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ABSTRACT

In this paper, the design of oversampled allpass transformed
analysis-synthesis filter-banks is treated, which can be em-
ployed for non-uniform subband processing. Near-perfect
reconstruction can be achieved by a synthesis filter-bank de-
sign which uses phase equalizers to compensate the phase
modifications due to the allpass transformation of the ana-
lysis filter-bank. It is shown that an FIR phase equalizer,
which is obtained by a least-squares approximation of the
desired non-causal IIR phase equalizer, leads to almost per-
fect signal reconstruction and causes only a comparatively
low signal delay. The devised synthesis filter-bank design
can be described by a closed-form expression and allows to
control the trade-off between reconstruction errors on the
one hand and signal delay and computational complexity on
the other hand.

1. INTRODUCTION

An approach to obtain an analysis-synthesis filter-bank (AS
FB) with non-uniform frequency resolution is to employ digi-
tal frequency warping by means of an allpass transformation
[1–4]. Such a frequency warped filter-bank can model the
Bark frequency scale with great accuracy [5], which is bene-
ficial for audio and speech processing applications, e.g., [6,7].

The straightforward synthesis filter-bank design for an
allpass transformed filter-bank with perfect reconstruction
(PR) leads to either unstable or anti-causal synthesis filters.
For the allpass transformation of first order, a closed-form
solution for an FIR synthesis filter-bank to achieve PR can
be derived. This is shown in [8] for the critically subsam-
pled warped DFT filter-bank and in [9,10] for arbitrary sub-
sampling rates. However, the obtained synthesis subband
filters exhibit an insufficient bandpass characteristic, which
becomes problematic if subband processing takes place [10].

An FIR synthesis filter-bank design to obtain an over-
sampled allpass transformed DFT AS FB with near-perfect
reconstruction has been proposed by Galijašević and Kliewer
[11]. This approach has the advantage that the trade-off be-
tween tolerable reconstruction errors on the one hand and al-
gorithmic complexity and signal delay on the other hand, can
be controlled by the synthesis filter-bank design. Moreover,
the synthesis subband filters possess a distinctive bandpass
characteristic.

In this contribution, it is shown that this concept can
be significantly improved by using a different phase equa-
lizer design for the synthesis filter-bank without loosing the
benefits of the original approach.

The paper is organized as follows: In Section 2, the con-
struction of filter-banks with non-uniform frequency resolu-
tion by using an allpass transformation is treated. The syn-
thesis filter-bank design is presented in Section 3 and suitable
phase equalizers are investigated. Section 4 provides a design
example and the paper concludes with Section 5.

2. ALLPASS TRANSFORMED DFT ANALYSIS
FILTER-BANK

Digital frequency warping by means of allpass transforma-
tion is a well known technique to obtain a filter-bank with
non-uniform frequency-bands [1–4]. The frequency transfor-
mation is achieved by replacing the delay elements of the
subband filters with allpass filters

z−1 → HA(z) . (1)

For this allpass transformation, a complex allpass filter of
first order is commonly used. This filter has the z-transform

HA(z) =
1 − a∗z

z − a
(2)

|z| > |a|; |a| < 1 ; a = αej γ ∈ C

and frequency response

HA(ej Ω) =
1 − a∗ej Ω

ejΩ − a
= e−j ϕa(Ω) . (3)

(The asterisk ∗ denotes the complex conjugate.) The phase
response can be expressed by

ϕa(Ω) = 2 arctan

„
sin Ω − α sin γ

cos Ω − α cos γ

«
− Ω . (4)

The allpass transformation of the subband filters of a uni-
form DFT analysis filter-bank leads to the transfer functions

eHi(z) =
LX

n=0

h(n)W n i
M HA(z)n; i = 0, 1, . . . , M − 1 (5)

with WM = exp


−j

2π

M

ff
. (6)

Without loss of generality, the length of the finite impulse
response (FIR) of the analysis prototype filter h(n) and syn-
thesis prototype filter g(n) is assumed to be an integer multi-
ple of M , that is, L+1 = lM M . The analysis filter-bank can
be implemented efficiently by a (type 1) polyphase network
(PPN) according to

eHi(z) =

M−1X

λ=0

H
(M)
λ

“
HA(z)M

”
W λ i

M HA(z)λ (7)

H
(M)
λ

“
HA(z)M

”
=

lM−1X

m=0

h(mM + λ)HA(z)m M . (8)

A diagram of the described analysis filter-bank is provided
by Fig. 1. The discrete Fourier transform (DFT) can be cal-
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Figure 1: Polyphase network implementation of the allpass
transformed DFT analysis filter-bank with downsampling and
L = 2M − 1.

culated efficiently by the fast Fourier transform (FFT), e.g.,
[12]. The downsampling by R can be performed directly after
the allpass chain, which is not possible if individual down-
sampling rates Ri are considered for each subband signal
xi(k

′). The uniform PPN DFT analysis filter-bank (cf. [13])
is included as special case for a = 0 where HA(z) = z−1

according to Eq. (2). Due to the allpass transformation, the
frequency responses for the uniform subband filters Hi(e

jΩ)
are now frequency warped with

eHi(e
jΩ) = Hi(e

j ϕa(Ω)) . (9)

This leads to non-uniform frequency bands without requiring
a renewed prototype filter design.

3. SYNTHESIS FILTER-BANK DESIGN

3.1 General Structure

The synthesis filter-bank design of [11] is shown in Fig. 2.
The M subband filters of the synthesis filter-bank are given
by

Ḡi(z) =
M−1X

λ=0

Q
(M)
M−1−λ(z)z−(M−1−λ)N0 W−λ i

M (10)

i = 0, 1, . . . , M − 1

with the ’modified’ (type 1) polyphase components1

Q
(M)
λ (z) =

lM−1X

m=0

g(mM + λ)P
`
z, M (lM − m) − 1 − λ

´

× z−M N0 m; λ = 0, 1, . . . , M − 1 . (11)

(This modification of the synthesis filters in Eq. (10) is indi-
cated by a bar.) The phase equalizers with transfer functions

1The original warped AS FB, cf. [4, 6], uses an allpass trans-
formed synthesis filter-bank which is obtained by the substitutions
z−N0 → HA(z) and P (z, n)→ 1 for Eq. (10) and Eq. (11).
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Figure 2: Polyphase network implementation of the DFT
synthesis filter-bank with upsampling and L = 2M − 1.

P (z, n) for n = 0, 1, . . . , L aim to compensate the phase mod-
ifications caused by the allpass transformation of the analysis
filter-bank in order to achieve near-perfect signal reconstruc-
tion. The underlying principle can be demonstrated by look-
ing at the non-subsampled AS FB (R = 1) whose prototype
filters fulfill the requirement

M−1X

λ=0

lM−1X

m=0

lM−1X

k=0

h(mM + λ)g ((k + 1)M − 1 − λ)

=


1

M
; m + k + 1 = lM ∈ Z

0 ; m + k + 1 ∈ Z\{lM}. (12)

The transfer function of the filter-bank can now be written

Y (z)

X(z)
=

LX

n=0

h(n)g(L − n)HA(z)n P (z, n)z−(L−n) N0 (13)

if no modifications of the subband signals xi(k
′) are per-

formed. The transfer function of allpass (filter) chain and
phase equalizer

TAP (z, n) = HA(z)n · P (z, n); n = 0, 1, . . . , L (14)

should have a unit magnitude and linear phase response

TAP (ej Ω, n) = |TAP (ej Ω, n)|e−j ϕAP (Ω,n)

!
= Tdes(e

j Ω, n) = e−j n N0 Ω . (15)

The considered L+1 transfer functions TAP (z, n) cause dif-
ferent signal delays of nN0 samples which is compensated
by corresponding delays according to Eq. (13). These delay
elements ceases to apply (z−N0 = 1), if each transfer func-
tion TAP (z, n) has (approximately) the same linear phase
response of ϕAP (Ω, n) = Np Ω for n = 0, 1, . . . , L.

If Eq. (15) can be fulfilled exactly, Eq. (13) simplifies to

Y (z)/X(z) = c · z−d0 . Thereby, the overall signal delay of
the filter-bank is given by d0 = LN0 or d0 = Np, respectively.

In general, the (finite energy) output signal y(k) can be
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expressed in the z-domain according to (cf. [13])

Y (z) = X(z)
1

R

M−1X

i=0

eHi(z) Ḡi(z)

| {z }
Tlin(z)

+

R−1X

ρ=1

X(z W ρ
R)

1

R

M−1X

i=0

eHi(zW ρ
R) Ḡi(z)

| {z }
Uρ(z)

(16)

if no spectral modifications are performed. Here, Tlin(z)
marks the linear transfer function of the AS FB. The amount
of aliasing distortions due to the subsampling can be ex-
pressed by the peak aliasing distortions [13]

EApeak
(Ω) =

vuut
R−1X

ρ=1

|Uρ(ejΩ)|2 . (17)

The aliasing distortions are limited by a sufficient stopband
attenuation of the prototype filters, which becomes especially
important if spectral modifications of the subband signals are
performed.

For the treated warped AS FB, a suitable pair of pro-
totype lowpass filters (with linear phase responses) is given
by

h(n) = g(n) =

√
R

2M

“
1 −

√
2 cos

“ π

M
(n + 0.5)

””
(18)

n = 0, 1, . . . , L; L = 2M − 1

which yields perfect signal reconstruction, if no subsampling
is performed (R=1) and if Eq. (15) is fulfilled, cf. [11].

3.2 Phase Equalizer Designs

The phase equalizer design is crucial for the above synthesis
filter-bank concept. The ’ideal’ phase equalizer to fulfill
Eq. (15) is obviously given by the inverse transfer function
of the allpass chain

Pideal(z, n) = HA(z)−n (19)

|z| <
1

|a| ; n = 0, 1, . . . , L .

The impulse response of this phase equalizer is infinite and
anti-causal (for a 6= 0), that is, pideal(k, n) = 0 for k > 0. An
approach to implement anti-causal filters is to buffer the in-
put samples in order to process them in time-reversed order
[14, 15]. This buffering technique, however, leads to a very
high signal delay and internal filter states must be transmit-
ted to the synthesis filter-bank.

Design I

A buffering scheme is avoided by the FIR phase equalizer
presented in [11], which considers the phase equalization of
a single real allpass filter. The extension to a complex allpass
filter is straightforward and can be expressed by

1 − a∗ z

z − a
| {z }

HA(z)

· (z − a)

N0−1X

l=0

zl−N0(a∗)l

| {z }
Pequi(z,1)

= z−N0 − (a∗)N0

| {z }
TAP(z,1)

. (20)

The phase equalizer for an allpass chain of length n is ob-
tained by the cascade

Pequi(z, n) = Pequi(z, 1)n . (21)

The maximal filter degree for this FIR phase equalizer is
given here by Np = LN0 according to Eq. (14). The approx-
imation error for the desired transfer function Tdes(e

jΩ, n)
of Eq. (15) can be made arbitrarily small by increasing the
filter degree N0, since |a| < 1. In [16] it is shown that this
phase equalizer achieves an equiripple approximation error
for the desired transfer function of Eq. (15), thus termed as
equiripple FIR phase equalizer.

Design II

We propose an alternative approach which approximates the
desired anti-causal phase equalizer of Eq. (19) by means of
a causal FIR filter. Its coefficients can be obtained by a
time-shift and truncation of the impulse response pideal(k, n)
according to

pLS(k, n) =


pideal(k − Np, n) ; k = 0, 1, . . . , Np

0 ; else .
(22)

The transfer function of an inverse allpass filter chain
HA(z)−n is identical to the para-conjugate transfer function,
i.e., the z-variable is replaced by z−1 and the complex conju-
gate filter coefficients are taken. Thus, the impulse response
of the ideal phase equalizer pideal(k, n) can be obtained by the
time-reversed impulse response of an allpass chain of length
n with complex conjugate allpass coefficient a∗.

The L2-norm of the error function between the frequency

response P̂ (ej Ω) of an arbitrary causal FIR filter of degree
Np and the frequency response of the desired non-causal IIR
phase equalizer with impulse response pideal(k−Np) is given
by

˛̨˛̨
∆P̂ (ejΩ)

˛̨˛̨
2

=
˛̨˛̨

P̂ (ej Ω) − Pideal(e
jΩ)e−jΩ Np

˛̨˛̨
2

. (23)

This error becomes minimal for the approximation accord-
ing Eq. (22), cf. [17]. Therefore, this filter provides a least-
squares (LS) error approximation and is hence termed as LS
FIR phase equalizer.

The use of the LS phase equalizer of Eq. (22) causes a
signal delay of Np samples independent of n. Thus, Eq. (15)
applies with the substitution nN0 → Np, and z−N0 → 1 for
Eq. (10) and Eq. (11) since no different delays occur now for
each branch.

The impulse response of a short allpass chain decreases
more rapidly towards zero than those for a long allpass chain.
Hence, the LS phase equalizers for these shorter allpass
chains (n = 0, 1, 2, . . .) contain many coefficients which are
(almost) equal to zero such that their effective filter degree
is lower than Np. The incorporation of LS phase equalizers
with different degrees to reduce the computational complex-
ity is straightforward and has been omitted to ease the treat-
ment.

If a complex allpass filter is used for the allpass trans-
formation2, the output signal y(k) of the filter-bank be-
comes complex in the case of an imperfect phase equal-
ization. Thereby, the imaginary part of the output signal
(which is usually discarded) becomes negligible, if the the
desired transfer function of Eq. (15) is approximated with a
low error.

The discussed phase equalizers are applied to the phase
equalization of an allpass chain of length L = 63 with allpass
coefficient a = 0.4. The approximation error between the
desired transfer function Tdes(e

j Ω, L) and the actual transfer
function TAP (ejΩ, L) is plotted in Fig. 3 for different phase
equalizers. The LS phase equalizer achieves a significantly

2The complex allpass transformation provides an enhanced
flexibility for the adjustment of the frequency resolution, e.g., [9].
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Figure 3: Approximation error for the desired transfer func-
tion of Eq. (15) obtained by phase equalization of an allpass
chain of length L = 63 (a = 0.4) with phase equalizers of
filter degree Np.

lower approximation error than the equiripple phase equa-
lizer for the same filter degree and signal delay, respectively.
Alternatively, the LS phase equalizer can obtain a similar
approximation error than the equiripple phase equalizer with
a considerably lower filter degree.

It is not contradictory that the LS FIR phase equalizer
achieves a lower approximation error than the equiripple
FIR phase equalizer. The equiripple phase equalizer leads
to an overall transfer function TAP(z, Np) which shows an
equiripple approximation error for the desired transfer func-
tion Tdes(z, Np) [16]. In contrast, the LS FIR phase equalizer
achieves a least-squares approximation error for the desired
phase equalizer according to Eq. (23). Thus, different ap-
proximation errors are considered for these phase equalizers.

4. DESIGN EXAMPLE

The design of a warped DFT analysis-synthesis filter-bank
with M = 32 frequency bands is investigated. An allpass
coefficient of a = 0.4 is taken for the allpass transformation of
the analysis filter-bank, which yields a good approximation
of the Bark frequency bands for 8 kHz sampling frequency
[5]. The synthesis filter-bank is constructed by means of the
phase equalizers of Section 3.2 as exemplified in Fig. 3. The
prototype filters of Eq. (18) are used and a downsampling
rate of R = 4 is chosen.3

3In [11], the lifting scheme is applied to use longer prototype
filters while constraining the overall signal delay. This causes a
high algorithmic complexity as the filter-bank is operated at the
non-decimated sampling rate in contrast to the considered filter-
bank according to Fig. 1 and Fig. 2. Besides, the lifting scheme
can also be applied to the proposed filter-bank design.

 

 

equiripple FIR phase equalizer (Np = 504)

LS FIR phase equalizer (Np = 504)

LS FIR phase equalizer (Np = 154)

Ω/π
0 0.2 0.4 0.6 0.8 1

0

linear magnitude distortions: |Tlin(e
jΩ)| − 1

−0.02

0.02

0.04

0.06

Ω/π
0 0.2 0.4 0.6 0.8 1

0

linear phase distortions: 1
π
(ϕlin(Ω) − Np Ω)

−0.01

−0.005

0.005

0.01

Ω/π
0 0.2 0.4 0.6 0.8 1

−140

−120

−100

−80

−60

−40

d
B

peak aliasing distortions EApeak
(Ω)

Figure 4: Reconstruction errors for a 32-channel allpass
transformed AS FB (a = 0.4, R = 4) with synthesis filter-
banks based on different FIR phase equalizers having a max-
imal filter degree of Np.

The error between the frequency response of the linear
transfer function of the filter-bank

Tlin(e
jΩ) = |Tlin(e

jΩ)| exp{−j ϕlin(Ω)} (24)

according to Eq. (16), and the desired transfer function is
displayed in Fig. 4 for different designs. In addition, the
peak aliasing distortions according to Eq. (17) are plotted
for these filter-bank designs.

The new synthesis filter-bank based on the LS phase
equalizer achieves a significantly lower reconstruction error
than by means of the equiripple phase equalizer for the same
overall signal delay d0 = Np = 504. For a maximal filter
degree of Np = 154, the LS phase equalizer achieves similar
peak aliasing distortions than the original filter-bank design
using the equiripple phase equalizer with Np = 504, but the
proposed design still causes almost no linear distortions.
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Figure 5: Magnitude of the bifrequency system function for
the original equiripple filter-bank design and the new least-
squares design (M = 32, R = 4, a = 0.4, d0 = Np = 189).

Another form to visualize the linear distortions and the
aliasing distortions of an AS FB is to calculate its bifrequency
system function [18]. The magnitude of the bifrequency sys-
tem function of the two considered filter-bank designs for the
same overall system delay of d0 = 189 samples are plotted in
Fig. 5. Again, the new LS filter-bank design achieves signi-
ficantly lower reconstruction errors especially for the linear
distortions.

5. CONCLUSIONS

An improved FIR synthesis filter-bank design for an over-
sampled allpass transformed DFT analysis filter-bank has
been presented. The synthesis filter-bank employs phase
equalizers which are an optimal least-squares FIR filter ap-
proximation of the desired non-causal IIR phase equalizers.
This approach achieves a significantly lower signal recon-
struction error with a lower overall signal delay and lower al-
gorithmic complexity than the original design of Galijašević
and Kliewer [11]. The coefficients for the proposed synthesis
filter-bank are given by analytical closed-form expressions
such that no complex numerical optimization is required.
This allows to control efficiently the trade-off between re-
construction errors on the one hand and signal delay and
algorithmic complexity on the other hand. The linear distor-
tions of the filter-bank can be made arbitrarily small. These
properties are of interest for algorithms using non-uniform
subband processing such as (perceptual based) speech en-
hancement algorithms or subband coding systems.
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