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ABSTRACT

In this paper, phase equalizers are investigated which aim
to compensate the non-linear phase response of a frequency
warped filter-bank and a new design is proposed. The fre-
quency resolution of a warped filter-bank based on an allpass
transformation can be adjusted by a single allpass coefficient.
Thus, parametric phase equalizers are of special interest as
their coefficients are given by a closed-form expression in
dependence on this allpass coefficient. The approximation
error for parametric FIR phase equalizers is analyzed. They
can achieve a low phase error but introduce magnitude dis-
tortions. These distortions can be avoided by using allpass
phase equalizers. A new parametric allpass phase equalizer
is proposed. It has a lower complexity than a general allpass
phase equalizer and leads to an equiripple approximation er-
ror for the desired phase response and group-delay.

1. INTRODUCTION

The technique of digital frequency warping by means of all-
pass transformation can be used for the design of filter-banks
with non-uniform frequency resolution [1]. The frequency
resolution of such filter-banks can be adjusted, for exam-
ple, to approximate the critical Bark bands of the human
auditory system [2]. This property is exploited, among oth-
ers, by speech enhancement systems to achieve an improved
(subjective) speech quality [3],[4].

A problem associated with warped filter-banks are phase
distortions since the allpass transformation of a linear phase
filter leads to a non-linear phase response. This effect can
become noticeable for audio processing systems. A possible
countermeasure is to process the output signal of a warped
filter-bank by a phase equalizer to compensate the non-linear
phase response, e.g., [3],[4].

A design procedure for phase equalizers to approximate
an (almost) arbitrary phase response and group-delay has
been proposed, e.g., in [5],[6]. The filter coefficients of these
general phase equalizers are obtained by numerical solution
of an optimization problem.

For allpass transformed filter-banks, parametric phase
equalizers can be applied whose filter coefficients are given by
a closed-form expression, which is dependent on the allpass
coefficient used for the frequency warping, e.g., [3],[7],[8]. In
contrast to general phase equalizers, such parametric phase
equalizers can be directly adjusted if the frequency resolution
(allpass coefficient) of the warped filter-bank is changed.

In this contribution, different parametric phase equaliz-
ers for warped filter-banks are investigated and a new phase
equalizer design is proposed. The use of phase equalizers
to obtain an allpass transformed filter-bank with near linear
phase response is described in Sec. 2. The design and pro-
perties of two different parametric FIR phase equalizers are
discussed in Sec. 3. Allpass phase equalizers are investigated
in Sec. 4. The design of general allpass phase equalizers is
outlined and a new parametric allpass phase equalizer is pro-
posed. A design example for the discussed phase equalizers
is given in Sec. 5. The results are summarized in Sec. 6.

2. ALLPASS TRANSFORMED FILTER-BANKS

Many algorithms for adaptive sub-band filtering are employ-
ing an analysis-synthesis filter-bank (AS FB) as shown in
Fig. 1. The M spectral gains Wi(k

′) are calculated at a re-
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Figure 1: M-channel analysis-synthesis filter-bank (AS FB)
with down-sampling and spectral weighting.

duced sampling rate where k = r k′. For the frequently used
uniform DFT AS FB, the complex modulated analysis and
synthesis FIR filters are given by

hi(n) = h0(n)ej 2 π
M

n i

gi(n) = g0(n)e−j 2 π
M

n i (1)

n = 0, 1, . . . , L ; i = 0, 1, . . . , M − 1 .

These filters allow an efficient polyphase network implemen-
tation of the FB, e.g., [9]. The z-transform of the output
sequence y(k) (for time-invariant gains Wi) can be written
as

Y (z) = X(z)
1

r

M−1X

i=0

Hi(z)Gi(z)Wi + EA(z) . (2)

The term EA(z) represents non-linear aliasing distortions due
to the down-sampling operation. It will be assumed that
they are negligible (EA(z) ≈ 0), which can be achieved by an
appropriate prototype filter design and non-critically down-
sampling. For a paraunitary AS FB (cf. [9]), the frequency
response can be expressed by

FAS FB(ej Ω) =
Y (ejΩ)

X(ej Ω)
= e−j L Ω 1

r

M−1X

i=0

|Hi(e
jΩ)|2 Wi (3)

= e−j L Ω AAS FB(ejΩ) . (4)

For applications such as speech enhancement, only a modi-
fication of the magnitude spectrum is performed, e.g., [10].
In this case, the gains Wi are real and positive such that the
AS FB has a linear phase response ϕAS FB(Ω) = LΩ.

Aliasing distortions are avoided at all (EA(z) = 0), if no
down-sampling is employed (r = 1) for the FB of Fig. 1. In



this case, the output signal y(k) can be obtained by sum-
mation of all weighted sub-band signals, that is, Gi(z) = 1.
In [11],[8], an efficient implementation of this FB structure,
termed as filter-bank equalizer (FBE), has been proposed. If
the prototype lowpass h0(n) of Eq. (1) is of linear phase and
the gains Wi(k

′) constitute a linear phase DFT spectrum,
the frequency response of the FBE is given by [8]

FFBE(ej Ω) = e−j L
2

Ω AFBE(ej Ω) . (5)

The function AFBE(ejΩ) is real such that the frequency re-
sponse has a generalized linear phase1 (cf. [12]). A possible
application of this filter(-bank) structure are speech enhance-
ment systems with low signal delay [11],[13].

A technique to obtain a filter(-bank) with non-uniform
frequency resolution is to employ digital frequency warping
by means of an allpass transformation [1],[14]. Thereby, the
delay elements of the discrete (sub-band) filters are substi-
tuted by allpass filters

z−1 → HA(z) . (6)

For this allpass transformation, a complex causal allpass fil-
ter of first order with

HA(z) =
1 − a∗z

z − a
=

˛̨
˛
z=ej Ω

1 − a∗ej Ω

ej Ω − a
= e−j ϕa(Ω) (7)

|a| < 1 ; a = αej γ ∈ C

will be regarded. (The asterisk ∗ denotes the complex con-
jugate.) The phase response can be expressed by

ϕa(Ω) = 2 arctan

„
sin Ω − α sin γ

cos Ω − α cos γ

«
− Ω . (8)

For the uniform FB with frequency response of Eq. (4), the
allpass transformation according to Eq. (6) leads to

eFAS FB(ejΩ) = e−j L ϕa(Ω) AAS FB(ej ϕa(Ω)) (9)

and correspondingly for the FBE of Eq. (5). Thus, the all-
pass transformation of a FB causes a frequency warping,
which is solely determined by the phase response according
to Eq. (8). The uniform FB is included as special case for an
allpass coefficient a=0 since then HA(z)=z−1.

The frequency warping produces two undesirable side-
effects. The first one is that (noticeable) aliasing distortions
might occur (EA 6= 0). This effect can be reduced by a lower
down-sampling factor r than for the uniform FB, e.g, [3],[4].

A second effect is that the overall phase response of the
FB becomes non-linear. This can become perceivable for
audio processing. For a long prototype filter degree L, the
filtered audio signal might sound ’reverberant’. An approach
to reduce this effect is to filter the FB output sequence y(k)
by means of a phase equalizer as sketched in Fig. 2. The
task of the phase equalizer with frequency response P (ejΩ)
is to compensate the non-linear phase response of the warped
FB. The actual transfer function2 T (ejΩ) should be equal to
a desired transfer function Td(e

j Ω) with linear phase and
constant magnitude response

T (ejΩ) = e−j Lcϕa(Ω) · P (ejΩ) (10)

!
= CT · e−j τd Ω = Td(e

jΩ) . (11)

1The AS FB has a generalized phase as well for real gains Wi,
or if Hi = H∗

M−i and Wi = W ∗

M−i for Eq. (4).
2This term is also used with different meaning in literature.
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Figure 2: Phase equalization of a warped filter-bank.

The value for Lc depends on the underlying FB. For the two
examples discussed before, the value is given by Lc = L for
the warped AS FB of Eq. (9), and Lc = L/2 for the warped
FBE. The nominal group-delay τd (signal delay) depends on
the used phase equalizer and its filter degree Np, as well as
the value for Lc. A positive value for τd is needed to ensure
a causal phase equalizer. Magnitude and phase response of
the transfer function are denoted by

T (ejΩ) = |T (ejΩ)|e−j ϕT (Ω) . (12)

The group-delay is calculated by τT (Ω) = ∂ ϕT (Ω)
∂ Ω

. The
’ideal’ phase equalizer is obviously obtained for

Pideal(e
jΩ) = ej Lc ϕa(Ω) (13)

such that T (ejΩ) = 1. The impulse response of this
phase equalizer is infinite and anti-causal (for a 6= 0), i.e.,
pideal(n) = 0 for n > 0. Thus, Eq. (11) can only be approx-
imately fulfilled in practice. In [15], a segment-wise pro-
cessing scheme for the approximate realization of anti-causal
filters is proposed. Here, phase equalizers for sample-wise
processing will be regarded. Different phase equalizer de-
signs and the resulting approximation errors are discussed
in the following.

3. FIR PHASE EQUALIZERS

Two parametric phase equalizers with finite impulse response
(FIR) will be investigated whose coefficients are given by a
closed-form expression in dependence on the allpass pole a.

3.1 Equiripple FIR Phase Equalizer

The expression exp{−j Lc ϕa(Ω)} in Eq. (10) represents an
allpass chain, i.e., a cascade of Lc allpass filters given by
Eq. (7). Therefore, the phase equalizer can be realized by
a cascade of single phase equalizers P0(e

j Ω) designed for a
single allpass filter HA(ejΩ). This approach can be written
as

T (ejΩ) = e−j Lcϕa(Ω) · P (ejΩ)

=
“
HA(ejΩ) · P0(e

jΩ)
”Lc

=
“
T0(e

jΩ)
”Lc

. (14)

The filter degree of the single phase equalizer will be marked
by N0 to differentiate it from the degree Np = Lc N0 of the
overall phase equalizer. An FIR phase equalizer for an all-
pass filter of first order and real pole a = α has been proposed
in [7]. The phase equalization of a complex allpass filter is
achieved accordingly by

1 − a∗ z

z − a
| {z }

HA(z)

· (z − a)

N0−1X

i=0

zi−N0 (a∗)i

| {z }
P0FIR(z)

= z−N0 − (a∗)N0

| {z }
T0FIR(z)

. (15)



Such a phase equalizer can also be used for phase equaliza-
tion of a general allpass filter of degree Na

H
[Na]
A (z) =

NaY

i=1

1 − a∗

i z

z − ai

= e−j ϕ
[Na]
a (Ω) (16)

|ai| < |z| ; |ai| < 1 ; ai = αi ej γi ∈ C

by means of a cascade of Na different single phase equalizers.
The phase equalizer of Eq. (15) leads to the system re-

sponse

TFIR(z) = (T0FIR(z))Lc =
“
z−N0 − (a∗)N0

”Lc

. (17)

The ’error term’ (a∗)N0 can be made arbitrarily small by
increasing the filter degree N0 since |a| < 1 according to
Eq. (7). The magnitude response for the transfer function
according to Eq. (12) can be calculated as3

|T (ejΩ)| =
“
1 − 2αN0 cos(N0 (Ω − γ)) + α2 N0

” Lc
2

. (18)

It can be shown that the approximation error for Eq. (11)

∆|T (ejΩ)| = |T (ej Ω)| − CT (19)

with CT =
1

2

“
(1 − αN0)Lc + (1 + αN0)Lc

”
(20)

possesses alternating extrema of equal magnitude

∆|T (ejΩi)| = −∆|T (ejΩi+1)| ; i = 0, 1, . . . , 2N0 − 1 (21)

Ωi =
iπ

N0
+ γ ; i = 0, 1, . . . , 2N0 (22)

within the frequency interval Ω ∈ [γ, 2π + γ]. The 2N0 + 1
extrema at Ωi constitute an alternate where

max
Ω

{|∆|T (Ω)| |} = || |T (Ω)| ||∞ = |∆|T (Ωi)| | . (23)

Thus, the regarded FIR phase equalizer yields an equiripple
error for the magnitude response of the transfer function
T (ejΩ). The phase response of the transfer function

ϕT (Ω) = Lc arctan

„
sin(N0 Ω) − αN0 sin(N0 γ)

cos(N0 Ω) − αN0 cos(N0 γ)

«
(24)

yields the approximation error function

∆ϕT (Ω) = ϕT (Ω) − Lc N0 Ω (25)

which possesses an alternate as well with the extrema

∆ϕT (Ωi) = −∆ϕT (Ωi+1) ; i = 0, 1. . . . , 2N0 − 1 (26)

Ωi =
1

N0

“
2π ⌊i/2⌋ − (−1)i arccos

“
αN0

””
+ γ (27)

i = 0, 1. . . . , 2N0

for Ω ∈ [Ω0, Ω2N0 ]. (The operation ⌊x⌋ provides the great-
est integer which is equal or smaller than x.) The nominal
group-delay for Eq. (11) amounts to τd = Np = Lc N0. It
can be shown that the group-delay of the transfer function

τT (Ω) = Lc N0
1 − αN0 cos(N0 (Ω − γ))

1 − 2αN0 cos(N0 (Ω − γ)) + α2 N0
(28)

3The indication of the used phase equalizer by a suffix will be
omitted if obvious from the context.

also exhibits an equiripple approximation error

∆τT (Ω) = τT (Ω) −
Lc N0

1 − α2 N0
(29)

with extrema at

Ωi =
π i

N0
+ γ ; i = 0, 1, . . . , 2N0 . (30)

Thus, the approximation error functions for the magni-
tude response, phase response and group-delay between the
desired and obtained transfer function show an equiripple
behavior4, which was not shown in [7]. Hence, this filter will
be termed as equiripple FIR phase equalizer.

3.2 Least-Squares FIR Phase Equalizer

The ’ideal’ phase equalizer of Eq. (13) can be approximated
by truncating and shifting of its impulse response pideal(n).
This filter design by windowing (cf. [12]) results in a causal
FIR phase equalizer of degree Np with impulse response

pFIR(n) =


pideal(n − Np) ; n = 0, 1, . . . , Np

0 ; else .
(31)

The least-squares norm (2-norm) of the approximation error
between the frequency response of the ideal phase equalizer
and its approximation

||∆PFIR(ej Ω)||2 = ||PFIR(ejΩ) − Pideal(e
jΩ)e−jΩ Np ||2

(32)

becomes minimal in this case, cf. [16]. The nominal group-
delay amounts to τd = Np. The use of this least-squares
(LS) FIR phase equalizer for an allpass transformed DFT
AS FB can be found in [3],[4]. The application for the all-
pass transformed filter-bank equalizer is proposed in [8].

4. ALLPASS PHASE EQUALIZERS

FIR phase equalizers always introduce amplitude distortions.
This can be avoided by the use of allpass phase equalizers.

4.1 General Allpass Phase Equalizers

The design of allpass phase equalizers to approximate a pre-
scribed phase response (and group-delay) has been proposed,
e.g., in [5],[6]. One application of such phase equalizers is the
construction of recursive filters with linear phase response.

The regarded phase equalizer is given by a real allpass
filter of degree Na = Np according to Eq. (16). The Np real
allpass coefficients αi can be determined by the requirement

ϕd(Ωi)
!
= ϕ

[Np]
α (Ωi) ; i = 1, 2, . . . , Kf ; Kf ≥ Na . (33)

The desired phase response is given here by ϕd(Ωi) =
τd Ωi − Lc ϕa(Ωi) with τd to be chosen appropriately. The
solution of Eq. (33) yields a set of Kf linear equations, which
is overdetermined for Kf > Np. In [5], an iterative algorithm
is proposed to obtain an unbiased least-squares error solu-
tion. This design will be referred to as general LS allpass
phase equalizer.

An equiripple design has been published in [6]. The coef-
ficients of the allpass filter are obtained by a modified Remez
iteration. The extrema of the phase error function are equal
to the Chebyshev norm (∞−norm) of the phase error within
a given range of frequencies. A stable allpass filter cannot

4This property has been found here by analysis of a given filter
but not by solving a Chebyshev approximation for a set of filters
based on the alternate theorem, cf. [16].



be guaranteed in general for these two design methods, but
has been obtained for many design examples [5],[6].

For the phase equalization of an allpass chain, the de-
sign of a single allpass phase equalizer can lead to numerical
problems due to the large number of coefficients. To avoid
this, the phase equalization of an allpass chain can be done
by a cascade of single phase equalizers according to Eq. (14).

It should be noted that the design of an optimal phase
equalizer for a given approximation criterion does not imply
that this also provides an optimal group-delay equalizer for
the same criterion, cf. [5],[6].

4.2 New Equiripple Allpass Phase Equalizer

A closed-form solution for a stable allpass phase equalizer
should be developed. The phase response of the allpass filter
of Eq. (7) can be ’linearized’ by a second allpass filter with
the same pole but of opposite sign according to

1 − a∗z

z − a

1 + a∗z

z + a
=

1 − (a∗z)2

z2 − a2
. (34)

This principle can be applied to the obtained allpass of sec-
ond order once again by multiplication with an allpass fil-
ter given by (1 + (a∗z)2)/(z2 + a2). Employing this kind of
phase equalization d times yields

P0AP(z) =

d−1Y

i=0

1 + (a∗z)2
i

z2i + a2i
; d ∈ {1, 2, 3, . . .} (35)

which is an allpass phase equalizer of degree N0 = 2d − 1. A
general allpass phase equalizer of degree N0 = 2d −1 accord-
ing to Eq. (16) needs 2N0 multipliers, 2N0 adders and N0

delay elements. The new parametric allpass phase equalizer
only needs 2d adders, 2d multipliers and 2d − 1 delay ele-
ments. Moreover, no complex numerical computation of its
coefficients is required.

With Eq. (35), the single system response for Eq. (14)
can be written as

T0AP(z) = HA(z) · P0AP(z) =
1 − (a∗ z)D

zD − aD
; D = 2d (36)

which is an allpass filter of degree D = 2d. Since |a| < 1,
this filter is always stable and tends to a pure delay z−D for
an increasing filter degree D.

An interesting link between the transfer functions ob-
tained by the equiripple FIR phase equalizer of Sec. 3.1
and those obtained by the new allpass phase equalizer can
be observed. The system response TFIR(z) of Eq. (17) for
N0 = D can be decomposed into the allpass system response
TAP(z) = (T0AP(z))Lc derived from Eq. (36) and a minimum
phase filter Hmin(z) according to

(z−D − (a∗)D)Lc

| {z }
TFIR(z)

=

„
z−D − (a∗)D

1 − aD z−D

«Lc

| {z }
TAP(z)

· (1 − aD z−D)Lc

| {z }
Hmin(z)

.

(37)

The phase response and group-delay of the transfer func-
tion TAP(ejΩ) can be expressed by

ϕT (Ω) = 2Lc arctan

„
sin(DΩ) − αD sin(Dγ)

cos(DΩ) − αD cos(Dγ)

«
− Lc DΩ

(38)

τT (Ω) = Lc D
1 − αD

1 − 2αD cos(D (Ω − γ)) + α2 D
. (39)

The nominal group-delay is given by τd = Lc D. It can be
shown that the approximation error between the achieved
phase and the desired phase

∆ϕT (Ω) = ϕT (Ω) − Lc DΩ (40)

possesses an alternate with extrema

∆ϕT (Ωi) = −∆ϕT (Ωi+1) ; i = 0, 1, . . . , 2D − 1 (41)

Ωi =
1

D

“
2π ⌊i/2⌋ − (−1)iarccos

“
αD

””
+ γ (42)

i = 0, 1, . . . , 2D

for Ω ∈ [Ω0, Ω2D]. Accordingly, the group-delay error

∆τT (Ω) = τT (Ω) − Lc D
1 + α2 D

1 − α2 D
(43)

possesses an alternate at the extremal points

Ωi =
π i

D
+ γ ; i = 0, 1, . . . , 2D (44)

for Ω ∈ [γ, 2π + γ]. Therefore, the approximation errors of
the phase response ∆ϕT (Ω) and the group-delay ∆τT (Ω) for
the desired transfer function Td(e

jΩ) = exp{−j Lc DΩ} ex-
hibit an equiripple behavior. The extremal frequencies Ωi are
the same as for the equiripple FIR phase equalizer. Compar-
ison of the calculated error functions ∆ϕT (Ω) and ∆τT (Ω)
also reveals that the allpass phase equalizer has a higher
phase and group-delay error than the equiripple FIR phase
equalizer, but avoids magnitude distortions.

The proposed phase equalizer can also be used in cascade
for the phase equalization of a general allpass filter according
to Eq. (16).

5. DESIGN EXAMPLE

The phase equalization of an allpass transformed DFT AS
FB with L = M = 64 for Eq. (1) and allpass coefficient
a = 0.5 is regarded (cf. Fig. 2). This FB configuration
requires the phase equalization of an allpass chain with
Lc = L = 64 according to Eq. (9) and Eq. (10). This warped
AS FB has a higher frequency resolution for low frequencies
and vice versa, and approximates the Bark scale for a sam-
pling frequency of 11.8 kHz, cf. [1],[2]. A typical use for such
a FB are noise reduction systems, which are employed, e.g.,
in mobile phones or hearing aids. For such applications, a low
computational complexity and low signal delay is required.
An almost linear phase response is not mandatory since the
human ear is relatively insensitive towards phase distortions
[10]. Therefore, a comparatively low degree Np has been
chosen for the phase equalizers such that all systems achieve
a nominal group-delay (signal delay) of τd = 128. (The un-
derlying uniform AS FB has a signal delay of τd = L = 64.)
Apart from the LS FIR phase equalizer, all phase equalizers
are realized by a cascade of Lc = 64 single phase equaliz-
ers according to Eq. (14). The coefficients of the LS allpass
phase equalizer [5] have been calculated by 4 iterations for
Kf = 50 frequency points. The general equiripple (or Cheby-
shev) allpass phase equalizer [6] provides no full-band design
and, hence, has not been considered here. The results of the
phase equalization are shown in Fig. 3.

The plots show the differences between the approxima-
tion errors for the equiripple phase equalizers and the LS
phase equalizers. The FIR phase equalizers yield a lower
phase error than the allpass phase equalizers. The LS FIR
phase equalizer causes significantly lower magnitude distor-
tions than the equiripple FIR phase equalizer. Magnitude
distortions are avoided at all, if an allpass phase equalizer is
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Figure 3: Approximation errors of the phase and magnitude
response of T (ejΩ) obtained for phase equalization of an all-
pass chain of length Lc = 64 and a = 0.5. The equiripple
FIR phase equalizer (Sec. 3.1), the LS FIR phase equalizer
(Sec. 3.2), the (general) LS allpass phase equalizer (Sec. 4.1),
and the new equiripple allpass phase equalizer (Sec. 4.2) are
used with τd = 128.

used. Thereby, it should be noted that the proposed allpass
phase equalizer provides a closed-form solution in contrast to
the design procedure for the general allpass phase equalizer.

Clearly, if a higher signal delay and computational com-
plexity can be allowed, the approximation error for the phase
equalization can be decreased by increasing the degree of the
phase equalizer Np. In this case, the new allpass phase equal-
izer has a significantly lower computational complexity than
a general allpass phase equalizer (cf. Sec. 4.2).

6. CONCLUSIONS

Parametric phase equalizers have been investigated, which
can be used to obtain a warped FB with linear phase trans-
fer function. The analysis of the FIR phase equalizer of [7]
has shown that the approximation error for the magnitude
response, phase response and group-delay between the de-
sired and the obtained transfer function show an equiripple
behavior. For phase equalization of an allpass chain (warped
FB), the approximation error obtained by this equiripple
FIR phase equalizer is higher compared to the discussed LS
FIR phase equalizer for the same filter degree.

An FIR phase equalizer can achieve a low phase and

group-delay error, but introduces magnitude distortions.
These distortions can be avoided by using an allpass phase
equalizer. A new closed-form solution for a stable allpass
phase equalizer has been proposed. The approximation er-
ror of the phase response and group-delay for the desired
transfer function show an equiripple behavior. The new all-
pass phase equalizer has a lower computational complexity
than a general allpass phase equalizer.

An application of the discussed parametric phase equaliz-
ers are warped FBs used for adaptive filtering. Allpass phase
equalizers are an interesting choice for speech enhancement
systems where phase distortions are often less problematic
than magnitude distortions.
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