the computation and the
quantization of LSFs were developed, e.g., a new approach for the quantization of
LSFs based on LSVQ and a two-dimensional inter-and intra-frame predictor. These
techniques are in detail described in [KSV06] and shall not be discussed here. With
the techniques for the transmission of LSFs for audio signals, required bit rates to
transmit LP coefficients for linear prediction of order Nlpc = 10 of approximately
4 kbit/sec were achieved. Given a bit rate of 48 kbit/sec in the SCELP and the
W-SCELP codec, the transmission of the LP coefficients hence requires approxi-
mately 10 percent of the overall data rate. The required parameters C∆, γ1 and
γ2 to configure the reverse waterfilling and the noise shaping according to Section
5.1.7.2, respectively, were determined in informal listening tests prior to the actual
quality assessment.
For the comparison of the perceptual audio quality, two databases, one for speech
and one for audio signals were processed by the SCELP, the W-SCELP, and the
ITU-T G.722 audio codec. For the assessment of the codecs for speech signals,
the decoder output signals were evaluated by the wideband perceptual evaluation
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of speech quality measure (WB-PESQ), [ITU05]) which is widely accepted in the
speech coding community. The assessment for audio signals was based on the coun-
terpart of the WB-PESQ for audio signals, the perceptual evaluation of audio quality
measure (PEAQ)[ITU98][Thi00].
Note that the quality was assessed based on monaural speech and audio signals.
New hierarchical approaches to extend the SCELP and the W-SCELP towards
coding of stereo signals are proposed in [KV08b], [KV08a] and [SKV09]. These
aspects, however, shall not be discussed here.

6.4.1 Results for Speech Signals

The measured objective quality of the W-SCELP codec in comparison to that of the
ITU-T G.722 codec based on the WB-PESQ measure is summarized in Table 6.4.
WB-PESQ based quality measures are specified on a scale from 0 to 5 MOS (Mean
Opinion Score), and a higher achieved speech quality leads to a higher WB-PESQ
value. The performance of the ITU-T G.722 codecs was rated with 4.02, 4.39 and
4.47 MOS for the three codec modes respectively. The SCELP at a data rate of
roughly 48 kbit/sec reached a value of 4.4 MOS. The quality of the SCELP codec at
48 kbit/sec can hence be classified as slightly better than that of the ITU-T G.722
codec at 56 kbit/sec for speech signals. The W-SCELP codec is not explicitly listed
here since SCELP and W-SCELP codec have the same performance for speech
signals.

Codec G.722 mode 1 SCELP G.722 mode 2 G.722 mode 3

Data rate 64 kbit
sec 48 kbit

sec 56 kbit
sec 48 kbit

sec

WB-PESQ
(MOS-LQO)

4.47 4.4 4.39 4.02

Table 6.4: Results from formal quality assessment of the ITU-T G.722 and the SCELP for
a data base composed of speech signals. The quality assessment is based on the WB-PESQ
measure [ITU05] with MOS-LQO as the objective mean opinion score from listening-only
test scenario. The W-SCELP is not explicitly listed here since both, the W-SCELP and
the SCELP codec have equal performance for speech signals.

6.4.2 Results for Audio Signals

For audio signals, the difference between the W-SCELP and the SCELP is more
significant than for speech signals. Especially for signals with very tonal compo-
nents in the lower frequency areas, the frequency warping leads to a significant
improvement. The results from the evaluation of an audio database are given in
Figure 6.2. The audio quality was measured by means of the PEAQ measure based
on the implementation from [Kab02]. The PEAQ measurement tool returns values
between 0 and -4 to indicate the signal deterioration. The definition of the quality
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degradation and corresponding PEAQ values is listed on the left side of Figure 6.2.
The measured results for the ITU-T G.722, the SCELP, and the W-SCELP codec
are given on the right side of that figure. In addition, also measured results for
the well-known MP3 audio codec (implementation within the commercial product
Adobe Audition [Ado07]) are given which has a delay which is higher than 80 ms2.
As result, the SCELP and especially the W-SCELP codec outperform the ITU-T
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Figure 6.2: Classification of audio quality according to PEAQ measure (a) and measured
PEAQ values (based on a data base composed of audio files) for the W-SCELP, the SCELP,
the ITU-T G.722 and the MP3 audio codec (b). Delay ITU-T G.722, W-SCELP, SCELP
Codec < 10 ms, Delay MP3 Codec > 80 ms.

G.722 codec significantly:

• The quality achieved by the W-SCELP codec at a bit rate of 48 kbit/sec is
approximately equal to that of the ITU-T G.722 codec at 64 kbit/sec.

• Even for the lower bit rate of 35 kbit/sec, the W-SCELP achieves an audio
quality which is only slightly worse than the ITU-T G.722 codec at 64 kbit/sec.

• An audio quality comparable to that achievable by the ITU-T G.722 codec
at a bit rate of 48 kbit/sec can approximately be achieved by the W-SCELP
codec at bit rates of 24 kbit/sec.

In comparison to the MP3 codec at 32 kBit/sec, the W-SCELP codec produces
almost a comparable audio quality at a bit rate of 35 kBit/sec. In this comparison,
however, it has to be considered that the W-SCELP has an algorithmic delay of
less than 10 ms which is (at least) by a factor of 8 lower than that of the MP3
codec. Also, the MP3 codec does not code the full audio frequency bandwidth
which, even though it degrades the audio quality noticeably, does not lead to an
adequate reduction of the PEAQ measure.
As a conclusion of the measurements, for applications such as wireless microphones
for live concerts and wireless audio-links for hearing aids, only the SCELP and

2The delay of the MP3 codec is not exactly specified but was measured to be at least 80 ms
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the W-SCELP deliver a sufficient audio quality and fulfill the technical constraints
defined in Section 1.



7

Summary

Most systems for the transmission and storage of speech and audio signals are
nowadays based on digital technology. For specific applications, however, opera-
tion constraints are defined which only analog technology could fulfill. One of the
most critical operation constraints is to achieve a low algorithmic delay. Informal
listening tests showed that for specific applications, a delay of more than 10 ms is
not acceptable. Most standardized audio codecs have a significantly higher delay or
were designed for speech only. Consequently, no standardized digital audio codec
is currently available which enables an algorithmic delay below 10 ms and at the
same time achieves a high perceptual quality for speech and audio signals at a low
bit rate and with low computational cost.
The outcome of this thesis are novel techniques for the lossy compression of speech
and audio signals applicable for low delay source coding as well as two new low delay
audio codecs, the Spherical Code-Excited Linear Prediction (SCELP) codec and
its successor, the Warped Spherical Code-Excited Linear Prediction (W-SCELP)
codec.

Concept for Low Delay Audio Coding

In order to achieve a low algorithmic delay, the main concept followed in this the-
sis is combined linear prediction and vector quantization which is well-known from
state-of-the-art speech codecs. Most standardized codecs relying on this principle,
however, have an algorithmic delay of more than 20 ms and/or were designed for
speech only, e.g., the Adaptive Multirate speech codec [ETS00]). Therefore, fun-
damental modifications of the concepts known from speech coding are essential to
achieve an algorithmic delay below 10 ms and a low computational complexity as
well as to enable high perceived coding quality at low bit rates also for audio signals:

- No speech specific components as known from speech coding such as the long
term prediction (LTP) to model the speaker instantaneous pitch period are
employed.
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- In return, a novel type of vector quantizer, the Logarithmic Spherical Vec-
tor Quantizer (LSVQ), is employed to achieve a higher perceived quality at
marginally increased bit rates compared to speech coding.

- A new model for combined linear prediction and quantization with quanti-
zation error feedback valid for high as well as low bit rates is proposed for
stability and performance analyses and the optimization of codec parameters.

- Based on the new model a novel optimization criterion for the LP analysis at
low bit rates is derived to account for the reverse waterfilling (RW) principle
known from rate distortion theory (RDT) due to the properties of audio signals
and the low algorithmic delay of the codec.

- Warped linear prediction (WLP) better exploits the properties of human per-
ception than conventional linear prediction due to a non-uniform resolution
of the frequency scale and hence achieves a higher perceptual audio quality
especially for audio signals.

The development of the new techniques and especially the two approaches for low
delay audio coding are based on fundamental novel theoretical results on quan-
tization and linear predictive coding presented in this thesis. Practical relevance
is retained, however, since all theoretical investigations are accompanied by novel
practically relevant concepts with special focus on low computational complexity.

Logarithmic Spherical Vector Quantization
Logarithmic Spherical Vector Quantization (LSVQ) is the direct consequence of
the (asymptotic) high rate vector quantization theory to approximate the optimal
codevector density for stationary signals with multivariate identical independent
Gaussian distribution. In contrast to speech coding where normalized LP residual
signals are known to be approximately Gaussian distributed, in audio coding, the
assumption of a Gaussian distribution is useful to define a worst case scenario to
guarantee a minimum audio quality for all types of signals.
In LSVQ, each input signal vector is decomposed into a gain factor and a shape
vector. Both components are quantized by means of logarithmic scalar quantization
and Spherical Vector Quantization (SVQ), respectively. In the present thesis, novel
qualitative results are derived for high rate assumptions to show that the signal-to-
noise ratio (SNR) achieved by LSVQ is independent of the distribution of the input
signal in a wide dynamic range. This result is consistent with the quantizer design
target to deliver a minimum audio quality for all types of signals. The definition of
an idealized SVQ is the basis for the derivation of a quantitative expression for
an upper SNR bound for LSVQ. This expression allows to determine the optimal
allocation of bits to the quantizers for the gain and the shape component given an
overall LSVQ bit budget. In addition, it exhibits that a high vector dimension for
LSVQ is desirable to maximize the quantization performance, but the performance
gain due to an increased vector dimension decreases for higher dimensions and may
no longer justify the involved additional computational effort in practice. LSVQ is
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shown to be asymptotically optimal for stationary signals with multivariate identical
independent Gaussian distribution.
In addition to the theoretical investigations, three practical concepts for LSVQ
are investigated. Due to the development of new efficient algorithms for nearest
neighbor quantization, all three concepts can be realized with low computational
complexity and therefore are of high practical relevance. Measurements of the
quantization SNR and comparison to the theoretical results exhibit that all three
approaches are well suitable for highly efficient quantization.

Combined Linear Prediction and LSVQ
The combination of quantization and linear prediction (LP) in closed-loop manner
is known to enable to transform correlation into an increased overall coding SNR. A
(generalized) closed-loop combination of a scalar quantizer and linear prediction
can be realized in the encoder by feeding back a filtered version of the introduced
quantization noise. Employing vector quantization, the decomposition of the in-
put signal into vectors is contradictory to a realization of closed-loop quantization
as a sample-by-sample linear filtering of the quantization error. Therefore, com-
bined closed-loop LSVQ and LP is realized based on the well-known Code-Excited
Linear Prediction (CELP) approach.
Theoretical investigations of linear predictive coding (LPC) described in the litera-
ture are in general based on high rate assumptions and are therefore valid only for
high bit rates. In this thesis, a new theory of LPC is developed that is also valid
for lower bit rates. The new theory is based on a novel scalar noise production and
propagation model which also considers the interaction between the feedback of the
quantization error and the quantizer.
The new theory confirms the results from conventional theory of LPC for high bit
rates but exhibits that the overall closed-loop LPC encoder can become unstable for
specific signals. Also, it is shown that the feedback of quantization noise degrades
the achievable quantization performance for low bit rates compared to the results as
predicted by the conventional theory. The derived theoretical results are confirmed
by measurements of SNRs for artificial stationary signals.
Based on the theory, a new optimization criterion for the computation of the LP and
the error weighting filter coefficients for lower bit rates is developed. With respect
to this optimization criterion a two-step procedure is proposed which is well ap-
plicable in practice. The new optimization criterion and the two-step computation
rule turn out to be an approximation of the reverse waterfilling procedure which is
known from rate distortion theory but which has never been explicitly described for
LPC in the literature. The presented new theory is of high relevance for low delay
audio coding as well as for a deeper fundamental understanding of LPC in general.

The SCELP and the W-SCELP Codec
In the last part of the thesis, the SCELP low delay audio codec is developed, based
on the combination of LSVQ with linear prediction according to the CELP princi-
ple. Practical aspects such as the computational complexity and the regard of the
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principles related to the human perception are of special interest. It turns out that,
if combined with linear prediction, particularly one among the three approaches
proposed for LSVQ enables to achieve a low computational complexity and a high
quantization performance at the same time. Compared to the complexity related
to the original definition of the CELP principle, novel optimization strategies allow
to reduce the complexity by a factor of approximately 105 while the quantization
performance is only marginally degraded.
A higher perceptual coding quality especially for audio signals is achieved by the
W-SCELP codec which is based on the extension of the SCELP codec by warped
linear prediction (WLP). WLP is a technique to enable a non-uniform resolution of
the frequency scale which is beneficial for coding compared to a uniform resolution
since it better matches the properties of human perception.
Since the SCELP and the W-SCELP low delay audio codec do not rely on any
signal model, the overall concept is highly scalable and can be adapted to various
application scenarios. Measurements based on fixed point implementations of the
SCELP and the W-SCELP exhibit that a moderate computational complexity can
be achieved in practice.

Objective quality assessments for speech and audio signals based on the well-known
wideband perceptual speech quality (WB-PESQ) and the perceptual audio quality
(PEAQ) measures show that both, the SCELP and the W-SCELP codec, signifi-
cantly outperform standardized codecs with a comparable delay and bit rate, e.g.,
the ITU-T G.722 codec, in terms of a higher subjective quality for speech and
particularly audio signals.
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Derivations of Selected
Equations
In Chapter 4, derivations are made to compute distortions and signal-to-noise ratios
(SNRs) in the context of the analysis of Logarithmic Spherical Vector Quantization
(LSVQ). In this Appendix, selected equations are derived and explained more in
detail.

A.1 Additional Explanation for Equation (4.47)

In equation (4.47), an expression to compute the angular radius βmax is given for
the assumption of high bit rates. This expression can be derived as follows:
It was shown in (4.35) that the area content of a cap quantization cell can be
computed from βmax as

S(II)
Cc̃

(r′) = V (1.0)
SLv−1

· (Lv − 1) ·
βmax∫

0

(r′ · sin(β))(Lv−2) · r′ · dβ. (A.1)

This term can be simplified for the assumption of high bit rates due to the following
approximations (4.44-4.46)

r′ ≈ 1.0 (A.2)

r′ · sin(β) ≈ sin(β) ≈ β (A.3)

1− r′ · cos(β) ≈ 1− r′ (A.4)

to find

S(II)
Cc̃

(1.0) ≈ V (1.0)
SLv−1

· (Lv − 1) ·
βmax∫

0

β(Lv−2) · dβ (A.5)

= V (1.0)
SLv−1

· (Lv − 1) · βLv−1
max

Lv − 1
. (A.6)
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Also, it was motivated that, in order to compute a lower bound for the distortion,
the complete surface area is assumed to be covered by cap quantization cells (4.32):

S(1.0)
SLv

= Nsvq · S(II)
Cc̃

(1.0), (A.7)

By substituting (A.6) in (A.7), with (4.5) and by writing V (1.0)
SLv−1

according to (4.3)
yields

Nsvq · V (1.0)
SLv−1

· βLv−1
max = V (1.0)

SLv
· Lv (A.8)

Nsvq · π
Lv−1

2

Γ( Lv+1
2 )

· βLv−1
max =

2 · π
Lv
2

Γ( Lv
2 )

(A.9)

from which (4.47) can be computed.

A.2 Additional Explanation for Equation (4.48)

Equation (4.48) is an expression for the approximation of the quantization distortion
for high bit rates. It is based on the exact solution given in (4.41) as

D∗(II)
lsvq=

1+
∆g
2∫

1−
∆g
2

βmax∫

0
((r′ ·sin(β))2+(1−r′· cos(β))2)(r′ ·sin(β))(Lv−2)·r′ ·dβ ·dr′

1+
∆g
2∫

1−
∆g
2

βmax∫

0
(r′ · sin(β))(Lv−2) · r′ · dβ · dr′

(A.10)

Again the approximations (4.44-4.46) are used for the assumption of high bit rates,

r′ ≈ 1.0 (A.11)

r′ · sin(β) ≈ sin(β) ≈ β (A.12)

1− r′ · cos(β) ≈ 1− r′. (A.13)

With these, the integral can be approximated as

D∗(II)
lsvq≈

1+
∆g
2∫

1−
∆g
2

(βmax∫

0
β2 · (β)(Lv−2)dβ +

βmax∫

0
(1− r′) · β(Lv−2)dβ

)

dr′

1+
∆g
2∫

1−
∆g
2

(
βmax∫

0
(r′ · sin(β))(Lv−2) · dβ) · dr′

. (A.14)
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By substituting r′′ = 1− r′ in the second part of the numerator, this equation can
be rewritten as

D∗(II)
lsvq ≈

βmax∫

0
βLv dβ · ∆g

βmax∫

0
β(Lv−2)dβ · ∆g

+

−
∆g
2∫

∆g
2

(βmax∫

0
·β(Lv−2)dβ

)

· r′′2(−dr′′)

βmax∫

0
β(Lv−2)dβ · ∆g

(A.15)

=

βmax∫

0
βLv dβ

βmax∫

0
β(Lv−2)dβ

+
∆2

g

12
. (A.16)

A.3 Additional Explanation for Equations
(4.53-4.55)

In Chapter 4.2.4.4, the optimal allocation of bits for the quantizers of the gain and
the shape component, respectively, is given. Starting point for the computation of
the optimal bit allocation is the auxiliary function in (4.52),

χ =
Csvq

N
2

Lv−1
svq

+
Cg

N2
g

+ λ · (Ng · Nsvq −Nlsvq). (A.17)

For the optimization, the derivative of the auxiliary function with respect to Ng

and Nsvq is computed as

∂χ

∂Nsvq
= λ · Ng −

2

Lv − 1
· Csvq

N
2

Lv−1 −1
svq

(A.18)

∂χ

∂Ng
= λ · Nsvq − 2 · Cg

N3
g

(A.19)

In order to find a minimum, the partial derivatives must be set equal to zero. Nsvq

can be computed from (A.19) and is substituted in (A.18) to yield

λ =
2 · Cg

Nsvq · N3
g

. (A.20)

(A.20) is substituted in (A.18), and the resulting expression is set to zero yielding

2 · Cg

Nsvq · N2
g

− 2

Lv − 1
· Csvq

N
2

Lv−1 −1
svq

!
= 0 (A.21)
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With (4.49) and the first part of (4.48), (A.21) can be transformed into the inter-
mediate result given in (4.53),

Dg =
D∗(III)

svq

Lv − 1
. (A.22)

The definition of the overall bit budget in (4.12) can be modified to find

Ng =
Nlsvq

Nsvq
(A.23)

which is substituted in (A.21):

Csvq · N
−2

Lv−1
svq

Lv − 1
= Cg ·

N2
svq

N2
lsvq

. (A.24)

This can be transformed into (4.54),

Nsvq =

(
1

Lv − 1
· Csvq

Cg

)Lv−1
2·Lv

· N
Lv−1

Lv
lsvq . (A.25)

The computation of Ng as given in (4.55) can be derived analogously.

A.4 Additional Explanation for Equation (4.56)

Due to the assumption of high bit rates and hence E{‖ x ‖2} ≈ 1, the SNR can be
computed from (4.56) as

SNR(III)
lsvq =

1

D∗(III)
lsvq

(A.26)

In that equation, the optimal bit allocation from (4.54) and (4.55) is substituted to
yield

SNR(III)
lsvq =

1
Csvq

N

2
Lv−1
svq

+
Cg

N2
g

(A.27)

=
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) 1
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(A.28)

=
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1
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)−1
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B

Reproduction of the
Presented Results

Most of the theoretical results presented for quantization are in general based on
the assumption of stationary signals. In that context, the degree and characteristic
of correlation plays a very important role. In order to compare theory and practice,
measurements with real audio signals are not well suited since audio signals are in
general instationary and consist of signal segments, each with a completely different
type of correlation.
For this reason, all theoretical investigations were based on the assumption of AR
processes with sets of AR filter coefficients as the origin of all signals to be processed,
and all measurements were based on artificial signals produced as the output of
the realization of AR processes with the same sets of AR filter coefficients in this
thesis. For all investigations with respect to rate distortion theory, assumptions
were made about the Eigenvalues of autocovariance matrices. In that context, both,
the autocovariance matrices and the sets of AR filter coefficients are parameters to
setup signal correlation and therefore equivalent representations.
Due to this very formal approach to produce measurement results, most of the
results (except for the quality assessment in Chapter 6) are highly reproducible.
The information required for a reproduction is given in this chapter:

• In the first part, the sets of AR filter coefficients for the investigations in
Section 5.2.4 and the supplement document [Krü09] are listed together with
the parameters derived in the context of the noise production and propagation
model.

• In the second part, three sets of Eigenvalues involved in the computation of
the rate distortion function for different correlated Gaussian sources (Section
2.3.4) are listed.
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B.1 Example Sets of AR Filter Coefficients

All computations and measurements of SNRs in Section 5.2.4 and Section E.1 of
the supplement document [Krü09] are based on the assumption of the signal model
shown in the signal generation block in Figure 5.7 in which a Gaussian distributed
noise source is filtered in an auto-regressive (AR) all-pole filter. The sets of AR

AR Filter coefficients Set aar,1 Set aar,2

aar,0 1.0 1.0

aar,1 -2.58425 -1.95498

aar,2 2.95464 1.2564

aar,3 -2.08111 -0.344841

aar,4 1.23315 0.169368

aar,5 -0.920031 -0.340832

aar,6 0.969564 0.00681053

aar,7 -1.22493 0.193209

aar,8 1.51283 0.0923117

aar,9 -1.76435 -0.156275

aar,10 1.72109 0.0103157

aar,11 -1.14735 0.321698

aar,12 0.471528 -0.163375

aar,13 -0.199035 -0.222967

aar,14 -0.18829 0.191995

aar,15 0.667626 0.150169

aar,16 -0.514674 -0.291168

aar,17 0.0287184 -0.0177935

aar,18 0.0887971 0.112793

Prediction Gain Gd0,x |dB from (5.48) 19.62 dB 31.5 dB

Feedback Gain G∆,ef
|dB from (5.48) 15.46 dB 7.8 dB

Table B.1: Two sets of AR filter coefficients labeled as aar,1 and aar,2 as examples for
theoretical investigations and the generation of artificial signals for measurements. The
AR filter order is Nar = 18. In addition to the coefficients, the prediction and the feedback

gain as introduced in the context of the model for LPC and computed according to (5.48)
are shown.

filter coefficients are denoted as aar,1 and aar,2 in the thesis and listed in Table
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B.1. The auto-regressive (AR) all-pole filter order is Nar = 18. In addition, the
prediction and the feedback gain as introduced in (5.48) are given.
In order to represent different types of real audio signals, the listed filter coefficients
were derived from LP coefficients which were computed by means of an LP analysis
for short segments of real audio signals. The two listed sets were chosen since they
represent common types of signals and are suitable to well demonstrate relevant
aspects in theoretical and practical investigations.
The spectral envelopes related to the sets of AR filter coefficients is presented in
Figure B.1 as the squared magnitude spectrum | Har(Ω) |2 computed from the
system function

Har(z) =
1

H0(z)
=

1
∑Nar

i=0 z−i · aar,i

(B.1)

with the coefficients from Table B.1 and z = ejΩ (FFT size of Lfft = 8192).
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Figure B.1: Logarithmic squared magnitude spectrum | Har(Ω) |2 in dB computed from
system function Har(z) for both sets of AR filter coefficients, aar,1 and aar,2 from Table
B.1.
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B.2 Example Eigenvalue Matrices for
Rate-Distortion Plots

In Chapter 3, plots of the rate distortion functions related to correlated Gaussian
sources with different covariance matrices (and Eigenvalues) were presented. In the
following the corresponding three matrices composed of the Eigenvalues are listed
to enable a reproduction of the curves in Figure 2.3.4:

ΛX,a =







15.0000 0 0 0
0 0.0008 0 0
0 0 21.0381 0
0 0 0 3.9611







(B.2)

ΛX,b =







15.0000 0 0 0
0 0.0100 0 0
0 0 24.7203 0
0 0 0 0.2697







(B.3)

ΛX,c =







0.2000 0 0 0
0 0.2000 0 0
0 0 38.9583 0
0 0 0 0.6417







(B.4)



C

Deutschsprachige
Zusammenfassung

Verfahren zur Übertragung und Speicherung von Sprach- und Audiodaten basieren
heutzutage zumeist auf Techniken der digitalen Signalverarbeitung. Insbesondere
Technologien zur kompakten Darstellung von digital vorliegenden Signalen mithilfe
von effizienten Quellcodierverfahren (Sprach- und Audiocodecs) spielen dabei eine
wichtige Rolle.

Einige Anwendungen unterliegen jedoch vorgegebenen Randbedingungen, die bis-
lang nur durch Analogtechnik zu realisieren waren. Beim Einsatz von Drahtlos-
Mikrofonen für Live-Konzerte zum Beispiel ist eine geringe Verzögerung der Si-
gnalübertragung notwendig, die weniger als 10 ms betragen sollte. Hiervon abwei-
chende, höhere Verzögerungen können unter anderem dazu führen, dass der Nutzer
eines Drahtlos-Mikrofons durch die verzögerte Wiedergabe seiner eigenen Stimme
gestört wird oder es zu unerwünschten Effekten durch die Überlagerung des ver-
zögerten und des nicht verzögerten Signals kommt. Neben einer geringen Verzöge-
rung stellen eine hohe (wahrnehmbare) Qualität für Sprach- und Audiosignale bei
niedrigen Bitraten, Robustheit bei Bitfehlern während der Übertragung sowie eine
geringe Rechenkomplexität weitere, wichtige Anforderungen in der Praxis dar. Die-
se sind zum Teil jedoch widersprüchlich.

Die Standardisierung von Verfahren zur digitalen Quellcodierung von Sprachsigna-
len auf der einen und Audiosignalen auf der anderen Seite wurde in der Vergan-
genheit von unterschiedlichen Interessensgruppen verfolgt. Grund hierfür ist die
Definition verschiedener Anwendungsziele und damit verbundene sich grundlegend
unterscheidende praktische Randbedingungen. Entsprechend müssen zwei Familien
von Quellcodierverfahren unterschieden werden:
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Verfahren zur Sprachcodierung dienen in der Regel der Codierung von Schmal-
bandsprache (300-3400 Hz Audiobandbreite) oder Breitbandsprache (50-7000 Hz
Audiobandbreite) für die mobile Sprachkommunikation. Relativ geringe Verzöge-
rungen sind hierbei in erster Linie für das Erreichen einer hohen Komunikations-
qualität im Duplex-Modus wichtig. Darüber hinaus spielt eine niedrige Rechenkom-
plexität in der Regel eine entscheidende Rolle, um die Betriebsdauer von Batterie
betriebenen mobilen Kommunikationsendgeräten zu maximieren. Bei den am wei-
testen verbreiteten Standards zur Sprachcodierung liegt die algorithmische Verzö-
gerung in der Regel in einer Größenordnung von 20-30 ms, was für die geforderten
Randbedingungen (z.B. für Drahtlos-Mikrofone) zu hoch ist. Einige spezielle Co-
decs weisen eine niedrigere Verzögerung auf, die im Bereich von unter 10 ms liegen
kann. Durch die Ausnutzung der Eigenschaften von Sprache erreichen Verfahren
zur Sprachcodierung jedoch für Audiosignale eine nur unzureichende Qualität.

Verfahren zur Audiocodierung dienen vorwiegend der Speicherung von Au-
diodaten (z.B. zwecks Archivierung) und zielen darauf ab, möglichst hohe bzw.
transparente Qualität zu erreichen. Geringe algorithmische Verzögerung und Re-
chenkomplexität spielten bei der Entwicklung bislang eine eher untergeordnete Rol-
le. Aus diesem Grunde ist die Verzögerung der gängigen Verfahren zur Audiocodie-
rung deutlich höher als bei der Sprachcodierung. Darüber hinaus sind Verfahren
zur Audiocodierung gegenüber Bitfehlern in der Regel deutlich weniger robust als
Sprachcodecs und deswegen für die Übertragung über gestörte Kanäle ungeeignet.

Existierende standardisierte Verfahren der digitalen verlustbehafteten Quellencodie-
rung können die eingangs geforderten Randbedingungen derzeit nur unzureichend
erfüllen. Gegenstand dieser Dissertation ist deshalb die Entwicklung neuartiger Ver-
fahren zur effizienten verlustbehafteten Codierung von digitalen Sprach- und Au-
diosignalen bei gleichzeitig geringer Latenz. Konkrete praktische Anwendung finden
die entwickelten Verfahren in zwei neuen Audiocodecs, dem Spherical Code-Excited
Linear Prediction (SCELP) und dem Warped Spherical Code-Excited Linear Pre-
diction (W-SCELP) Audiocodec mit einer Latenz von jeweils unter 10 ms und einer
moderaten Rechenkomplexität.

Zugrunde liegendes Konzept zur Sprach-Audiocodierung

Um eine niedrige algorithmische Verzögerung bei der Audiocodierung zu erreichen,
wird in dieser Dissertation das Prinzip der linear-prädiktiven Codierung (LPC) ver-
folgt, wie es auch in der Sprachcodierung erfolgreich eingesetzt wird. Um möglichst
alle oben genannten Randbedingungen erfüllen zu können, sind wesentliche Modi-
fikationen erforderlich:

• Funktionale Komponenten zur Ausnutzung spezieller Eigenschaften von
Sprachsignalen, wie zum Beispiel die Langzeitprädiktion (Long Term Predic-
tion, LTP) zur Modellierung der momentanen Sprachgrundfrequenz bei der
Sprachcodierung, werden nicht verwendet.
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• Die bei der Sprachcodierung zur Quantisierung verwendeten, dünn besetzten
Codebücher werden durch einen neuen Typ von Vektorquantisierer, den Lo-
garithmisch Sphärischen Vektorquantisierer (LSVQ), ersetzt. Dies verbessert
die erzielbare subjektive Audioqualität entscheidend.

• Ein neues Modell zur Stabilitäts- und Leistungsanalyse von closed-loop LPC
(d.h. Quantisierung mit Fehlerrückführung) wird entwickelt, das nicht nur für
hohe, sondern auch für niedrige Bitraten gültig ist.

• Ausgehend von dem neuen Modell wird ein neuartiges Optimierungskriterium
zur Realisierung des von der Rate Distortion Theorie (RDT) bekannten Re-
verse Waterfilling abgeleitet, das bei der Codierung von Audiosignalen insbe-
sondere bei niedrigen Bitraten und kurzen Blocklängen von großer Bedeutung
ist.

• Anstelle der konventionellen linearen Prädiktion (LP) wird die sogenannte
Warped Linear Prediction (WLP) eingesetzt. Die mit der WLP einhergehende
ungleichmäßige Frequenzauflösung berücksichtigt die Eigenschaften der akus-
tischen Wahrnehmung beim Menschen und führt somit – insbesondere bei
Audiosignalen – zu einer verbesserten Klangqualität.

Die neu entwickelten Techniken werden zunächst theoretisch und teilweise sehr
grundsätzlich betrachtet. Ein starker Praxisbezug ist dadurch gegeben, dass alle ent-
wickelten Konzepte und Audiocodecs im Hinblick auf ihre praktische Einsetzbarkeit
(insbesondere Rechen- und Speicherbedarf) untersucht und optimiert werden.

Grundlagen der Quantisierung

Im ersten Teil der vorliegenden Dissertation geht es um grundsätzliche Ausführun-
gen zum Thema Quantisierung. Einführend werden zunächst die im Rahmen der
Rate Distortion Theorie bekannten theoretischen Leistungsgrenzen für die Quanti-
sierung unkorrelierter stationärer Quellen beschrieben. Daran anschließend werden
die Ergebnisse auf korrelierte Quellen erweitert. Insbesondere der Einfluss des Re-
verse Waterfilling Prinzips wird genauer untersucht.

Im darauf folgenden Teil schließt sich eine Betrachtung der asymptotischen Hoch-
raten-Quantisierungstheorie (Quantisierung mit hohen Bitraten) an. Es wird ge-
zeigt, dass die Vektorquantisierung (VQ) der skalaren Quantisierung (SQ) durch
die sogenannten Vektorquantisierungs-Vorteile überlegen ist. Eine konkrete Antwort
auf die Frage nach einer praktischen Umsetzung eines optimalen Vektorquantisierers
kann die Hochraten-Quantisierungstheorie nicht liefern. Die Bestimmungsgleichung
der optimalen Codevektordichte aus der multivariaten Verteilungsdichtefunktion
eines zu quantisierenden (Vektor-) Signals ist jedoch diesbezüglich ein wichtiger
Hinweis.
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Abbildung C.1: Prinzip der Logarithmisch Sphärischen Vektorquantisierung.

Logarithmisch Sphärische Vektorquantisierung

Basierend auf den Ergebnissen der asymptotischen Hochraten-Quantisierungstheorie
wird in der vorliegenden Arbeit gezeigt, dass eine Anordnung von Codevektoren auf
der Oberfläche von (skalierten) mehrdimensionalen Sphären bei der Logarithmisch
Sphärischen Vektorquantisierung (LSVQ) eine gute Approximation der optimalen
Codevektordichte für den Fall einer multivariaten unabhängig und identisch verteil-
ten Gauß’schen Quelle ist.

In der Sprachcodierung ist die Annahme einer Gauß’schen Verteilung bekannter-
maßen eine gute Approximation für normierte Restsignale nach linearer Prädiktion.
Bei der Audiocodierung dient diese Annahme hingegen in erster Linie der Vorgabe
des ungünstigsten Szenarios (worst case), da die Gauß’sche Verteilung die höchste
differentielle Entropie aufweist und deswegen in Bezug auf die Quantisierung die
am „schwierigsten“ zu behandelnde Verteilung darstellt. Praktisch führt dies dazu,
dass eine minimale Audioqualität für beliebige zu quantisierenden Signale garan-
tiert wird, was von Vorteil ist, da Audiosignale eine große Vielfalt unterschiedlicher
Eigenschaften aufweisen können.

Das Prinzip der Logarithmisch Sphärischen Vektorquantisierung ist in Abbildung
C.1 dargestellt. Dabei wird jeder zu quantisierende Vektor x in seinen Betrag g und
einen normierten Vektor c mit dem Absolutbetrag ‖c‖ = 1 zerlegt. Beide Kompo-
nenten werden anschließend mithilfe eines logarithmischen skalaren Quantisierers
Qg sowie eines sphärischen Vektorquantisierers Qsvq, bei dem alle Codevektoren
möglichst gleichmäßig auf der Oberfläche einer Sphäre mit dem Radius 1 verteilt
sind, quantisiert. Im Decoder kann der quantisierte Vektor x̃ durch Multiplikation
des quantisierten Betrages g̃ mit dem quantisierten normierten Vektor c̃ wieder re-
konstruiert werden.

In der vorliegenden Dissertation werden neuartige qualitative theoretische Analysen
des LSVQ Ansatzes für die Annahme hoher Bitraten abgeleitet. Hierfür wird ein
analytischer Ausdruck zur Berechnung des Volumens der sich ergebenden Quan-
tisierungszellen bestimmt, mit dem das Signal-zu-Rausch-Verhältnis bezüglich des
rekonstruierten Eingangssignals (Quantisierungs-SNR) berechnet wird. Annahmen
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über die Form der Quantisierungszellen werden nicht gemacht, so dass eine quan-
titative Auswertung der abgeleiteten Gleichungen aufgrund weniger unbekannter
Konstanten nicht möglich ist. Als Schlussfolgerung aus diesen Analysen wird ge-
zeigt, dass das Quantisierungs-SNR unabhängig von der Verteilung des zu quanti-
sierenden Signals ist. Die Forderung nach einer minimal erreichbaren Qualität für
alle Typen von Signalen ist somit auch mathematisch zu belegen.

Im nächsten Schritt wird ein idealisierter sphärischer Vektorquantisierer (SVQ) defi-
niert. Annahmen über die Form der Quantisierungszellen ähnlich denen bei der von
der Hochraten-Quantisierungstheorie bekannten Sphere Upper Bound ermöglichen
die Bestimmung einer oberen Grenze für das durch LSVQ erreichbare Quantisie-
rungs-SNR. Mithilfe der berechneten mathematischen Zusammenhänge und nume-
rischer Verfahren kann diese Grenze für LSVQ für beliebige Vektordimensionen und
Bitraten nun erstmals qualitativ berechnet werden. Die Einführung von Näherungen
für die Annahme hoher Bitraten ermöglicht schließlich die Bestimmung der optima-
len Allokation von Bits für den logarithmischen skalaren Quantisierer auf der einen
Seite und den sphärischen Vektorquantisierer auf der anderen Seite, vorausgesetzt,
dass ein festes Gesamtbitbudget pro Vektor für die Quantisierung vorgeben ist.

In einer abschließenden Auswertung werden unter anderem die folgenden Schluss-
folgerungen gezogen:

• Das Quantisierungs-SNR des LSVQ Ansatzes steigt mit wachsender Vektor-
dimension.

• Der Anstieg ist besonders stark für niedrige Vektordimensionen und wird mit
zunehmender Dimension immer weniger ausgeprägt.

• LSVQ ist asymptotisch optimal für unendliche Vektordimensionen und sta-
tionäre Signale mit multivariater unabhängig und identischer Gauß’scher Ver-
teilung.

Um über die Theorie hinaus einen Bezug zur Praxis herzustellen, werden drei Ver-
fahren zur praktischen Umsetzung des LSVQ Konzepts und insbesondere des sphäri-
schen Vektorquantisierers vorgestellt, der Gosset Low Complexity Vector
Quantizer (GLCVQ), der Algebraic Low Bitrate Vector Quantizer (ALBVQ) und
der Apple Peeling Vector Quantizer (APVQ). Neuartige Algorithmen zur Nearest-
Neighbor-Quantisierung mit geringer Rechenkomplexität sowie zur kompakten Spei-
cherung von Vektorcodebüchern werden entwickelt.

Schließlich wird die Leistungsfähigkeit aller drei Ansätze in Simulationen untersucht
und mit der theoretischen Grenze für LSVQ verglichen. Es stellt sich heraus, dass
alle drei Ansätze die theoretisch maximal möglich Leistungsgrenze annähernd errei-
chen und durch die aus der Strukturierung der Codebücher resultierende effiziente
Umsetzbarkeit hervorragend für praktische Anwendungen geeignet sind.
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Abbildung C.2: Prinzip der kombinierten linearen Prädiktion und skalaren Quantisie-
rung in closed-loop Struktur, Encoder und Decoder.

Linear-prädiktive Codierung

Der Ansatz der Logarithmisch Sphärischen Vektorquantisierung ist sehr leistungs-
fähig für unkorrelierte Quellen, kann aber die Korrelation eines zu quantisierenden
Signals nicht zur Steigerung des Quantisierungs-SNRs nutzen. Aus diesem Grund
wird der Quantisierer mit dem Prinzip der linearen Prädiktion (LP) kombiniert, was
als linear-prädiktive Codierung (LPC) bezeichnet wird. In der Regel werden beide
Teilkomponenten in einer geschlossenen Schleife (closed-loop) miteinander verbun-
den. Das Prinzip ist in allgemeiner Form in Abbildung C.2 dargestellt. Das LP
Analysefilter im Encoder dient dazu, das Eingangssignal x(k) vor der Quantisierung
zu dekorrelieren. Die entsprechenden Filterkoeffizienten (LP Koeffizienten) werden
in der Regel blockweise bestimmt und als Nebeninformation mit verhältnismäßig
geringer Bitrate an den Decoder übertragen, wo sie zur Rekonstruktion des Ein-
gangssignals durch das LP Synthesefilter benötigt werden.

In der allgemeinen closed-loop Struktur mit skalarem Quantisierer wird eine
durch das Fehlergewichtungsfilter (F (z)) gefilterte Version des Quantisierungsrau-
schens rückgekoppelt (siehe Abbildung C.2).

Im Falle eines Vektorquantisierers ist die blockweise Verarbeitung der Vektoren
einerseits und eine Filterung zur Fehlerrückführung Abtastwert für Abstastwert an-
dererseits widersprüchlich. Aus diesem Grunde wird hierbei auf das Code-Excited
Linear Prediction (CELP) Prinzip zurückgegriffen, bei dem die Quantisierung nach
dem sogenannten Analyse-durch-Synthese-Prinzip realisiert wird.

Das Analyse-durch-Synthese-Prinzip ist typischerweise mit einem sehr hohen Re-
chenaufwand verbunden, da alle Einträge des umfangreichen Vektorcodebuchs zu-
nächst gefiltert und anschließend mit dem unquantisierten Eingangssignal verglichen
werden müssen, um den optimalen Codevektor zu bestimmen. In der vorliegen-
den Dissertation wird zunächst ein modifizierter CELP Ansatz abgeleitet, der die
Einführung von Maßnahmen zur Komplexitätsreduktion bei der praktischen Um-
setzung der beiden neu entwickelten Codecs, SCELP und W-SCELP, ermöglicht.
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Darüber hinaus wird auf neuartige Weise nachgewiesen, dass der modifizierte CELP
Ansatz für den Spezialfall einer Vektordimension von eins identisch mit der in Ab-
bildung C.2 dargestellten Struktur ist.

Ein Ansatz zur theoretischen Beschreibung der Kombination von linearer Prädiktion
und Quantisierung in (verallgemeinerter) closed-loop Struktur ist aus der Literatur
bekannt, basiert jedoch auf der Annahme hoher Bitraten. Da in der Praxis eine
Abweichung von der Theorie für niedrige Bitraten festgestellt wurde, wird in dieser
Dissertation eine neue Theorie entwickelt, die auch bei niedrigen Bitraten Gültig-
keit hat. Die Theorie basiert auf einem neuen skalaren Ansatz zur Modellierung
der durch die Quantisierung erzeugten Signalverzerrungen, in dem insbesondere die
Interaktion zwischen der Rückführung des Quantisierungsfehlers und dem Quanti-
sierer selbst berücksichtigt wird.

Das neue Modell bestätigt die Ergebnisse der aus der Literatur bekannten Theorie
für den Fall hoher Bitraten. Es zeigt jedoch auch, dass bei niedrigen Bitraten der
Encoder instabil werden kann und mit einer deutlich geringeren Leistungsfähigkeit
zu rechnen ist als bislang in der Literatur angegeben. Dieses Verhalten wurde zwar
teilweise in der Literatur beschrieben, konnte jedoch erst durch das neue Modell
auch theoretisch belegt werden.

Basierend auf den theoretischen Ergebnissen wird anschließend ein neuartiges Op-
timierungskriterium für die Berechnung der Koeffizienten des LP Analyse- und des
Fehlergewichtungsfilters für niedrige Bitraten bestimmt. In einem aus zwei Schritten
bestehenden Verfahren kann die Bestimmung der Koeffizienten unter Berücksich-
tigung des neuen Kriteriums praktisch sehr elegant und ohne großen zusätzlichen
Rechenaufwand umgesetzt werden. Eine detaillierte Untersuchung des neuen Opti-
mierungskriteriums zeigt, dass der Zwei-Schritt-Ansatz optimal in dem Sinne ist,
dass das Reverse Waterfilling Prinzip, das in der Rate Distortion Theorie bei der
Betrachtung korrelierter Signale von großer Bedeutung ist, hier nun erstmalig bei
der LPC Anwendung findet.

Die aufgezeigten Zusammenhänge sind bei der Codierung von Audiosignalen und
im Falle kurzer LP Analyse-Blocklängen von entscheidender Bedeutung. Aus die-
sem Grund haben sie einen wesentlichen Einfluss auf den Entwurf von Verfahren
zur Audiocodierung mit geringer Verzögerung. Neben dieser praktischen Relevanz
erlaubt die im Rahmen dieser Arbeit formulierte Theorie neue Einblicke in das
grundlegende Verständnis der linear-prädiktiven Codierung.

Der SCELP und der W-SCELP Audiocodec

Im letzten Teil der Dissertation werden die zuvor entwickelten Techniken praktisch
angewendet: Die Logarithmisch Sphärische Vektorquantisierung wird mit der linea-
ren Prädiktion auf Basis des modifizierten CELP Ansatzes kombiniert und bildet
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so die Basis für den SCELP Audiocodec mit geringer algorithmischer Verzögerung.
Zum Einsatz kommen kann prinzipiell jeder der drei entwickelten LSVQ Ansätze.
Da, wie in der Arbeit gezeigt wird, die optimierten Verfahren zur Nearest-Neighbor-
Quantisierung durch die Kombination mit der linearen Prädiktion nicht verwendet
werden können, spielt für den praktischen Einsatz das Erreichen einer minimalen
Rechenkomplexität des Analyse-durch-Synthese-Prinzips im CELP Encoder eine
besondere Rolle.

In diesem Sinne ist von den drei entwickelten Ansätzen für LSVQ der APVQ be-
sonders geeignet. Der Grund für diesen Vorzug liegt darin begründet, dass durch
Ausnutzung der Eigenschaften der Codevektoren des APVQ Codebuchs eine sehr
effiziente Variante der Analyse-durch-Synthese basierten Codevektorsuche (d.h. der
Quantisierung) umgesetzt werden kann. Basis für diese effiziente Umsetzung ist
die Entwicklung von Verfahren zur Komplexitätsreduktion, die in der vorliegen-
den Dissertation vorgestellt werden. Im Vergleich zu einer Analyse-durch-Synthese
Codevektorsuche, bei der alle Einträge des Codebuchs getestet werden, um den
optimalen Codevektor zu bestimmen, erlauben es diese Maßnahmen zur Komplexi-
tätsreduktion, die theoretische Rechenkomplexität um einen Faktor von bis zu 105

zu reduzieren. Die Audioqualität wird dabei je nach Komplexitätseinsparung nicht
wahrnehmbar oder nur geringfügig verschlechtert.

Um darüber hinaus eine höhere subjektive Qualität insbesondere für Audiosignale
zu erreichen, wird der SCELP Audiocodec schließlich durch die Verwendung der
Warped Linear Prediction (WLP) anstelle der konventionellen linearen Prädiktion
verbessert. Grundlage dieser Verbesserung ist eine ungleichmäßige Frequenzauflö-
sung mittels WLP, welche einer gleichförmigen Auflösung überlegen ist, da die Ei-
genschaften der menschlichen akustischen Wahrnehmung besser abgebildet werden.

Der SCELP und der W-SCELP Audiocodec verwenden nicht die Eigenschaften ei-
nes speziellen Signalmodells zur Erhöhung der Codiereffizienz. Aus diesem Grund
ist das Gesamtkonzept hochgradig skalierbar und vielseitig einsetzbar. Die Um-
setzung einer Standard-Konfiguration in Festkomma-Arithmetik mit Bestimmung
der benötigten Rechenkomplexität1 sowie eine Realisierung der Codecs als Echtzeit
Prototyp auf einem PC belegen, dass die maximalen Rechenanforderungen moderat
sind, so dass das vorgeschlagene Konzept auch in der Praxis gut einsetzbar ist.

Um die erreichbare Sprach- und Audioqualität zu bewerten, werden die objekti-
ven Qualitätsmaße WB-PESQ (Wideband Perceptual Speech Quality) für Sprach-
und PEAQ (Perceptual Audio Quality) für Audiosignale mit einer Audiobandbrei-
te von 50-7000 Hz (Breitbandsprache/Audio, Abtastrate fs = 16 kHz) verwendet.
Für eine Beurteilung und qualitative Einordnung der vorgestellten Codecvarianten

1Encoder: 28 WMOPS, Decoder: 3 WMOPS (WMOPS: Weighted Million Operations per Se-
cond)
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SCELP und W-SCELP werden zwei grundsätzlich unterschiedliche Vergleichscodecs
für Breitbandsprache/Audio betrachtet:

• Der ITU-T G.722 Codec, der bei den Bitraten 48, 56 und 64 kBit/sec betrieben
wird und eine algorithmische Verzögerung von weniger als 10 ms aufweist.

• Der MPEG I, audio layer 3, (MP3) Codec, der bei einer Abtastrate von 16 kHz
mit den Bitraten 24 und 32 kBit/sec betrieben wird und eine algorithmische
Verzögerung von mehr als 80 ms aufweist.

Der Bewertungsvergleich für Audiosignale ist in Abbildung C.3 zusammengefasst.
Die Auswertung der Qualitätsbewertung der Codecs mit den objektiven Maßen
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Abbildung C.3: Klassifizierung der Qualität von Audiosignalen nach dem PEAQ (a)
sowie gemessene PEAQ Kennzahlen für den W-SCELP, den SCELP, den ITU-T G.722 und
den MP3 Audiocodec (b). Verzögerung ITU-T G.722, W-SCELP, SCELP Codec < 10 ms,
Verzögerung MP3 Codec > 80 ms.

zeigt, dass der SCELP und der W-SCELP Audiocodec dem ITU-T G.722 Codec in
Bezug auf die erreichbare Qualität insbesondere für Audiosignale deutlich überle-
gen sind. Gegenüber dem MP3 Codec bei 32 kBit/sec erzielt der W-SCELP Codec
für eine Bitrate von 35 kBit/sec annähernd vergleichbare Audioqualität. Bei der
Beurteilung ist jedoch zu berücksichtigen, dass der W-SCELP Codec mit weniger
als 10 ms eine um den Faktor 8 geringere algorithmische Verzögerung aufweist.

Der Vergleich aller Ergebnisse zeigt, dass für Anwendungen wie Drahtlos-Mikrofone
bei Live-Konzerten oder drahtlose Audioverbindungen in Hörgeräten etc. nur der
SCELP und der W-SCELP Codec ausreichende Sprach- und insbesondere Audio-
qualität bei gleichzeitiger Einhaltung der eingangs geforderten engen technischen
Randbedingungen liefern können.
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