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Abstract. The estimation of physiological parameters from
raw signal recordings is absolutely crucial in modern clin-
ical applications. A wide variety of these parameter incor-
porate a periodic nature, such as the heart or the respira-
tion rate. Especially unobstructive, novel measurement tech-
niques are characterized by complex waveforms, which are
likely to change during the measurement. Simple peak detec-
tion algorithms are often not suited for these applications.
One way to tackle these challenges is a preprocessing step
for the simplification of the physiological signals. A novel
deconvolution based approach for this preprocessing is in-
troduced and evaluated in this paper. Two deconvolution
methods are regarded, the Minimum Entropy Deconvolution
(MED) and the Maximum Correlated Kurtosis Deconvolu-
tion (MCKD). Important parameters are outlined and exam-
ined. Finally the methods are validated using artificial as
well as real clinical signals to demonstrate their potential.
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1. Introduction
Nowadays, a wide variety of vital signs are measured in

the clinical environment. Various of these are based on pe-
riodic physiological processes, such as the heart rate and the
respiration rate. A reliable measurement of these periodical
parameters is crucial for clinical decisions.

On the other hand, there is a trend towards monitoring
of vital signs without supervision of clinical staff in the home
environment of patients. Novel, easy to apply measurement
systems are required for these conditions. One promissing
technique is ballistocardiography, which measures the me-
chanical activity of the heart on the body surface, for exam-
ple by pressure sensors. It has the capability to unobstruc-
tively measure the heart activity. This comes at the cost of a

more complex waveform which impedes simple peak detec-
tion algorithms for the measurement of the heart rate.

Therefore, more sophisticated techniques are required.
Various different approaches have been published in the pre-
vious years. Some operate in the frequency domain, e.q. [4],
and some are correlation-based methods [1]. These methods
also differ whether they solely measure an averaged interbeat
interval or determined the individual heart beat locations.

In this paper, a novel approach for periodic parameter
estimation using deconvolution techniques is proposed and
investigated. This basic idea of their application is illustrated
in Figure 1. The fundamentual assumption is that each heart

Fig. 1. Basic idea of the deconvolution-based methods for the
example of the heart rate.

beat is represented by a dirac impulse. An FIR filter models
the specific measurement setup and the physiological influ-
ences. It varies between different techniques (such as ECG,
PPG or BCG), between different patients and also between
different points in time. Measured is a convolution of the im-
pulse sequence with this FIR filter, depicted at the last block
to the right. The deconvolution technique tries to estimate
the inverse of the FIR filter to compensate its influence and
regain the impulse sequence. This impulse sequence is then
further processed.

Two distinct deconvolution techniques are investigated,
the Minimum Entropy Deconvolution (MED) and the Max-
imum Correlated Kurtosis Deconvolution (MCKD). The
MED was introduced by Ralph A. Wiggins in the year 1978
for the analysis of seismic reflection recordings [8]. It is
mainly used in the field of geophysics and seismic signal
analysis. In 2012, Geoff McDonald published a paper on a
novel variant of minimum entropy deconvolution for peri-
odic signals, the Maximum Correlated Kurtosis Deconvolu-
tion [5]. It exploits the periodic nature of the input signals
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and was originally designed for gear tooth chip fault detec-
tion.

This paper is structured into a methods section, where
the deconvolution techniques are presented, a results section
with different experiments on the potential and limitations
of the methods, their interpretation in the discussion section,
and an overall conclusion in the last section.

2. Methods
The application of deconvolution techniques for inter-

beat interval estimation is based on the assumption that the
heart beats are represented by an impulse sequence q, which
is altered by an FIR filter w. The measurement signal x is
the convolution of the two signals.

x = w ∗ q (1)

The deconvonlution attempts to estimate an inverse filter f
to reverse this process.

y = f ∗ x = f ∗ w ∗ q (2)

Therefore, the final goal is to regain the assumed impulse se-
quence q, where each impulse corresponds to one heart beat.
In the ideal case, f is exactly the inverse of w. The chal-
lenge is to estimate an inverse filter f , which creates a good
impulse sequence estimate y only based on the knowledge
of x without any further information about q and w.

In the following, two methods are presented, which are
based on the assumption of a simple, impulse-like target sig-
nal y.

2.1. Minimum Entropy Deconvolution

Suppose the inputs are labeled by indizes i = 1 . . . Nc

with Nc the number of channels and j = 1 . . . Ns with Ns

the number of samples per channel. Nf corresponds to the
number of filter samples. The deconvolution in Equation 2
may then be expressed in more detail as follows.

yij =

Nf∑
k=1

fk · xi,j−k (3)

The impulse-like structure and thereby the simplicity of the
input can be measured by different norms. Wiggins used the
varimax norm given in Equation 4, which is based on the
varimax rotation from the field of factor analysis (see [7] for
further information). It is the sum of normalized squares of
the variances of the samples (see [8]).

V =
∑
i

Vi =
∑
i

∑
j

y4ij(∑
j

y2ij

)2 (4)

In order to find the filter which maximizes this sim-
plicity norm V , it is differentiated with respect to the filter
coefficients fk and set to zero.

∂V

∂fk
= 0 =

∑
i

∂Vi

∂fk
(5)

This results in the following Equation 6. For the de-
tailed derivation the reader is referred to [8].∑
l

fl
∑
i

Viu
−1
i

∑
j

xi,j−lxi,j−k =
∑
i

u−2
i

∑
j

y3ijxi,j−k,

(6)
with ui =

∑
j

yij
2 or in a compact matrix form as

k1φxxf = k2φy3x. (7)

φxx is an autocorrelation matrix in Toeplitz form of the
input signal x. φy3x is a column vector of cross correlations
of the input x and the cubed filter outputs y3. f is a column
vector of the filter coefficients. The weighting factors k1 and
k2 are scalar values depending on the channel i. They are
defined as k1 = V (yi)∑

j
yij

2 and k2 = (
∑
j

yij
2)−2.

A closed form solution for f is not possible. However,
equation 7 allows an iterative procedure based on the well
known Levinson-Durbin-Algorithm to calculate the filter f .
A convergence towards the optimal impulse sequence is not
guaranteed and depends on different parameters, which are
addressed later in this paper.

One of the major drawbacks of the MED for the appli-
cation on periodical signals is the fact that the maximum of
the norm is given for one single peak as illustrated in Figure
2. It may therefore happen that the techniques returns a fil-
ter which creates an output signal with one large peak rather
than the desired periodic impulses. Therefore, we are also
regarding the following method of MCKD.

2.2. Maximum Correlated Kurtosis Deconvolu-
tion

The MCKD method is based on the correlated kurtosis
(CK) norm shown in Equation 8.

CKM (T ) =

Nt∑
j=1

(
M∏

m=0
yj−mT

)2

(
Ns∑
j=1

yj2

)M+1
(8)

The norm consists of a multiplication of the signal with a
shifted version of itself for M = 1. For higher orders, the
signal is multiplied with M shifted versions. It combines the
kurtosis calculation with the idea of correlation and thereby
utilizes the periodic character of the input signal. The norm
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Fig. 2. Example signals for demonstration of their effect on the
different norms, which are given in Table 1. The image
is inspired by [5].

Signal V-Norm CK1(T)-Norm

1 0.0028 0.0028
2 0.0015 0.0012
3 0.0040 0.0032
4 1.0000 0.0000
5 0.2500 0.1875
6 0.1667 0.0278

Tab. 1. Corresponding norm values for Figure 2

creates higher values in the presence of periodic impulses
with a preselected period of interest T . For higher shift or-
ders M , the sensitivity for the selected period of interest T
is increased.

To get an impression of the norm values for different
cases, Figure 2 is presented. It shows different input signals,
which are examined. The corresponding Varimax (V) and
Correlated Kurtosis (CK) values for the example signals are
given in Table 1. The CK was calculated with a period of
interest of T = 200 and a shift of M = 1. One can ob-
serve that the V-norm is maximal in case four, when only
one large peak is present and the CK-norm reaches its maxi-
mum for case five, when the selected period fits the impulse
sequences.

To derive a solution for f , the norm given in Equation 8
is again differentiated with respect to the filter coefficients fk
and set to zero. This leads to the following matrix Equation
9. For the whole derivation the reader is referred to [5].

X0X
T
0 f =

‖y‖2

2‖β‖2

M∑
m=0

XmTαm (9)

with

Xr =


x1−r x2−r x3−r . . . xN−r

0 x1−r x2−r . . . xN−1−r

...
...

...
. . .

...
0 0 0 . . . xN−L−r+1

 , (10)
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Fig. 3. Various steps of the deconvolution process from the input
signal, an intermediate signal to the final output. The last
row contains the ideal impulse sequence as a reference.
The corresponding norm values are given in Table 2.

Signal V-Norm CK1(T)-Norm

x 0.0040 0.0032
y2 0.0198 0.0155
yfinal 0.0791 0.0547
ideal 0.1000 0.0700

Tab. 2. Corresponding norm values for Figure 3

αM =

 y−1
1−MT (y1

2y1−T
2 . . . y1−MT

2)
...

y−1
Nt−MT (yNt

2yNt−T
2 . . . yNt−MT

2)

 (11)

and

βM =

 y1y1−T . . . y1−MT

...
yNt

yNt−T . . . yNt−MT

 . (12)

The result shown in Equation 9 again requires an itera-
tive calculation of the filter f .

2.3. Iterative Procedure

The convergence of the iterative algorithms is indicated
by the Figure 3. After the first processing step shown by the
signal y2 the neighboring peaks have already been attenu-
ated compared to the input signal x. The main peaks, on the
other hand, were emphasized, which is also reflected by the
increasing norm values in Table 2.

The final result of the MED method, given by yfinal,
is quite similar the ideal impulse sequence. Looking at the
norm values the reader can observe that the method tends to
maximize these in order to create impulse sequences. This
example illustrates the convergence of the algorithm towards
a good estimate of the impulse sequence.
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3. Results
The following section addresses the parameter influ-

ences on the deconvolution result. Furthermore, two short
evaluations are carried out with artificial and real clinical sig-
nals to investigate the peak detection and interbeat interval
estimation capabilities.

3.1. Influences on the Deconvolution

There are some parameters that need to be chosen and
several influences to be kept in mind, when using the MED
and the MCKD. These are, namely, the local validity of the
filter estimate, the choice of the initial filter f , as well as
the filter length. Additionally, the MCKD is influenced by
a preassigned period and M-shift parameter. In this paper,
only the most significant influences should be outlined.

One important parameter both methods have in com-
mon is the filter length. A shorter filter length limits the
capabibility of precise modeling of longer wavelets, but de-
creases the computational effort. With a longer filter length,
the procedure tends to misestimate the filter and only reaches
relatively poor local maxima. Additionally, it increases the
computational effort. The influence is illustrated in Figure 4
for three different filter lengths. The input signal was a clean
sequence with varying pitch period and absence of any noise.
The left column contains the inverse filter estimates f−1 and
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Fig. 4. Influence of the filter length on the estimation of the in-
verse filter estimate f−1 and the MED output.

the right the corresponding output of the MED method. In
the first row, the ideal filter estimate of length 100 samples
and the ideal impulse sequence are given as a reference. It is
easy to observe that an underestimation of the filter length, as
shown in the second row, leads to an unsatisfying filter and
impulse train estimate. The filter f is too short to adequately
adapt to the assumed FIR filter w. An overestimation, as

shown in the bottom row, also leads to insufficient estimates.
The algorithm overfits the filter to the given signal and is
no longer able to consider individual intervals. Solely an
adequately chosen filter length leads to satisfying results as
shown in the third row from the top.

Another aspect for the estimation of a longer impulse
signal is the local validity of the filter. The waveform is
likely to vary during a measurement. Reasons for this are
changes is the measurement modalities as well as back-
ground noise influences. Therefore it is necessary to perform
local blockwise processing. In order to avoid sharp edges at
the block borders the use of a window function, which at-
tenuates the borders of each segment, is crucial. The em-
ployed window function is illustrated in Figure 5 with the
attenuating area at the borders and the passband in the mid-
dle part (according to [6] p.55). The attenuated parts are

0 200 400 600 800 1000
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0.5

1

h in Samples

t(
h)

c
1

c
2

Fig. 5. Window function with 80% plateau of unchanged sig-
nal. The grey colored edges contain the attenuated signal
parts.

cut off after the processing and need to be considered within
an overlapping of successive blocks. Furthermore additional
overlapping can lead to better estimates and to an improved
robustness.

The MCKD contains additional parameters, of which
solely the influence of the period estimate is regarded in this
paper. The impact of different period parameters is depicted
in Figure 6. In order to adequately demonstrate the influ-
ence an input signal with a fixed period is used and additive
white Gaussian noise (AWGN) with an SNR of 10dB was
added. The Correlated Kurtosis depending on the period T
and the MCKD output are shown. The selected period T is
marked in the CK plot by a red cross. The cases of T = 0
and T = 50 do not give any usable results. This is especially
remarkable as for M = 1 and T = 0 the MCKD is equal to
the MED. If the period is adequately chosen near the real in-
terval of 100 samples, the output contains emphasized peaks
as expected. This small experiment shows that an suitable
selection of T is necessary to gain good results.

In order to adapt to T this additional parameter, for
each frame a separate period estimation is performed with
the Correlated Kurtosis norm. Through this, the period T is
automatically adapted.
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Fig. 6. Influence of the period parameter estimation on the Cor-
related Kurtosis (CK) and the MCKD output. Marked
in red is the current period position in the CK. The Shift
parameter M is set to 1.

3.2. Quantitative Analysis with Artificial Sig-
nals

After introducing the different influences on the decon-
volution, a quantitative analysis is done on how good the
methods reconstruct an impulse-like signal and how well the
period can be estimated.

To create a controlled environment for examinations,
an artificial BCG signal with 10000 samples and 112 simu-
lated heart beats is generated. It is composed by a combina-
tion of sine waves and a sawtooth signal based on [3]. There-
after, different levels of white Gaussian noise are added to
the signal to evaluate the robustness of the methods.

In order to determine the capability to detect the peaks
in the processed signal, a new metric is introduced. It
takes into account the height of the peaks compared to the
level of the background noise. This is done by dividing the
mean peak height by the standard deviation of the remaining
background values. The peak-to-background-ratio (PBR) is
therefore defined as

PBR =

1
K

K∑
i=1

pi√
1

L−1

L∑
j=1

(bj − b)
2

(13)

with pi being the K detected peaks, bj the L remaining sam-
ples and b the mean of the remaining background samples.

This metric theoretically approaches the value one for
peaks that are the same height as the surrounding back-
ground samples and infinity if solely clean peaks are present
and all background samples are zero.

The following Figure 7 depicts the PBR values of
the two processed signals for different signal-to-noise ratios
(SNR). The curves indicate that the peak dominance is in-

Fig. 7. Peak to Background Ratio (PBR) for the output of the
two methods MED and MCKD with artificial input sig-
nal.

creasing towards good SNRs. Interestingly, the MED seems
to produce clearer peaks than the MCKD method for mod-
erate to high SNRs. Due to missing information on which
PBR level is necessary for a reliable estimation, other mea-
sures have to be considered. However, the PBR gives an
indication on how distinctive the resulting peaks are.

In order to determine the necessary SNR level for a
good estimation, the peak detection rate (PDR) and the peak
misdetection rate (PMR) are valuable measures. The PDR
indicates how many of the reference peaks have been found
by the algorithm and the PMR represents how many of the
detected peaks do not correspond to a reference peak and are
therefore falsely detected.

Figure 8 shows how the methods perform regarding
these metrics. From an SNR of 4 dB on both methods are
able to create an output signal, where 100 % of the refer-
ence peaks are found. However, both incorporate a slight
fluctuation concerning the PMR. This means that there are
some falsely detected peaks. One must keep in mind that the
PDR and the PMR strongly depend on the peak detection al-
gorithm and therefore contain an additional influence. Still,
it belongs to the process chain and therefore should also be
regarded. Further tuning of the parameters of the peak detec-
tion algorithms will probably result in more reliable results.
For this investigation the findpeaks algorithm of MATLAB
2012a was chosen.

Eventually, the interbeat interval is the parameter of in-
terest. In order to judge when an estimation is satisfying, the
mean interbeat interval error (E) is regarded. It incorporates
all reasonable interbeat intervals and measures the error with
respect to the reference. In this case the reference is given
by the perfect knowledge of the artificial signal.
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Fig. 8. Peak Detection Rate (PDR) and Peak Misdetection Rate
(PDR) depending on the SNR.

Figure 9 supports the conclusions already drawn from
Figure 8. The minimum SNR to get appropriate estimations
is 4 dB. From this value on E lies consistently below 4 %.

Fig. 9. Mean beat-to-beat interval error (E) depending on the
SNR.

3.3. Real Clinical Signals

In the following short evaluation, the capability of the
presented deconvolution methods with respect to real signals
is regarded. For this purpose, physiological signals are taken
from a sleep lab database [2]. The database contains simul-
taneous recordings of ECG, PPG and BCG sensors. As com-
monly accepted, the ECG sensor defines the goldstandard for
interbeat interval measurement and is used as the reference.
An artifact free segment of t = 1000 s with 853 detected
heart beats was chosen for the evaluation.

The following Table 3 contains the results after pro-
cessing the input signals of two different sensors with both
methods. The parameterization of the methods was done as

Input Method E E95 PDR PMR
[%] [%] [%] [%]

PPG MED 1.25 3.06 94.25 0.99
MCKD 1.69 4.53 93.78 0.99

BCG MED 1.27 2.53 99.30 2.20
MCKD 4.12 32.14 98.94 8.37

Tab. 3. Interval-based and peak-based measures for an artifact
free segment of t = 1000 s with 853 detected heart
beats.

follows. For a sampling frequency of 200 Hz, a reasonable
heart rate between 40 and 160 bpm would result in a period
length between 75 and 300 samples. Therefore, the MED
and the MCKD filter length was chosen to be 100 samples.
The overlapping of neighboring frames of the size of 1500
samples is 75 % for the MED, which corresponds to a feed
rate of 375 samples, and 50 % for the MCKD, which corre-
sponds to a feedrate of 750 samples. The framesize is cho-
sen to guarantee the coverage of five full periods with the
maximum period length of 300 samples. Consequently, the
M-shift of the MCKD is set to 4. To avoid sharp edges, the
earlier presented window function with an 80 % plateau of
unattenuated signal part is used.

The evaluation parameters are grouped into interval-
based and peak-based measures. The mean beat-to-beat in-
terval error (E), which describes the mean deviation from
the interbeat interval reference, and the 95th error percentile
(E95), which represents the spread of the error, embody the
interval-based measures. Only reasonable interbeat intervals
are considered for this metric, described by a period length
between 75 and 300 samples for this example. On the other
hand, the Peak Detection Rate (PDR) and the Peak Misde-
tection Rate (PMR) characterize how succesful the peaks are
detected.

The PDR is over 93 % for all cases and in the same
time the PMR is less than 2.5 % for all but one case. This
indicates that most of the heart beats and the corresponding
peaks have been found and only little misdetections happen.
In the same time the interval-based parameters are all be-
low 2 %, except for the BCG sensor in combination with the
MCKD method. Overall, most of the results are well within
very good boundaries and indicate the applicability of these
methods for physiological signals.

4. Discussion
The results of the evaluation with real clinical data de-

picts good estimation performance with regard to the refer-
ence. Consequently, they demonstrate the appropriateness
of deconvolution methods for physiological signal simplifi-
cation in order to obtain interbeat interval estimates.

However, adequate selection of the presented method’s
parameters is crucial in order to obtain usable impulse se-
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quences. As the deconvolution methods are not guaranteed
to converge to the absolute maximum, the parameters must
define a suitable initial state. If, for example, the filter length
is estimated poorly, the output is likely deteriorating the sig-
nal rather than improving it. The applicability is therefore
limited for cases in which a careful selection of the parame-
ters is difficult. This is the case if large variations in reason-
able interval values complicate an adequate parameter selec-
tion.

The overall goal of the MED and the MCKD method is
to create an output signal, which maximizes the correspond-
ing norm. Both norms are taking high values for impulse se-
quences with sharp spikes and therefore lead to the desired
output signal. However, the estimated filter f solely has the
purpose to create these output signals. This is revealed espe-
cially in the case of noise interfering with the input signals.
The estimated filter f will then have an arbitrary and not
meaningful shape to achive the goal of large spikes. There-
fore an interpretation of this output is not useful.

In general, the presented methods provide precise heart
beat positions connected with the interbeat intervals rather
than averaged estimations. Therefore they establish the pos-
sibility to identify individual irregular periods or can be used
for long term heart rate variability measurements.

Another advantage is the independence of the method
from the given signal morphology.

5. Conclusion
We presented a novel deconvolution-based approach

for the preprocessing of physiological signals in order to es-
timate periodic vital signs.
Two iterative deconvolution methods, which are based on the
maximization of a simplicity norm, are introduced; the Min-
imum Entropy Deconvolution (MED) based on the varimax
norm and the Maximum Correlated Kurtosis Deconvolution
(MCKD) based on the correlated kurtosis norm.
Both methods have been evaluated with regard to the in-
fluence of their parameters and the necessity for a careful
choice of these was motivated. A short investigation on arti-
ficial BCG signals with additive white Gaussian noise indi-
cated a good peak detection rate for SNRs higher than 4 dB.
Furthermore, an evaluation with real clinical signals from
one PPG and two BCG sensors, depicted a high peak detec-
tion performance and a precise interbeat interval estimation
with less than 2 % mean error for almost all regarded cases.
In general, the deconvolution methods have shown promis-
ing results for signal simplification to estimate periodic pa-
rameters.
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