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ABSTRACT

This contribution presents a novel approach to determine the rever-

beration time (RT) from noisy observations by using a maximum

likelihood (ML) estimator. It is based on a statistical model for the

sound decay in reverberant enclosures which takes additive noise

into account. Two estimation methods are presented. The first one

considers dedicated excitation signals such as switched-off noise

sources or impulsive tone-bursts. The derived ML estimator allows

to determine the RT from the received signal even in the presence

of background or measurement noise and achieves a significantly

higher estimation accuracy than comparable approaches.

The second approach allows to estimate the RT from reverber-

ant and noisy speech signals without a priori knowledge. This blind

estimation achieves an estimation accuracy which enable its use for

speech enhancement algorithms which suppress the effects of back-

ground noise and late reverberation.

Index Terms— reverberation time, maximum likelihood esti-

mation, blind estimation, room acoustics

1. INTRODUCTION

The reverberation time (RT) is an important and well-known mea-

sure for the characterization of reverberant enclosures. It quantifies

the persistence of sound within a room that is caused by the mul-

tiple reflections of sound waves from different surfaces. The RT is

defined as the time span in which the energy of a steady-state sound

field decays 60 dB below its initial level after switching-off the exci-

tation source, e.g., [1]. Knowledge about the RT is of interest, among

others, for the characterization of acoustic environments, predicting

the subjective preference of reverberant speech, or for the enhance-

ment of distorted speech signals, cf. [1, 2]. Accordingly, methods

for reverberation time estimation (RTE) are a subject of interest for

acousticians and engineers alike.

The RT can be determined by measuring the sound decay after

turning-off the excitation source, e.g., by means of the interrupted

noise method [3]. Schroeder has developed a method to calculate the

ensemble average of different decay curves from the measured room

impulse response (RIR) [4]. The method of Xiang [5] estimates the

RT from the sound decay under noisy conditions by means of non-

linear regression. The RT is calculated by an iterative procedure

which relies very much on a good initial guess for the first iteration

and does not necessarily converge.

For speech enhancement systems, the RT must be estimated

blindly from a reverberant and noisy speech signal. Methods for a

semi-blind RT estimation have been proposed, e.g., in [6, 7, 8]. In

[6], room characteristics are ’learned’ by using a neural network
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approach. Other semi-blind methods try to detect gaps in the

speech signal to measure the sound decay using either one or two

microphones [7, 8].

Algorithms for an entirely blind estimation of the RT are pre-

sented in [9, 10, 11]. However, all these proposals for a (partly)

blind estimation of the RT deal not (explicitly) with the impairments

due to additive noise.

In this paper, a new approach to estimate the RT from noisy

measurements is developed. The devised generalized maximum like-

lihood (GML) approach allows to estimate the RT from a measured

sound decay or RIR degraded by additive noise. It is also shown how

the ML approach can be applied for a blind RTE where the reverber-

ant signal is also disturbed by noise.

2. MODEL FOR THE SOUND DECAY

It is assumed that the observed sequence y(k) contains the sound

decay due to reverberation hM(k) and additive noise n(k):

y(k) = hM(k) + n(k) . (1)

The noise sequence n(k) is assumed to be uncorrelated with hM(k)
and represents i.i.d. random variables with zero mean and normal

distribution N (0, σ2
n). The sound decay is modeled by a discrete

random process

hM(k) = Ar v(k)e−ρ k Ts ǫ(k) (2)

with real amplitude Ar > 0. The variable k marks the discrete

sample index and ǫ(k) the unit step sequence. The parameter

Ts = 1/fs represents the sampling period and v(k) is a sequence

of i.i.d. random variables with zero mean and normal distribution

N (0, 1). Eq. (2) can also be seen as a simple statistical model

for the RIR, which considers only the effects of late reflections

and models them as diffuse noise. The energy decay curve for the

corresponding time-continuous sound decay model reads

Eh̃(t)
.
= E

n
h̃2

M(t)
o

= A2
r e−2 ρ t ǫ̃(t) (3)

where the tilde indicates the time-continuous counterparts to the dis-

crete quantities of Eq. (2). A relation between the decay rate ρ and

the reverberation time T60 can be established by the requirement

10 log10

„
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Eh̃(T60)

«
!
= 60 (4)

which leads to the equation

T60 =
3

ρ log10(e)
≈ 6.908

ρ
. (5)



Due to this relation, the terms decay rate and RT will be used inter-

changeably in the following.

According to our model, y(k) is a random variable with the

Gaussian probability density function (PDF)

py(k)(x) =
1√

2π σ2 ξ(k)
exp


− x2

2σ2 ξ2(k)

ff
(6)

with ξ(k) =
q

A2
r · a2 k · ǫ(k) + σ2

n and a = e−Ts ρ . (7)

Hence, the sequence y(k) for k ∈ {0, . . . , N − 1} consists of N in-

dependent random variables with zero mean and non-identical PDFs

having normal distributions N (0, ξ2(k) · σ2).

3. MAXIMUM LIKELIHOOD ESTIMATION

The model introduced Sec. 2 enables the use of a maximum likeli-

hood (ML) estimator for the RT, cf. [12]. The likelihood function

(joint PDF) for an observed sequence of N (noisy) samples y(k)
with k ∈ {0, . . . , N − 1} is derived from Eq. (6):

Lf (y, ξ, σ) =
1

(2π σ2)
N

2
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− 1

2σ2
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)
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(8)

The log-likelihood function (LLF) can now be stated as

L (y, ξ, σ) = ln
`
Lf (y, ξ, σ)

´

= −N

2
ln(2π σ2) −

N−1X

i=0

ln (ξ(i)) − 1

2σ2
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y2(i)
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with ln(·) representing the natural logarithm. The unknown damping

factor a (and thus T60) can be estimated by the maximum of the LLF

â = arg
a


maximum
Ar,a,σ,σn

{L (y, ξ, σ)}
ff

. (10)

In the following, the dependence of the LLF from the variables

(y, ξ, σ) is omitted to simplify the notation.

A solution for Eq. (10) is obtained by setting the partial deriva-

tives of the LLF towards the unknown variables equal to zero
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The variance σ2
n is assumed to be known as it can usually be esti-

mated by the noise floor following the sound decay. Eq. (11c) can be

solved for the variance

σ̂2 =
1

N

N−1X

i=0

y2(i)

ξ2(i)
. (12)

Thus, only the two unknown variables â and Âr remain in Eq. (11).

The sufficient condition for a maximum that the second derivatives

of the LLF w.r.t. â and Âr are less than zero can not be proven

analytically for all values and must hence be verified numerically.

Inserting Eq. (12) into Eq. (9) yields the new LLF

L = −N

2

 
ln

 
2π

N

N−1X

i=0

y2(i)

ξ2(i)

!
+ 1

!
−

N−1X

i=0

ln
`
ξ(i)

´
. (13)

Thus, the estimation of the RT T60 or the damping factor a, respec-

tively, can be done by either calculating the zeros of the score func-

tions given by Eq. (11) or finding the maximum of Eq. (13).

The exact determination of the parameters â and Âr requires

a high algorithmic complexity since there exists no simple closed-

form solution. We solve this problem by an iterative procedure based

on an expectation-maximization (EM) approach: In an initial step

(j = 0), a guess for the amplitude Â
(0)
r is made. In iteration step j,

Eq. (11a) is solved for â(j) with a fixed value Â
(j−1)
r . Afterwards,

Eq. (11b) is solved with the obtained value â(j) to gain the new es-

timate Â
(j)
r . This iterative procedure is aborted when no further

improvements are achieved or a maximum number of iterations is

reached. Instead of Eq. (11), it is also possible to use the LLF of

Eq. (13) for this iterative procedure. The devised EM procedure is

suboptimal in comparison to an exact solution of Eq. (11), but it pro-

vides good estimation results in practice as shown later.

If the interfering noise is not too strong, the value for Ar can also

be estimated by taking the mean

Âr =

vuut 1

L

LX

i=0

y2(i) . (14)

The value for L should cover a period of about 20 ms or less so that

the sound decay has no significant influence. By this, the RT can be

calculated directly by Eq. (11a), termed as non-iterative GML RTE.

An important special case is given, if no additive noise

is assumed to be present, i.e., σn = 0. Using the identityPN−1
i=0 i = N (N − 1)/2, it is straightforward to show that the

LLF of Eq. (13) simplifies to the expression

L = −N
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Accordingly, the problem of Eq. (11) reduces to the zero search

−N (N − 1)
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â σ̂2
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1

N
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i=0

y2(i) â−2 i
(16b)

where ∂2L/∂a2 < 0∀ a. Thus, the parameter Âr drops out and

only the parameter â needs to be determined. In this case, the new

generalized ML estimator simplifies to the ML estimator of [9].

It is important to notice that the devised algorithm can also be

used to estimate a frequency dependent RT in the subband domain.

In this case, the GML estimator is applied individually to the non-

subsampled output signals of an analysis filter-bank.



4. BLIND ESTIMATION

The ML estimation can also be used for a blind RTE from a noisy and

reverberant speech signals. It turned out that the direct estimation

of the RT from a noisy and reverberant signal is difficult to perform.

Instead, it is feasible to denoise the degraded speech signal first. This

can be achieved by common speech enhancement techniques such as

spectral subtraction or Wiener filtering, cf. [13].

Afterwards, a blind RTE is performed by ML estimation and

order-statistics filtering similar to the approach of [9]. The ML es-

timation of Eq. (15) or Eq. (16) is performed at intervals of R sam-

ple instances to a frame y(λR − N + 1 + i) with λ = ⌊k/R⌋ and

i = 0, 1, . . . , N − 1. A correct RT estimate can be obtained, if the

current segment captures a free decay period following the (sharp)

offset of a speech sound. Otherwise, an incorrect RT is obtained,

e.g., for segments with ongoing speech, speech onsets or gradually

declining speech offsets. Such estimates can be expected to overesti-

mate the RT since the damping of sound cannot occur at a rate faster

than the free decay. However, taking the minimum of the last Kl

ML estimates is likely to underestimate the RT since the estimation

procedure is a stochastic process. A more robust strategy is to built

the histogram of the last Kl ML estimates and to take the first local

maximum as RT bT (peak)
60 (λ), termed as order-statistics filtering. The

effects of outliers are efficiently reduced by recursive smoothing

bT60(λ) = β bT60(λ − 1) + (1 − β) bT (peak)
60 (λ); 0.9 < β < 1. (17)

This blind ML RTE differs significantly from the recent proposal

of [11], which establishes a relation between the negative-side vari-

ance of the reverberant speech decay rate distribution and the true

decay rate. This relation is established by a second order mapping

function whose parameters are determined by a calibration proce-

dure (which is not described in detail).

The blind ML algorithm exploits the fact that the observed signal

contains occasionally small pauses of some hundred milliseconds,

which is always fulfilled for speech signals. In contrast to the algo-

rithm of [10], it is also possible to estimate larger RTs (T60 > 0.6 s).

5. SIMULATION RESULTS

5.1. Estimation with Excitation Signals

In a first experiment, a sound decay is generated by convolving a

limited white Gaussian noise sequence (σw = 0.45) followed by

zeros with a RIR for fs = 16 kHz. The RIR has been measured

(with fs = 44.1 kHz) in a public building by a system described

in [14]. The emulated sound decay is disturbed by additive, white

Gaussian noise (σn = 0.02). The obtained signals are plotted in

Fig. 1, and the used RIR is shown in Fig. 2-a.1

For reference, the RT has been determined by the (modified)

Schroeder method [4]. The logarithm of the Schroeder integral is

approximated by a linear function fl(t) according to

ĨS(t) = 10 log10

0
@

∞Z

t

ỹ2(τ ) dτ

1
A ≈ fl(t) = b · t + c (18)

so that the RT is given by bT60 = 60/b[ s]. The parameters b and c are

determined by a least-squares fit for a chosen interval t0 ≤ t ≤ t1
using the MATLAB function polyfit. Fig. 1 and Fig. 2 show the

normalized Schroeder integrals (summations) ĪS(t) = IS(t)−IS(0).

1All discrete sequences are plotted over time for the sake of clearness.
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Fig. 1. Sound decay obtained by convolving a limited noise sequence with a
RIR, distorted by additive white Gaussian noise (σn = 0.02, fs = 16 kHz).
The lower plots show the normalized Schroeder integrals with linear regres-
sion curves (dashed red lines) determined for t0 = 0 s and t1 = 0.5 s.

In addition to the Schroeder method, the RTE is also conducted

by the ML estimation of Ratnam et al. [9] and the new GML ap-

proaches. The results are listed in the middle columns of Table 1.

approach sound decay RIR
noiseless noisy noiseless noisy

Schroeder method [4] 0.91 s 2.90 s 0.97 s 3.20 s
ML RTE [9] 0.93 s 2.00 s 1.01 s 2.00 s
EM GML RTE 0.93 s 1.04 s 1.01 s 1.03 s
non-iterative GML RTE 0.93 s 1.03 s 1.01 s 1.07 s

Table 1. Reverberation times determined by different reverberation time
estimation (RTE) methods from input signals y(k) shown in Fig. 1 and Fig. 2.

If no noise is present, the results of all ML approaches are iden-

tical since the new GML algorithm is equivalent to the ML RTE in

this case according to Eq. (15) or (16), respectively. For noisy obser-

vations, however, Schroeder method and ML RTE yield insufficient

results, where the new GML approaches achieve still an estimation

accuracy of about 10%.2 For this example, the GML with 4 EM iter-

ations and an initial value of Â
(0)
r = 0.0005 yields almost the same

results as the non-iterative GML approach.

In a second experiment, the RT is estimated from a measured

RIR, which can be seen as ideal response to an impulsive tone-burst

covering a broad range of frequencies. The used RIRs with and with-

out additive noise are shown in Fig. 2 along with their Schroeder

integrals. The estimated RTs are compiled in the right columns of

Table 1. Again, the new GML approaches achieve a good estima-

tion accuracy for all cases, whereas Schroeder method and ML RTE

show strong deviations form the true value for noisy observations.

The non-iterative GML estimator achieves almost the same result as

the EM GML approach (with 4 iterations and Â
(0)
r = 0.0005).

5.2. Blind Estimation

The blind RTE devised in Sec. 4 has been applied to a distorted

speech signal as shown in Fig. 3. The speech signal is first convolved

with the RIR plotted in Fig. 2-a and then distorted by adding babble

noise taken from the NOISEX-92 database (see Fig. 3-a). The de-

noising has been performed by the spectral subtraction rule based on

2An upper limit of bT60 ≤ 2.0 s has been taken for all ML approaches.
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Fig. 2. Measured RIR distorted by white Gaussian noise (σn = 0.02,
fs = 16 kHz). The lower plots show the normalized Schroeder integrals with
linear regression curves (dashed red lines) for t0 = 0.05 s and t1 = 0.5 s.

a noise power estimation by minimum statistics, cf. [13] (see Fig. 3-

b). The histogram for the blind RTE is determined by the 400 most

recent ML estimates for a bin size (resolution) of 0.11 s. For the

ML estimation, a time span of 0.19 s and a frame shift of 0.025 s are

taken. A factor of β = 0.995 is used for Eq. (17).

Fig. 3-c shows that the devised blind RTE achieves an error of

less than ±0.2 s. Such an estimation accuracy is usually sufficient

for speech enhancement algorithms which aim at a joint suppression

of background noise and late reverberation, cf. [2].

6. CONCLUSIONS

A generalized maximum likelihood (GML) approach to estimate the

RT from noisy measurements is proposed. It is derived from a sta-

tistical model for the sound decay in reverberant rooms which takes

impairments due to additive noise into account. The new approach

allows to estimate the RT from a measured sound decay or room

impulse response distorted by additive background or measurement

noise. The needed noise power estimate can be easily obtained from

the observed sequence. The other model parameters (damping factor

a and amplitude Ar) can be calculated by an iterative EM approach.

If the interfering noise is not too strong, the amplitude Ar can also

be estimated directly from the observed sequence so that the RT can

be determined without further iterations.

It is also shown how the ML estimation can be used for a blind

estimation of the RT from a reverberant and noisy speech signal.

After applying a conventional noise reduction system, the RT is

estimated by means of a continuous ML estimation followed by

order-statistics filtering to select the most likely RT estimate. This

new blind RT estimator can achieve an accuracy of less than ±0.2 s,

which makes this approach of interest for speech enhancement

applications.
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