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ABSTRACT

A new design approach for an allpass transformed analysis-synthesis
filter-bank (AS FB) with subsampling is proposed, which can be
used for adaptive subband processing with non-uniform time-
frequency resolution. Signal reconstruction is performed by an
FIR synthesis filter-bank whose coefficients are determined by two
different linear least-squares (LS) error designs. The presented
unconstrained LS optimization leads to perfect reconstruction (PR),
but an insufficient bandpass characteristic for the synthesis subband
filters. This problem is solved by a second, equality constrained
least-squares (CLS) error design, which achieves near-perfect recon-
struction (NPR). In the process, the linear distortions are minimized
with the constraint for a linear, time-invariant (LTI) overall transfer
function. The aliasing-free reconstruction error is significantly lower
than for known designs of allpass transformed DFT filter-banks with
NPR. Moreover, the new filter-bank design allows for a low and
adjustable signal delay.

Index Terms— allpass transformation, frequency warping, DFT
filter-bank, LTI system, least-squares design

1. INTRODUCTION

The allpass transformation is a well-known technique to realize
a digital filter-bank with non-uniform time-frequency resolution
[1, 2, 3]. Such a frequency warped filter-bank can mimic the Bark
frequency scale, which models the frequency resolution of the
human ear, with great accuracy [4]. This property is exploited,
among others, for speech and audio processing algorithms, e.g., [5].

The original design applies the allpass transformation to an FIR
analysis-synthesis filter-bank (AS FB) which leads to an IIR filter-
bank [3]. The aliasing distortions can be reduced, but not canceled,
by an improved prototype filter design, e.g., [6]. The phase distor-
tions due to the allpass transformation can be (partly) compensated
by a phase equalizer at the filter-bank output [5, 7].

An alternative is to use FIR synthesis filters instead of IIR filters.
There exists an analytical closed-form solution for an FIR synthesis
filter-bank to achieve perfect reconstruction (PR) for an allpass trans-
formation of first order. This is shown in [8] for critical subsampling
and in [9, 10] for arbitrary subsampling rates. A severe drawback of
this solution is the missing bandpass characteristic of the synthesis
filters [10]. This causes high signal reconstruction errors, if subband
processing, such as spectral weighting or quantization, takes place.

A significantly better frequency selectivity exhibits the FIR syn-
thesis filter-bank proposed in [11], which achieves near-perfect re-
construction (NPR). The phase distortions, introduced by the allpass
transformation of the analysis filter-bank, are compensated by FIR

phase equalizers designed via simple closed-form expressions. The
aliasing distortions are reduced by prototype filters of high order.
The lifting scheme can be employed to constrain the overall signal
delay [11]. However, the analysis and synthesis filter-bank of this de-
sign are operated at the non-decimated sampling rate which causes a
very high computational complexity. Moreover, aliasing distortions
remain and the filter-bank has still a comparatively high signal delay
due to the employed FIR phase equalizers.

In this contribution, a new design approach for an allpass
transformed DFT AS FB is proposed, which ensures a linear,
time-invariant (LTI) overall transfer function despite subsampling.
In a first version, the FIR synthesis filters are determined by an
unconstrained least-squares (LS) error design, which yields PR
but an insufficient bandpass characteristic for the synthesis filter.
This problem is addressed by a second, constrained least-squares
(CLS) error design. The obtained filter-bank with NPR is still an
LTI system, which has a low signal delay and causes only a small
amount of linear distortions.

2. THE FREQUENCY WARPED DFT FILTER-BANK

The allpass transformed DFT filter-bank [1, 2, 3] is a generalization
of the uniform DFT filter-bank. This frequency warped filter-bank
has a non-uniform time-frequency resolution and is obtained by sub-
stituting the delay elements of the (uniform) FIR subband filters by
allpass filters: z−1 → HA(z). For this allpass transformation, an
allpass filter of first order is considered with transfer function

HA(z) =
1− αz

z − α
; |z| > |α| ; |α| < 1; α ∈ R . (1)

The allpass transformed analysis subband filters are given by

eHi(z) =

M−1X
n=0

h(n)W n i
M HA(z)n ; i ∈ {0, 1, . . . , M − 1} . (2)

The analysis prototype filter has the finite impulse response (FIR)
h(n) of length M . The complex modulation factor is denoted by

WM = exp {−j 2π/M} . (3)

The efficient implementation of this analysis filter-bank with down-
sampling is shown in Fig. 1. The discrete Fourier transform (DFT)
can be calculated efficiently by the fast Fourier transform (FFT). The
FIR synthesis subband filters are given by

Ḡi(z) =
M−1X
ρ=0

g(M − 1− ρ)W−i ρ
M

Np−1X
λ=0

p(λ, ρ)z−λ

| {z }
= P (z, ρ)

(4)
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Fig. 1. Allpass transformed DFT analysis filter-bank with down-
sampling.
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Fig. 2. DFT synthesis filter-bank with upsampling.

with g(n) denoting the impulse response of the synthesis prototype
filter. The M filters with transfer functions P (z, ρ) and filter degree
Np − 1 shall be designed to achieve (almost) perfect reconstruction.
The described synthesis filter-bank with upsampling by R is illus-
trated in Fig. 2.

For this warped DFT AS FB, the input-output relation in the z-
domain reads

Y (z) =
1

R

R−1X
r=0

X(z W r
R)

M−1X
i=0

eHi(zW r
R) Ḡi(z) . (5)

In general, the AS FB (with subsampling) is a linear, periodi-
cally time-varying (LPTV) system with period R. To account for this
behavior, we determine the overall transfer function of the filter-bank
by R time-shifted unit samples sequences as input, i.e., X(z) = z−l

for l ∈ {0, 1, . . . , R − 1}. By this means, insertion of Eq. (2) and
Eq. (4) into Eq. (5) yields the new transfer function

Tl(z) =
Y (z)

z−l
=

1

R

R−1X
r=0

W−r l
R

M−1X
i=0

M−1X
n=0

h(n)W n i
M HA(z W r

R)n

·

M−1X
ρ=0

g(M − 1− ρ)W−i ρ
M

Np−1X
λ=0

p(λ, ρ)z−λ . (6)

The uniform DFT filter-bank is included as special case for α = 0
and P (z, ρ) = z−(M−1−ρ).

For the new filter-bank design, a matrix representation of the
transfer function Tl(z) in dependence of the unknown Np M filter
coefficients p(λ, ρ) is required. In the following, bold lower-case
variables mark vectors and matrices are denoted by bold upper-case
variables. The superscripts T and H mark the transpose and conju-
gate transpose of a matrix, respectively. Eq. (6) can be expressed by

the matrix notation

Tl(z) =
1

R

R−1X
r=0

W−r l
R

M−1X
i=0

eHi(z W r
R) · vvvT

i ·DDD(z)T · ppp| {z }
= Ḡi(z)

(7)

with vvvi = [ g(M − 1), g(M − 2)W−i
M , . . . , g(0)W

−i (M−1)
M ]T

(8)

DDD(z) = IIIM ⊗ dddNp(z) (9)

dddNp (z) = [ 1, z−1, . . . , z−(Np−1) ]T (10)

ppp = [pppT
0 , pppT

1 , . . . , pppT
M−1 ]T (11)

pppρ = [ p(0, ρ), p(1, ρ), . . . , p(Np − 1, ρ) ]T (12)

i, ρ ∈ {0, 1, . . . , M − 1} .

The M × M identity matrix is denoted by IIIM and ⊗ marks the
Kronecker product of two matrices. The transfer function of Eq. (7)
can now be formulated by the compact notation

Tl(z)
.
= ξξξ(z, l) · ppp . (13)

The introduced complex vector ξξξ(z, l) is of dimension 1×M Np.

3. UNCONSTRAINED LEAST-SQUARES DESIGN

A linear, time-invariant (LTI) AS FB with PR is obtained, if Eq. (6)
fulfills the requirement

Tl(z)
!
= z−d0 ; l ∈ {0, 1, . . . , R − 1} (14)

with d0 marking the signal delay of the filter-bank. This condition
can be rewritten by using the matrix notation of Eq. (13)

2
6664

ξξξ(z, 0)
ξξξ(z, 1)

...
ξξξ(z, R − 1)

3
7775

| {z }
= ΞΞΞR(z)

·ppp
!
= z−d0 · 111R . (15)

A column vector with R ones is denoted by 111R. The M Np unknown
coefficients of the vector ppp are determined by the requirement that
Eq. (15) should be fulfilled for the K = M Np frequency points

z = W n
K ; n ∈ {0, 1, . . . , K − 1} . (16)

With the short notation

AAA =

2
6664

ΞΞΞR(1)
ΞΞΞR(WK)

...
ΞΞΞR(W K−1

K )

3
7775 ∈ C

K R×M Np (17)

bbb(d0) =

2
6664

111R

W−d0

K · 111R

...
W
−(K−1) d0

K · 111R

3
7775 ∈ C

K R×1, (18)

Eq. (15) turns into an R-times overdetermined set of K R linear
equations

AAA · ppp
!
= bbb(d0) . (19)

3530



A least-squares (LS) error solution is given by (cf. [12])

pppLS = arg min
ppp

˛̨̨˛̨̨
AAA · ppp− bbb(d0)

˛̨̨˛̨̨
2

(20)

= AAA# · bbb(d0) (21)

with AAA# denoting the pseudo-inverse matrix.1 This LS design pro-
vides a warped AS FB with PR for an appropriate parameter config-
uration, for example, Np = 2R − 1 and d0 = R − 1. However,
it turns out that the obtained synthesis subband filters have often no
bandpass characteristic. This problem can also be observed for the
closed-form PR designs of [9, 8, 10]. An advantage of the new LS
design is that signal delay d0 and filter length Np can be controlled.
Moreover, it allows the following modification to obtain synthesis
filter with pronounced bandpass characteristic.

4. CONSTRAINED LEAST-SQUARES DESIGN

In order to incorporate constraints on the synthesis filter-bank de-
sign, we relax the requirement of Eq. (14) by the less strict demand
for an LTI filter-bank. This condition can be expressed by the intro-
duced transfer function of Eq. (6) according to

Tl(z)
!
= T0(z); l ∈ {1, 2, . . . , R − 1} . (22)

This requirement can be cast into a matrix representation by means
of Eq. (13) 2

6664
ξξξ(z, 1)− ξξξ(z, 0)
ξξξ(z, 2)− ξξξ(z, 0)

...
ξξξ(z, R− 1) − ξξξ(z, 0)

3
7775

| {z }
= ΞΞΞΔ(z)

·ppp
!
= 000R−1, (23)

where a column vector with R zeros is denoted by 000R. This condi-
tion for an LTI system ensures an aliasing-free signal reconstruction.
In this case, the transfer function of Eq. (6) becomes equal to the lin-
ear (time-invariant) transfer function of the filter-bank given by

Tlin(z) =
1

R

M−1X
i=0

M−1X
n=0

M−1X
ρ=0

W
i (n−ρ)
M h(n)g(M − 1− ρ)

· HA(z)n P (z, ρ)

=
M

R

M−1X
n=0

h(n)g(M − 1− n)HA(z)n P (z, n) . (24)

Perfect reconstruction is obtained, if

M

R

M−1X
n=0

h(n)g(M − 1− n)
!
= 1 and (25)

HA(z)n P (z, n)
!
= z−d0 ; n ∈ {0, 1, . . . , M − 1} . (26)

The first requirement is easily fulfilled. The second one can be ex-
pressed by means of the matrices introduced in Section 22

6664
1

HA(z)
...

HA(z)M−1

3
7775�

“
DDD(z)T · ppp

”
.
= UUU(z) · ppp

!
= z−d0 · 111M| {z }

= vvv(z, d0)

(27)

1A solution exists but is non-unique if AAAHAAA is a singular matrix.

with � denoting the element-wise multiplication of two matrices
with the same dimension.

The conditions of Eq. (23) and Eq. (27) should be fulfilled si-
multaneously for the K discrete frequency points of Eq. (16). There-
fore, we introduce the (stacking) notation

UUU [K] =

2
6664

UUU(1)
UUU(WK)

...
UUU(W K−1

K )

3
7775 ; vvv[K](d0) =

2
6664

111M

W−d0

K · 111M

...
W
−d0 (K−1)
K · 111M

3
7775 .

(28)

In the same manner, the matrix ΞΞΞ
[K]
Δ is derived from the matrix

ΞΞΞΔ(z) of Eq. (23). The K filter coefficients ppp to fulfill Eq. (23) and
Eq. (27) can now be determined by the equality constrained least-
squares (CLS) error optimization

pppCLS = arg min
ppp

˛̨̨˛̨̨
UUU [K] · ppp− vvv[K](d0)

˛̨̨˛̨̨
2

subject to ΞΞΞ
[K]
Δ · ppp = 000(R−1) K . (29)

This optimization can be performed, e.g., by using the function
lsqlin of the MATLAB optimization toolbox. With this design,
linear distortions are minimized under the constraint of complete
aliasing cancellation. This constrained optimization provides, in
contrast to the unconstrained LS solution of Section 3, synthesis sub-
band filters with pronounced bandpass characteristic as exemplified
in the following.

5. DESIGN EXAMPLE

The design of a warped DFT AS FB with M = 16 channels, rect-
angular prototype filters, and an allpass coefficient of α = 0.4 is
considered for a subsampling rate of R = M/4 = 4. A filter length
of Np = 36 and a signal delay of d0 = 36 are used for the CLS
optimization.

A filter-bank is a multi-rate system which can be analyzed by
its system response function tbi(k1, k2), which is the response of the
system at time instant k1 to a unit sample sequence at k2. The corres-
ponding two-dimensional frequency-domain representation is given
by the bifrequency system function Tbi(e

jΩ1 , ej Ω2) [13], which is
plotted in Fig. 3 for the new CLS filter-bank design. It shows an LTI
system since no side-diagonals with aliasing components occur. The
main diagonal corresponds to the linear transfer function of the filter-
bank. The low amount of linear distortions is shown by the second
subplot in greater detail. The third subplot shows that the synthesis
filters exhibit a distinctive bandpass characteristic. (An increase of
the bandwidth due to the frequency warping can also be observed.)
The proposed unconstrained LS design leads to a PR filter-bank for
the considered parameter setting, but does not achieve such a band-
pass characteristic for the synthesis filters.

For a comparison, the FIR synthesis filter-bank design of [11] is
considered. It yields the bifrequency system response of Fig. 4 for
an overall system delay of d0 = 64 samples. The linear distortions
on the main diagonal are about ±1.7 dB. These distortions become
significantly higher for a delay of d0 = 36 as used for the CLS
design. Distinct aliasing components can also be observed on the
side-diagonals, which are not eliminated by synthesis subband filters
with an even higher filter degree, cf. [11]. Thus, this filter-bank
design causes a higher signal reconstruction error despite a higher
system delay and a higher algorithmic complexity in comparison to
the proposed CLS design.
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Fig. 3. Magnitude of the bifrequency system function
Tbi(e

j Ω1 , ej Ω2), the linear transfer function Tlin(e
jΩ) and the syn-

thesis subband filters Ḡi(e
j Ω) obtained by the new CLS filter-bank

design with R = M/4 = 4, α = 0.4, d0 = 36, Np = 36.

6. CONCLUSIONS

A new design approach for frequency warped AS FBs is presented
which ensures that the filter-bank is an LTI system despite subsam-
pling. This is achieved by FIR synthesis filters whose coefficients are
determined by two different linear least-squares error optimizations.
The unconstrained optimization leads to PR, but an insufficient fre-
quency selectivity for the synthesis subband filters. This problem,
which can also be observed for existing closed-form PR design of
warped AS FBs, is solved by an equality constrained least-squares
error design. The obtained filter-bank is still an LTI system with
adjustable signal delay, which causes only a small amount of linear
distortions. The signal delay and aliasing-free reconstruction errors
of the new filter-bank are significantly lower than for known designs
of warped filter-banks with NPR. The proposed design allows to con-
trol the trade-off between signal delay and reconstruction errors, and
it can also be applied to other transformation kernels than the con-
sidered DFT. The presented design for an allpass transformed DFT
filter-bank is of special interest for speech and audio processing due
to its non-uniform, if needed Bark scaled frequency bands.
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