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Abstract—Noise pollution has a large negative influence on the
health of humans, especially in case of long-term exposure. Vari-
ous passive hearing protection approaches are available. However,
they often lack good protection against low frequency noise. For
these applications, the principle of Active Noise Cancellation
(ANC) offers a promising supplement. It relies on anti-phase
compensation of the noise signal. Within the area of ANC, only
few publications deal with the Kalman filter approach. The
state-of-the-art in literature is briefly reviewed. The algorithm
presented in this contribution is inspired by the time-domain
Kalman filter. The Kalman filter has the favorable property of
fast convergence as well as good tracking properties. Especially
the tracking of time-varying noise conditions is often a drawback
of least-mean-square (LMS) and recursive-least-square (RLS)
approaches. The proposed algorithm uses the Kalman equations
which are extended by online model parameter estimation based
on observable signals. This results in faster convergence and
higher robustness against dynamically changing noise conditions.
The performance of the algorithm is evaluated by means of
convergence, tracking and stability with measured acoustic paths
from a real-time system.

I. INTRODUCTION

Noise pollution is an increasing problem in modern society,
due to densely populated areas and raising traffic volume.
Convenient methods for noise avoidance or cancellation are
required. Passive approaches, e.g. hearing protection, can be
supplemented by active methods, widely known as Active
Noise Cancellation (ANC). ANC uses anti-phase signals to
compensate existing noise sources. It has the advantage of
being able to compensate low frequency noises without the
need for heavy absorption materials.

Current research on ANC systems mostly concentrates on
adaptive digital system, as they offer greater flexibility than
analog fixed systems. On the other hand, digital systems require
analog-digital (AD) conversion, which introduces additional
delay that may limit the achievable performance. Thus, the
real-time system design is a demanding task.

The general structure of the adaptive digital system is shown
in Fig. 1. We regard the noise cancelling headphone as an
example. The headphone comprises of two microphones, one
capturing the external noise reference signal x(n) and one
measuring the internal residual error signal e(n). The direct
transmission from the outer reference signal to the inner error
signal is described by the so called primary path P (z). The
internal loudspeaker is used to play the antiphase cancellation
signal y(n). The transmission between this loudspeaker and
the inner microphone is given by the secondary path S(z).
The feedback from the loudspeaker to the outer microphone

Fig. 1. Functional structure of an in-ear headphone for an adaptive feedforward
ANC system with Filtered-X (FX) structure.

is neglected here, due to lower sound levels inside and the
passive attenuation of the headphone. The cancellation signal
y(n) is created by a filter Ŵ (z) using the reference signal
x(n). Ŵ (z) is adjusted by an adaptive algorithm. The most
common adaptive algorithm in ANC is the least-mean-squares
algorithm (LMS). It has the advantage of being simple and
computationally inexpensive. However, it suffers from slow
convergence and poor tracking due to the dependency on
the Eigenvalue spread of the input signal [1]. In this paper,
we describe active cancellation as a state estimation problem
using the well-known Kalman filter. It has better convergence,
tracking and stability properties for the price of a higher
computational complexity. The Kalman filter can also be
interpreted as an LMS algorithm with optimal variable step
size [2].

For convergence, the reference signal x(n) of the adaptive
algorithm needs to be prefiltered with an estimate of the
secondary path Ŝ(z), also depicted in Fig. 1. This leads to
the well-known Filtered-X structure (FX). Introducing this
prefiltering results in an exchange of the sequential order of the
secondary path filter function S(z) and the cancellation filter
Ŵ (z) within the adaptive algorithm. This is usually argued as
allowable due to slowly changing filter coefficients. For fast
adaptive algorithms, such as the Kalman filter, an additional
error occurs as this assumption is violated. This additional
error leads to instabilities and thus needs to be corrected by
the extension to the so-called Modified Filtered-X structure
(MFX) [3].

Lopes [1] compared the Kalman filter to the LMS, as well as
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the recursive-least-squares (RLS) algorithm and demonstrated
its advantageous convergence properties. The applicability of
the Kalman filter for ANC is limited due to computational
complexity and the demanding requirements for real-time.
With the goal of reduced complexity, Fraanje proposed a
fast-array form of the Kalman filter based on the shift
property of the reference signal x(n) [4]. Ophem and Berkhoff
extended this approach to MIMO systems [5], [6], and pursued
investigations on tracking and convergence, however they
encountered numerical stability problems [7], [8]. They also
included the secondary path estimation in their model. Recently,
Lopes proposed a random walk Kalman filter [9]. It relies on
white Gaussian noise signals to model state changes. In all
of these publications the model incorporates static parameters,
which need to be empirically chosen and tuned. They have a
large influence on performance and stability and finding an
optimal time-invariant solution is often not possible due to
variability of real-world problems. To improve this downside,
we propose an online estimation method of the process noise,
the measurement noise, and the transition matrix. The algorithm
exploits temporal signal statistics. As the algorithm it is purely
data-driven and deviates from the Kalman filter principle of
combining data with prior knowledge, it should be denoted as
Kalman-like.

II. METHODS

A Kalman filter requires a dynamic model of an underlying
system as well as knowledge of its process variables. It is
represented by a set of equations aimed to estimate the current
state of a dynamic system based on disturbed measurements
[10].

The dynamics of the control filter w(n) ∈ RL×1 with the
filter length L are described using a Markov model of first
order

w(n) = A(n)w(n− 1) + vp(n), (1)

with transition matrix A(n) ∈ RL×L and zero-mean white
Gaussian process noise vp(n) ∈ RL×1. The single channel
Kalman equations for estimating the state w(n), divided in
prediction and correction step, are given in the following.
A-priori estimations are denoted with − and a-posteriori
estimations are marked with +.

Prediction step:
ŵ−(n) = A(n)ŵ+(n− 1) (2a)

P−(n) = A(n)P+(n− 1)A(n)T + Q(n) (2b)
Correction step:

K(n) =
P−(n)H(n)

HT (n)P−(n)H(n) +R(n)
(2c)

P+(n) =
[
I −K(n)HT (n)

]
P−(n) (2d)

ŵ+(n) = ŵ−(n) + K(n) · e(n) (2e)

In the prediction step the modeled system dynamics are applied
to the previous a-posteriori state ŵ+(n − 1) and covariance
matrix P+(n− 1) to obtain an estimate of the current state.
The model is typically based on prior system knowledge, such
as prior measurements, statistical analysis or physical insight.

This estimate is corrected using a-posteriori knowledge, here
the measurement of the error e(n), in the correction step. This
combination of a system model and measurements is one of the
central properties of a Kalman filter. The error, which represents
the innovation, is weighted by the Kalman gain K(n). The
Kalman gain weights the correction of the state estimates
ŵ−(n) as well as the covariance estimate P−(n), which
describes the uncertainty of the state estimates. The observation
matrix H(n) contains the past L values of the filtered reference
signal x′(n). The parameter Q(n) denotes the process noise
covariance, describing the uncertainty of the system model, and
R(n) represents the measurement noise variance, containing
the uncertainty of the measurements. I is the identity matrix.
The control filter ŵ(n) for creating the cancellation signal
y(n) will be set to ŵ+(n). Neither A(n), Q(n) nor R(n)
are directly observable and are often chosen as constants
for filtering applications. In the following, we will derive
methods to estimate these process variables using observable
data. The concept for the measurement noise estimation was
presented in [11] for the application of echo cancellation. In
[12] the individual online process noise estimation for each
filter coefficient is proposed. These insights from the field of
echo cancellation are transfered to the field of active noise
cancellation.

A. Process noise estimation
The covariance matrix Q(n) of the system process noise

vp(n) = [vp,0, ..., vp,L−1]
T is defined as

Q(n) = E
{
vT

p (n) · vp(n)
}
. (3)

Since the process noise is assumed to be white Gaussian noise,
vp,i(n) and vp,j(n) are uncorrelated for i 6= j, and Q(n) can
be simplified to

Q(n) = diag
{
σ2
vp,0

, σ2
vp,1

, . . . , σ2
vp,L−1

}
. (4)

Eq. 1 results in the following context for σ2
vp,l

with l =
0, . . . , L− 1

σ2
vp,l

(n) = E
{

[wl(n)−Al(n) · wl(n− 1)]
2
}
, (5)

with Al(n) being the l-th entry of the main diagonal of A(n).
Since w(n) is unknown, a good approximation is to substitute
it by the estimated state ŵ(n). Using Eq. 2a this results in

σ̂2
vp,l

(n) = E
{[
ŵ+

l (n)−Al(n) · ŵ+
l (n− 1)

]2}
(6a)

= E
{[
ŵ+

l (n)− ŵ−l (n)
]2}

. (6b)

The expectation can then be approached using a first order IIR
low-pass filter with control parameter 0� α ≤ 1

Q̂(n) = α · Q̂(n− 1) + (1− α) · diag
{[

ŵ+(n)− ŵ−(n)
]2}

(7a)

= α · Q̂(n− 1) + (1− α) · diag
{

[K(n) · e(n)]
2
}

.
(7b)

B. Measurement noise estimation
The estimation of the variance R(n) of the measurement

noise vm(n) plays an important role in characterizing the
2
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stability properties of the Kalman filter. This is due to the
fact that it directly influences the denominator of the Kalman
gain vector K(n), as seen in Eq. 2c. The variance R(n) is
defined as

R(n) = E
{
v2m(n)

}
. (8)

To obtain a robust estimation, the measurement noise vm(n) is
interpreted as comprising all errors, including those remaining
during and after convergence. This assumption results in the
following estimation for the variance of the measurement noise

R̂(n) = α · R̂(n− 1) + (1− α) · e2(n), (9)

using the same first order IIR filter structure as in Eq. 7b, with
0� α ≤ 1.

C. Prediction estimation (PE) of the transition matrix

Many realizations of the Kalman filter implement the tran-
sition matrix using an empirical forgetting factor 0� γ ≤ 1,
resulting in A(n) = γ · I . A closer look at the evolution
of estimated filter coefficients ŵl(n), as shown in Fig. 2,
yields that the initial convergence is slowed down using this
approach. The knowledge of the underlying adaption behaviour,
the convergence can be accelerated. For a stationary reference
signal, the filter coefficients converge in a predictable manner,
as illustrated in Fig. 2 In the following, this knowledge will
be used to deduce the proposed method for estimating the
transition matrix A(n).

The proposed method is based on predicting the current filter
state using an extrapolation technique. The discrete analogue to
the Taylor polynomial, the Newton series, uses finite differences
to extrapolate smooth signals around a given point of evaluation,
as described in [13]. Using this approach the current estimate
w̃(n|n− 1), with n− 1 being the point of evaluation, results
in

w̃(n|n− 1) =
O∑

k=0

∆k
Rŵ(n− 1), (10)

with the order of newton polynomial O. Here finite differences
are used in a backwards oriented fashion, since only past
values of ŵ(n) are known. The k-th finite backwards difference
∆k

Rŵ(n) is recursively defined as

∆k
Rŵ(n) = ∆k−1

R ŵ(n)−∆k−1
R ŵ(n− 1) (11)
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Fig. 2. Evolution of the first filter coefficients of ŵ(n) = (ŵ0, ..., ŵL−1)
T

over time for white Gaussian noise as reference signal x(n).

with

∆1
Rŵ(n) = ŵ(n)− ŵ(n− 1) (12)

Eq. 10 can also be interpreted as applying a FIR filter Λ(n)
of length O + 1 to each past coefficient of ŵ(n), such that

w̃(n|n− 1) =
O∑

k=0

Λ(k) · ŵ(n− k − 1) (13)

holds. With Eq. 10 and Eq. 11 this filters impulse response
can be concluded to

Λ(n) = (−1)n
(O + 1

n+ 1

)
, for n = 0, . . . ,O (14)

To break the closed loop induced by this method, the estimation
w̃(n|n− 1) will be based on the additional auxiliary signal

v(n) = v(n− 1) + K(n) · e(n), (15)

which accumulates only the update of ŵ(n) from the correction
step (Eq. 2e) of the Kalman filter. It thus reduces the influence
of A(n) on the estimation of itself. To further reduce jittering
effects, as seen in Fig. 2, v(n) will be smoothed using a first
order IIR low-pass filter with 0� λ ≤ 1 resulting in

v̄(n) = λ · v̄(n− 1) + (1− λ) · v(n). (16)

In matrix notation the estimate, now denoted as ṽ(n|n− 1),
can then be written as

ṽ(n|n− 1) = V̄ (n− 1)Λ, (17)

with the matrix V̄ (n) and the vectorized FIR filter Λ defined
as

V̄ (n) = [v̄(n), v̄(n− 1), . . . , v̄(n−O)] (18)
Λ = [Λ(0),Λ(1), . . . ,Λ(O)] . (19)

Lastly we are using the update

∆ṽ(n) = ṽ(n|n− 1)− v̄(n− 1) (20)

as an additive contribution to derive the main diagonal of the
transition matrix A(n), according to Eq. 2a, for l = 0, . . . , L−1

v̄l(n− 1) + ∆ṽl(n) = Al(n) · v̄l(n− 1) (21a)

⇔ Al(n) = 1 +
∆ṽl(n)

v̄l(n− 1)
. (21b)

To avoid divisions by zero, this term should be rewritten as

Al(n) = 1 + sgn {v̄l(n− 1)} · ∆ṽl(n)

|v̄l(n− 1)|+ ε
(22)

with ε being a small positive value.

III. EVALUATION

In the following, we evaluate the influence of the proposed
extensions with a focus on convergence and tracking.

The transmission paths for the simulations have been
measured with a real-time system based on dSPACE hardware
(DS1005, dSPACE GmbH, Paderborn, Germany), with the
DS2004 AD-extension and the DS2102 DA-extension board.
The round-trip delay, including AD/DA-conversion, is 1 sample
latency at 48 kHz. The electro-acoustic front-end is realized
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Fig. 3. Effect of online process parameter estimation. Left: Static parameters.
Right: Online parameter estimation.

by Bose QC 20 headphone hardware (without the Bose ANC
electronics) [14]. Two sets of primary and secondary paths
have been measured with human test persons. We focus on the
cancellation filter adaptation and for an isolated consideration
of the proposed methods assume a perfect secondary path
estimation (Ŝ(z) = S(z)) for the MFX-filter structure.

The quality of the system identification process of P (z)
at time instance n may be measured by the system distance
SD(n) according to

SD(n) = 10 · log10

(
‖p− p̂(n)‖2

‖p‖2

)
, (23)

with p̂(n) = ŵ(n) ∗ s(n). The overall goal of ANC is
minimizing the power of the error signal e(n). The active
component of the attenuation, here named the gain, corresponds
to the linear version of the SD for white Gaussian reference
signals.

If not specified further, the Kalman filter with the MFX-
structure has been used with the following parameters for all
simulations with a sampling rate of fs = 48 kHz: P0 = 1e−4,
Q0 = 1e−8, R0 = 1.0, L = 64, A = I . The parameters have
been empirically chosen for fastest conversion without getting
instabilities in all the experiments. The process noise for the
static parameters is chosen constant for all coefficients, in
contrast to the individual adjustment with the online parameter
estimation.

A. Process and measurement noise estimation
For the parameterization of the Kalman filter in ANC

applications, a suitable modeling of the process noise Q(n) and
the measurement noise R(n) is crucial. As indicated earlier,
they are not directly observable and thus need to be estimated.
In Fig. 3 we compare the convergence for empirically chosen
static parameters on the left and the proposed online estimation
on the right. The reference signal x(n) is a zero-mean white
Gaussian noise signal with different variances. The plot shows
the system distance. We may observe that for static parameters
the convergence speed varies for different reference signal
powers. The online parameter estimation achieves roughly the
same convergence speed for all three cases. For specific cases,
the static parameters might be better tuned than in this example,
however, it lacks the illustrated flexibility. Inappropriately
chosen static parameters may also lead to instabilities in certain
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Fig. 4. Gain for combination of real-world scenarios for different low-pass
parameters α = 1.0 ( ) (Reference system, comparable to [16]), α =
0.99999 ( ), α = 0.9999 ( ). The utilized scenarios from the ETSI
background database [15] are A - Cafeteria, B - Inside Train, C - Outside Traffic
Road, D - Pub, E - Kindergarten, F - Midsize Car1 100kmh. P0 = 1e−5,
Q0 = 1e−4, R0 = 1e−3, fs = 44, 1 kHz. For better visibility, the plot has
been smoothed with a first-order IIR low-pass.

circumstances. However, stability of the algorithm is one of the
most important properties. Thus, the online estimation reduces
the problem of mistuning and the chance for instabilities to
occur.

For realistic evaluation signals, we used the ETSI background
noise database [15]. It includes binaural recordings from
various noise scenarios. We have selected six representative
scenarios and combined 10s of each to one 60s long signal.
The transitions between the six scenarios were realized by
linear fading of 100 ms between adjacent cases. The following
cases were combined: A - Cafeteria, B - Inside Train, C -
Outside Traffic Road, D - Pub, E - Kindergarten, F - Midsize
Car1 100kmh. They were chosen to be varying in noise power
and frequency characteristic from one signal to the other.
Fig. 4 shows the gain, which represents the achieved active
noise attenuation, for three different cases. α = 1.0 ( )
is the performance of the Kalman filter without the proposed
extensions. The other two curves use different low-pass filtering
for the online parameter estimation. The parameter α controls
the speed of adjustment to the current state. The lower it is, the
less smoothing is performed. For α = 0.99999 ( ), we can
see an improved performance from scenario C on. However,
we observe a significant improvement of convergence speed,
tracking and the achieved gain for all scenarios A to F for
α = 0.9999 ( ).

B. Prediction estimation of the transition matrix
Hereafter, we regard the isolated influence of the proposed

prediction estimation (PE) of the transition matrix according
to Eq. 22. Fig. 5 illustrates the convergence speed with and
without the PE-method for a stationary jackhammer noise
signal [15]. For studying the convergence properties, we chose
a realistic stationary signal. We observe improved convergence
speed when using the PE-method. This method can be applied
when a fast convergence for stationary signals is desired. Its
application for rapidly changing noise conditions is limited due
to the inherent low-pass filtering shown in Eq. 16. Therefore, it
may also have a degrading influence on the tracking properties
depending on the noise signal.

4

http://www.eusipco2017.org/
http://www.eusipco2017.org/
http://doi.org/10.23919/EUSIPCO.2017.8081276


c© EURASIP. In 25th European Signal Processing Conference (EUSIPCO), Kos, Au-
gust. 2017, DOI: 10.23919/EUSIPCO.2017.8081276 5 / 5

0 5 10 15 20
−30

−20

−10

0

Time [s]

G
ai

n
[d

B
]

PE = off
PE = on

Fig. 5. Convergence for stationary jackhammer noise with (λ estimated online)
and without (λ = 1) proposed PE method (fs = 44, 1 kHz).

The influence of primary and secondary path changes on
the adaptive algorithm is illustrated in Fig. 6. Two sets of
measured paths of human test persons are continuously faded
as indicated in the lower plot of Fig. 6. This cancellation filter
still constantly needs to adapt, as the ideal filter W 0(z) =
P (z)/S(z) is changing [17]. We compare three different cases:
static parameters ( ), online estimation of Q and R ( ),
and online estimation of Q, R and A ( ) for white Gaussian
noise as reference x(n). The system distance shows a consistent
improvement with all extensions.

IV. CONCLUSION

In this contribution we regarded the extension of a Kalman
filter algorithm for ANC applications. For improving the three
main objective properties convergence, tracking and stability,
with respect to algorithm tuning in view of the great variability
of real applications, we proposed the online estimation of
the process noise Q(n) and the measurement noise R(n).
Usually these parameters are empirically chosen. Our approach
uses the difference of the a-priori and the a-posteriori filter
coefficients ŵ−(n) and ŵ+(n) for estimating the process
noise. The measurement noise is estimated using the variance
of the error signal. Both estimations are smoothed with a
first order recursive low-pass filter. The online parameter
estimation has shown clear improvements in convergence and
tracking. Instabilities have not been observed, however, a
detailed analysis remains for further studies.

Furthermore, we propose a prediction method for the
transition matrix A, rather than designing a random walk
Kalman filter (A = I) or including a forgetting factor (A = γI
with 0� γ ≤ 1). This method is based on observations of the
evolution of the filter coefficients.

The goal of improving convergence speed and maintaining
good tracking properties while simplifying the tuning could be
confirmed within simulations for stationary noise signals.

We focused on the cancellation filter adaptation and assumed
a perfect secondary path estimation (Ŝ(z) = S(z)) to isolate
the improvements of these extensions.
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