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2.1 Introduction

Digital filter-banks are an integral part of many speech and audio processing
algorithms used in today’s communication systems. They are commonly em-
ployed for adaptive subband filtering, for example, to perform acoustic echo
cancellation in hands-free communication devices or multi-channel dynamic-
range compression in digital hearing aids, e.g., [34,81]. Another frequent task
is speech enhancement by noise reduction, e.g., [4,81]. This eases the commu-
nication in adverse environments where acoustic background noise impairs the
intelligibility and fidelity of the transmitted speech signal. A noise reduction
system is also beneficial to improve the performance of speech coding and
speech recognition systems, e.g., [41].

The choice of the filter-bank has a significant influence on the performance
of such systems in terms of signal quality, computational complexity, and
signal delay. Accordingly, the filter-bank design has to fulfill different, partly
conflicting requirements in dependence of the considered application.

One prominent example is speech and audio processing for digital hearing
aids. The restricted capacity of the battery and the small size of the chip set
limit the available computational power. Moreover, a low overall processing
delay is required to avoid disturbing artifacts and echo effects, e.g., [1,75]. Such
distortions can occur when the hearing aid user is talking. In this case, the
processed speech can interfere with the original speech signal, which reaches
the cochlea with minimal delay via bone conduction or through the hearing
aid vent. To prevent this, the algorithmic signal delay of the filter-bank used
for the signal enhancement must be considerably lower than the tolerable pro-
cessing delay, i.e., the latency between the analog input and output signal of
the system. In addition, a filter-bank with non-uniform time-frequency reso-
lution, which is similar to that of the human auditory system, is desirable to
perform multi-channel dynamic-range compression and noise reduction with
a small number of frequency bands.
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A common choice for many applications is still the uniform DFT analysis-
synthesis filter-bank (AS FB). This complex modulated filter-bank can be
efficiently realized by means of a polyphase network (PPN) [77] and comprises
the weighted overlap-add method as a variant hereof [11, 12]. This scheme is
often used for frame-wise processing, e.g., in noise reduction systems of speech
coders. In this case, a fixed buffering delay occurs and the additional delay
due to overlapping frames can be reduced by an appropriate window design,
e.g., [53].

However, the frequency resolution of the uniform (DFT) filter-bank is not
well adapted to that of the human auditory system. The non-uniform fre-
quency resolution of the human ear declines for an increasing frequency, which
can be described by the Bark frequency scale [84]. Therefore, several authors
have proposed the use of non-uniform AS FBs for speech enhancement to ob-
tain an improved (subjective) speech quality [9,16,19,26,27,61]. One rationale
for these approaches is that a filter-bank with a non-uniform, approximately
Bark-scaled frequency resolution incorporates a perceptual model of the hu-
man auditory system. Another reason is that on average most of the energy
and harmonics of speech signals are located at the lower frequencies.

One approach to achieve an approximately Bark-scaled frequency reso-
lution is to employ the discrete wavelet (packet) transform, which can be
implemented by a tree-structured AS FB, e.g., [9,19,26,27]. Another method
is to use frequency warped AS FBs [19, 26, 27, 61]. These filter-banks possess
usually a lower signal delay and a lower algorithmic complexity than compa-
rable tree-structured filter-banks.

The allpass transformation is a well-known technique for the design of
frequency warped filter-banks [6, 17, 58, 79]. These filter-banks can achieve
a Bark-scaled frequency division with great accuracy [73]. This property is
of interest for speech and audio processing applications alike and allows to
use a lower number of frequency channels than for the uniform filter-bank.
A disadvantage of this approach is that the allpass transformation of the
analysis filter-bank leads to (increased) aliasing and phase distortions. The
compensation of these effects results in a more complex synthesis filter-bank
design as well as a higher algorithmic complexity and signal delay. These
drawbacks often prevent to exploit the benefits of frequency warped filter-
banks for (real-time) speech and audio processing systems.

In this chapter, we discuss alternative design concepts for uniform and
frequency warped filter-banks. The aim is to devise a general filter-bank de-
sign with the same time-frequency resolution as the conventional uniform and
allpass transformed AS FB, but with a considerably lower signal delay.

For these purposes, the design of uniform and non-uniform AS FBs is
reviewed in Sec. 2.2, and approaches to achieve a reduced signal delay are
discussed. The alternative concept of the filter-bank equalizer (FBE) is intro-
duced in Sec. 2.3. The effects of time-varying coefficients are analyzed, and an
efficient implementation of the FBE is devised. A generalization of this con-
cept is given by the allpass transformed FBE, which is presented in Sec. 2.3.6.
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Measures to achieve (nearly) perfect signal reconstruction are described, and
the algorithmic complexity of different filter-bank designs is contrasted. For
applications with very demanding signal delay constraints, a modification of
the FBE is proposed in Sec. 2.4 to achieve a further reduced signal delay with
almost no loss for the subjective speech quality. In Sec. 2.5, the discussed
filter-banks are applied to noise reduction and the achieved performance is
investigated. Finally, a summary of this chapter is provided by Sec. 2.6.

2.2 Analysis-Synthesis Filter-Banks

In this section, some design concepts for uniform and non-uniform analysis-
synthesis filter-banks are briefly reviewed, which form the basis (and motiva-
tion) for our alternative low delay filter-bank design introduced in Sec. 2.3.

2.2.1 General Structure

The general structure of an analysis-synthesis filter-bank (AS FB) is shown
in Fig. 2.1. The discrete, real input signal y(n) is split into M subband
signals yi(n) by analysis bandpass filters with impulse responses hi(n) for
i ∈ { 0, 1, . . . ,M − 1 }. These subband filters can have different bandwidths
∆Ωi to achieve a non-uniform frequency resolution. The limited bandwidth of
the subband signals yi(n) allows to perform a downsampling. The subsampling
rates Ri for each subband can be determined by the general rule

Ri ≤
2π

∆Ωi
for Ri ∈ { 1, 2, . . . ,M } and

M−1∑

i=0

∆Ωi = 2π . (2.1)
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Fig. 2.1. M -channel analysis-synthesis filter-bank (AS FB) with subsampling and
spectral weighting.
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For a uniform filter-bank, the bandwidths of all subband filters are equal and
the same subsampling rate Ri = R is taken for each subband signal. Critical
subsampling is performed if R = M . An oversampled filter-bank performs
non-critical subsampling where R < M .

The signal reconstruction is accomplished by the synthesis filter-bank,
which consists of the upsampling operations and interpolating bandpass fil-
ters with impulse responses gi(n). A filter-bank achieves perfect (signal) re-
construction (PR) with a delay of d0 samples if

v(n) = y(n − d0) (2.2)

for Wi = 1∀ i. Accordingly, near-perfect reconstruction (NPR) is achieved if
this identity is approximately fulfilled.

AS FBs are commonly used for adaptive subband processing as indicated
by Fig. 2.1. The spectral gain factors Wi(n′) are adapted at a reduced sam-
pling rate based on the downsampled subband signals yi(n′). For example,
this filtering technique is frequently used for the enhancement of noisy speech
signals, e.g., [31, 80,81].

2.2.2 Tree-Structured Filter-Banks

Tree-structured filter-banks are used to achieve a uniform or, more commonly,
a non-uniform time-frequency resolution. They are mostly realized by the
discrete wavelet transform (DWT) or by quadrature mirror filters (QMFs),
e.g., [7, 77, 83]. Tree-structured filter-banks can realize an octave-band fre-
quency analysis as depicted in Fig. 2.2. The input signal is split into a lowpass
(LP) and highpass (HP) signal which can be each downsampled by a ratio of
two. This step can be repeated successively until the desired frequency res-
olution is (approximately) achieved. This procedure leads to different signal
delays for the subband signals which can be compensated by corresponding

y(n)

y0(n′)

y1(n′)
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y3(n′)

↓ 2

↓ 2

↓ 2

↓ 2

↓ 2

↓ 2
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LP
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LP

τ3

τ2

Fig. 2.2. Tree-structured filter-bank with three stages realizing an octave-band
analysis.
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delay elements. A more flexible adjustment of the frequency resolution can be
accomplished by the wavelet packet decomposition, e.g., [7]. The signal delay
of a tree-structured AS FB is equal to (2J − 1) ds with J marking the num-
ber of stages and ds denoting the signal delay of the underlying two-channel
AS FB. Hence, such filter-banks exhibit a high signal delay, especially if sub-
band filters of high degrees are needed to avoid aliasing distortions owing to
subband processing, cf. [9, 16,26].

2.2.3 Modulated Filter-Banks

An important class of filter-banks constitute modulated AS FBs. The individ-
ual subband filters are derived by uniform modulation of a single prototype
filter which yields a uniform time-frequency resolution, e.g., [12,77]. The input-
output relation for fixed spectral gain factors Wi and an input signal of finite
energy can be written as [77]

V (z) =
1
R

R−1∑

r=0

Y (z Er
R)

M−1∑

i=0

Hi(z Er
R)Gi(z)Wi (2.3)

with the modulation factor defined by

ER = e−j 2π
R . (2.4)

Due to the subsampling operations, the AS FB is a time-variant system even
for fixed gain factors Wi. To account for this behavior, we determine the overall
transfer function of the filter-bank by a series of time-shifted unit sample
sequences as input, i.e., y(n) = δ(n − d) with d ∈ N0. Inserting Y (z) = z−d

into Eq. 2.3 leads to the transfer function

Td(z) =
V (z)
z−d

=
1
R

M−1∑

i=0

Hi(z)Gi(z)Wi

︸ ︷︷ ︸
Tlin(z)

+
1
R

R−1∑

r=1

E−d r
R

M−1∑

i=0

Hi(z Er
R)Gi(z)Wi

︸ ︷︷ ︸
EA(z)

.

(2.5)

The linear transfer function of the filter-bank is given by Tlin(z). The aliasing
distortions due to the subsampling operations are represented by EA(z). The
AS FB is a linear periodically time-variant (LPTV) system with period R
since

Td+R(z) = Td(z) (2.6)
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according to Eq. 2.5. Therefore, a linear time-invariant (LTI) system is ob-
tained if EA(z) = 0, so that no aliasing distortions occur. Perfect reconstruc-
tion according to Eq. 2.2 is achieved, if the transfer function of Eq. 2.5 is
given by

Td(z) = z−d0 for d ∈ { 0, 1, . . . , R − 1 } and Wi = 1 ∀ i (2.7)

where the limited set of values for d follows from Eq. 2.6. An example are
paraunitary filter-banks which fulfill this condition with a delay of d0 = L
samples where L denotes the degree of the FIR prototype filters [77].1

A filter-bank with perfect reconstruction ensures complete aliasing cancel-
lation only if no subband processing is performed, that is, Wi = 1 for Eq. 2.5.
Therefore, oversampled filter-banks are commonly used for adaptive subband
filtering to avoid strong aliasing distortions in consequence of spectral weight-
ing, e.g., [4,19]. In contrast, critically subsampled AS FBs are a typical choice
for subband coding systems, e.g., [77, 83].

An important realization of a (complex) modulated filter-bank is given by
the DFT filter-bank. The subband filters have the transfer functions

Hi(z) =
L∑

l=0

h(l)Ei l
M z−l (2.8)

Gi(z) =
L∑

l=0

g(l)E
i (l+1)
M z−l ; i ∈ {0, 1, . . . ,M − 1} (2.9)

where h(n) and g(n) denote the finite impulse responses (FIRs) of the analysis
and synthesis prototype filter, respectively. The use of linear-phase prototype
filters leads to a signal delay of d0 = L samples, cf. [77].

A common choice for the FIR filter degree is L = M−1, but a higher degree
can be taken to increase the frequency selectivity of the subband filters. Such
a filter-bank can be efficiently implemented by a polyphase network (PPN).
The analysis filters of Eq. 2.8 can be written as

Hi(z) =
M−1∑

λ=0

H
(M)
λ (zM ) · z−λ · Eλ i

M ; i ∈ { 0, 1, . . . ,M − 1 } (2.10)

with the ‘type 1’ polyphase components defined by [77]

H
(M)
λ (z) =

lM−1∑

m=0

h(mM + λ)z−m ; λ ∈ { 0, 1, . . . ,M − 1 } . (2.11)

It is assumed that the length of the prototype filters is an integer multiple of
M according to
1 One property of paraunitary filter-banks is that the sum of the subband energies

is equal to the energy of the input signal.
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L + 1 = lM M ; lM ∈ N (2.12)

which can be always achieved by an appropriate zero-padding. The synthesis
filters of Eq. 2.9 can be expressed by

Gi(z) =
M−1∑

λ=0

G
(M)
λ (zM ) · z−(M−1−λ) · E−λ i

M ; i ∈ { 0, 1, . . . ,M − 1 } (2.13)

with the ‘type 2’ polyphase components

G
(M)
λ (z) =

lM−1∑

m=0

g
(
(m + 1)M − λ − 1

)
z−m ; λ ∈ { 0, 1, . . . ,M − 1 } .

(2.14)

Fig. 2.3 shows the derived PPN realization of a DFT filter-bank. The sub-
sampling operations can be moved towards the delay elements due to the
so-called ‘noble identities’, cf. [77]. The discrete Fourier transform (DFT) can
be computed efficiently by the fast Fourier transform (FFT), e.g., [59]. Hence,
this PPN filter-bank implementation possesses only a low computational com-
plexity. The processing scheme of Fig. 2.3 can also be interpreted as weighted
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Fig. 2.3. Polyphase network (PPN) realization of a DFT AS FB for L + 1 = 2M .
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overlap-add method [11,12]. The delay chains buffer the samples of the input
and output frames whose overlap is determined by the subsampling rate R.

For speech enhancement applications, the time-varying spectral gain fac-
tors Wi(n′) of the filter-bank might cause audible artifacts due to so-called
‘block-edge effects’. This can be avoided by non-critical subsampling (R < M)
and a dedicated prototype filter design, e.g., [31, 81].

2.2.4 Frequency Warped Filter-Banks

2.2.4.1 Principle

A frequency warped digital system can be obtained by replacing the delay
elements of its transfer function by allpass filters

z−1 → HA(z) . (2.15)

For this allpass transformation, a causal, complex allpass filter of first order
is considered, whose transfer function is given by

HA(z) =
z−1 − a∗

1 − az−1
; |a| < |z| ; |a| < 1 ; a = αej γ ∈ C ; α, γ ∈ R (2.16)

with C marking the set of all complex numbers and R marking the set of all
real numbers. The asterisk denotes the complex-conjugate value. One possi-
ble implementation of this allpass filter is shown in Fig. 2.4. The frequency
response reads

HA(z = ej Ω) =
e−j Ω − a∗

1 − ae−j Ω
= e−j ϕa(Ω) (2.17a)

ϕa(Ω) = 2 arctan
(

sinΩ − α sin γ

cos Ω − α cos γ

)
− Ω . (2.17b)

xin(n)

xout(n)

−a∗

a

z−1

Fig. 2.4. Realization of an allpass filter of first order.
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This concept can be extended to allpass filters of higher order [35,36], but the
allpass transformation of first order is of most interest here.2

The allpass transformation is a bilinear transformation and allows to
alter the frequency characteristic of a digital system without changing its
coefficients. This property is exploited for the design of variable digital fil-
ters [10,70,71]. The cutoff frequency of these filters is adjusted by the allpass
coefficient, whereas the shape of the frequency response (e.g., number and
magnitude of the ripples or the stopband attenuation) is not changed. The
allpass transformation can also be employed to perform short-term spectral
analysis with a non-uniform frequency resolution or to construct non-uniform
digital filter-banks [6, 17,58,79].

The allpass transformation of the analysis filters of Eq. 2.8 yields the
warped frequency responses

Hi(z = ej ϕa(Ω)) =
L∑

l=0

h(l)Ei l
M e−j ϕa(Ω) l (2.18)

= H̃i(ej Ω) ; i ∈ {0, 1, . . . ,M − 1} (2.19)

due to Eq. 2.15 and Eq. 2.17. Hence, the allpass transformed filter-bank is a
generalization of the uniform filter-bank, which is included as special case for
a = 0. The allpass transformation causes a frequency warping

Ω → ϕa(Ω) (2.20)

where the course of the phase response ϕa(Ω) is determined by the allpass co-
efficient a. The effect of this allpass transformation is demonstrated in Fig. 2.5.
For a real and positive allpass coefficient a = α > 0, a higher frequency reso-
lution is achieved for the lower frequency bands and vice versa for the higher
frequency bands. The opposite applies if α < 0. Thus, the frequency resolution
can be adjusted by a single coefficient without the requirement for an individ-
ual subband filter design, which is sometimes needed for the construction of
non-uniform filter-banks (cf. Sec. 2.2.5). A complex allpass transformation is
of interest, if a more flexible adjustment of the frequency resolution is desired,
cf. [35].

The allpass transformation allows to design a non-uniform filter-bank
whose frequency bands approximate the Bark frequency scale with great ac-
curacy [73]. The frequency resolution of the human auditory system is deter-
mined by the so-called ‘critical bands’. The mapping between frequency and
critical bands can be described by the critical band rate with the unit ‘Bark’.
An analytical expression for the Bark frequency scale is given by [84].

2 An allpass transformation of order N maps the unit circle N -times onto itself
which causes a comb filter structure. This comb filter effect is undesirable for the
design of filter-banks and can be avoided by additional allpass filters at the price
of an increased algorithmic complexity and a higher signal delay, cf. [35,36].
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ξ(f)
Bark

= 13 · arctan
(

0.76f

kHz

)
+ 3.5 · arctan

((
f

7.5kHz

)2
)

. (2.21)

Fig. 2.6 illustrates that such a frequency division can be well approximated
by means of an allpass transformed filter-bank. A filter-bank with approxi-
mately Bark-scaled frequency bands can also be realized by the wavelet packet
decomposition [9]. However, the obtained tree-structured filter-bank has a
significantly higher signal delay and a higher algorithmic complexity than a
comparable allpass transformed filter-bank.

2.2.4.2 Signal Reconstruction

The allpass transformation of the analysis filter-bank according to Eq. 2.18
leads to phase modifications and a stronger overlap of aliasing components in
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Fig. 2.6. Approximation of the Bark frequency scale: The solid line corresponds to
the analytical expression of Eq. 2.21. The dashed line marks the frequency warping
for an allpass transformation with a = 0.576 and a sampling frequency of 16 kHz.

comparison to the uniform filter-bank. These effects complicate the synthesis
filter-bank design. The two main approaches to perform the signal reconstruc-
tion in this case are depicted in Fig. 2.7.

The filter-bank structure I uses L + 1 = M filters with transfer functions
P (z, l) for l ∈ { 0, 1, . . . , L } to compensate the (additional) phase and alias-
ing distortions caused by the allpass transformed analysis filter-bank. Perfect
reconstruction can be achieved by FIR filters. Their coefficients can be deter-
mined by analytical closed-form expressions in case of a prototype filter length
of L+1 = M . This is shown in [72] for critical subsampling and in [21,35] for
arbitrary subsampling rates. However, the obtained synthesis subband filters
show no distinctive bandpass characteristic. This causes a high reconstruction
error if spectral modifications of the subband signals, such as quantization or
spectral weighting, are performed [21].

Synthesis subband filters with a distinctive bandpass characteristic are ob-
tained by the filter-bank designs proposed, e.g., in [23, 24, 49] which achieve
near-perfect reconstruction. The filters with transfer functions P (z, l) are de-
signed to compensate the phase distortions due to the frequency warping.3

The aliasing distortions are limited by the higher stopband attenuation of
longer subband filters (L + 1 � M) and a lower subsampling rate R.4

A similar principle is used for the synthesis filter-bank structure II of
Fig. 2.7, which, however, uses only a single compensation filter with transfer
function P (z, L). The allpass transformation is applied to the analysis and
synthesis filter-bank, i.e., all delay elements of the uniform filter-bank (shown
in Fig. 2.3) are replaced by allpass filters according to Eq. 2.15. If the uniform

3 If not mentioned otherwise, the more general concept of frequency warping will
always refer to an allpass transformation of first order so that both terms are
used interchangeably.

4 Here, the same subsampling rate R is used for each subband signal so that the
DFT and IDFT can be executed at a decimated sampling rate. This is not possible
for different subsampling rates according to Eq. 2.1.
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(a) Synthesis filter-bank structure I
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Fig. 2.7. Synthesis filter-bank structures for an allpass transformed analysis filter-
bank with prototype filter of length L + 1 = M .

filter-bank fulfills Eq. 2.7 with d0 = L, the allpass transformation leads to the
frequency response

T̃d(z = ej Ω) = e−j ϕa(Ω) L + EA(ej ϕa(Ω)) . (2.22)

The aliasing distortions EA(ej ϕa(Ω)) emerge due to the non-uniform band-
widths of the allpass transformed subband filters. They can be reduced by
a lower subsampling rate R and the use of subband filters of higher degrees
having narrow transition bands and high stopband attenuations.

The non-linear phase term ϕa(Ω)L can cause audible distortions especially
for a high prototype filter degree L. Eq. 2.17 reveals that this term corresponds
to the frequency response of a cascade of L identical allpass filters termed as
allpass (filter) chain. The task of the fixed phase equalizer at the filter-bank
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output is to compensate these phase distortions (see Fig. 2.7-b). The frequency
response of the phase equalizer has to fulfill the general requirement, cf. [48]

e−j dP ϕa(Ω) · Pgen(ej Ω , dP ) != e−j τP Ω ; τP ≥ 0 ; τP ∈ R ; dP ∈ N (2.23)

where dP = L for the warped AS FB described by Eq. 2.22.
The ’ideal’ phase equalizer to fulfill Eq. 2.23 with τP = 0 is obviously given

by the inverse transfer function of an allpass chain

Pideal(z, dP ) = HA(z)−dP ; |z| <
1
|a| . (2.24)

However, the impulse response of this phase equalizer is infinite and anti-
causal (for a 	= 0), i.e., pideal(n, dP ) = 0 for n > 0. An approach to realize
anti-causal filters is to buffer the input samples in order to process them
in time-reversed order [14, 56]. This rather complex technique requires large
buffers and leads to a high signal delay.

An alternative approach is to approximate the desired anti-causal phase
equalizer of Eq. 2.24 by a causal FIR filter of degree NP . Its coefficients can
be obtained by shifting and truncating the impulse response pideal(n, dP ) ac-
cording to

pLS(n, dP ) =

{
pideal(n − NP , dP ) ; n ∈ { 0, 1, . . . , NP }

0 ; else.
(2.25)

The transfer function of an inverse allpass chain HA(z)−dP is identical to the
para-conjugate transfer function of the allpass chain where the z-variable is
replaced by z−1 and the complex-conjugate filter coefficients are used. Thus,
the impulse response of the ideal phase equalizer pideal(n, dP ) can be obtained
by the time-reversed impulse response of an allpass chain of length dP with
complex-conjugate allpass coefficient a∗. The FIR filter approximation of an
IIR filter by truncating its impulse response leads to a least-squares error,
e.g., [60]. Thus, the phase equalizer according to Eq. 2.25 is termed as least-
squares (LS) phase equalizer. For a complex allpass transformation, a complex
output signal v(n) is obtained where the (discarded) imaginary part becomes
negligible for a low signal reconstruction error.

A drawback of FIR phase equalizers is that they cause significant magni-
tude distortions in case of a low filter degree NP . Hence, this filter degree of
the phase equalizer must be high enough to keep phase and magnitude distor-
tions low. Such magnitude distortions are avoided by using an allpass phase
equalizer. Its filter degree is determined only by the need to keep the phase
distortions due to the warping inaudible. The design of phase equalizers for
warped filter-banks is treated in [48] in more detail. It should be noted that
the discussed synthesis filter-bank designs for near-perfect reconstruction can
also be applied if the prototype filter length L + 1 exceeds M .
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The signal delay of the considered uniform AS FB is given by d0 = L. The
signal delay of the warped filter-bank with LS FIR phase equalizer according
to Eq. 2.25 is approximately equal to NP . This filter degree of the phase
equalizer should be considerably higher than the value dP = d0 so that the
warped AS FB with phase equalizer has a significantly higher overall signal
delay than the uniform filter-bank. As shown in [49], it is also beneficial to use
the LS phase equalizer of Eq. 2.25 for the filter-bank structure I in Fig. 2.7,
which leads to (almost) the same signal delay as for the filter-bank structure II
with LS phase equalizer.

The devised concepts for phase equalization are also effective if spectral
weighting is performed, cf. [48]. For speech and audio processing, a perfect
equalization of the warped phase is not required due to the insensitivity of
human hearing towards minor phase distortions, cf. [80,84]. A design example
for an allpass transformed AS FB is given later in Sec. 2.5.

2.2.5 Low Delay Filter-Banks

One approach for the design of uniform and non-uniform AS FBs with low
delay is to use the lifting scheme, which has been originally proposed for the
construction of ‘second generation wavelets’ [15,76]. A single zero-delay lifting
step is shown in Fig. 2.8. The new analysis lowpass filter after one lifting step
is given by

H
(1)
0 (z) = H0(z) + H1(z)B(z2) . (2.26)

Correspondingly, this procedure can be applied to the analysis highpass filter
termed as dual lifting step and so on. The lifting steps for the analysis filters
are followed by inverse lifting steps at the synthesis side. By this, the degree
of the subband filters is increased without increasing the overall signal delay
of the filter-bank, cf. Fig. 2.8. The application of this scheme to the design
of (uniform) cosine modulated AS FBs with low delay is proposed in [37,38].
In [23, 24], the lifting scheme is applied to the allpass transformed AS FB.
The higher aliasing distortions due to the frequency warping are reduced by
improving the stopband attenuation of the subband filters. The lifting scheme
is used to increase the filter degree while constraining the signal delay of the
filter-bank. However, the adding of further lifting steps shows no improvement

Y (z)

V (z)

H0(z)

H1(z)

B(z)

G0(z)

G1(z)

−B(z)

↓2

↓2

↑2

↑2

Fig. 2.8. Single zero-delay lifting step for a two-channel AS FB.
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after some stages. Therefore, only a limited enhancement of the stopband at-
tenuation and the associated aliasing cancellation can be achieved. Moreover,
the analysis and synthesis filter-bank proposed in [23, 24] are operated at
the non-decimated sampling rate, which causes a very high computational
complexity.

The use of the warped discrete Fourier transform (WDFT) is an alternative
approach to design a low delay filter-bank with warped frequency bands, e.g.,
[22, 51,61]. The WDFT is a non-uniform DFT and calculated by the rule

Ỹ (i) =
M−1∑

n=0

y(n)

(
e−j 2 π

M i − a∗

1 − ae−j 2 π
M i

)n

; i ∈ { 0, 1, . . . ,M − 1 } . (2.27)

In contrast to the DFT (which is obtained for a = 0), the frequency points
of the WDFT are non-uniformly spaced on the unit circle. The WDFT filter-
bank evolves by replacing the (I)DFT in Fig. 2.3 by the (I)WDFT so that
the signal delay remains the same. In this process, the center frequencies of
the subband filters are shifted, but their bandwidth remain the same. This
effect is illustrated in Fig. 2.9. In contrast to the allpass transformed filter-
bank (see Fig. 2.5), the spectrum of the WDFT exhibits ’spectral gaps’ due
to the uniform bandwidths of the subband filters. This complicates the signal
reconstruction, which is reflected by an ill-conditioned WDFT matrix for val-
ues of about |a| > 0.2 and M > 40, cf. [22, 61]. The numerical difficulties for
the calculation of the inverse WDFT (matrix) become even more pronounced
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Fig. 2.9. Magnitude responses of the subband filters for a DFT and warped DFT
with M = 16 channels.
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with regard to a practical implementation with finite precision arithmetic, for
instance, on a (fixed-point) digital signal processor (DSP).

There are other ways to derive a non-uniform low delay filter-bank from
a uniform filter-bank. One approach is to combine an appropriate number
of cosine modulated subband filters termed as ‘feasible partitioning’ [16, 43].
Another method is to use two different uniform filter-banks for the upper and
lower frequency bands which are linked by a ‘transition filter’, e.g., [13, 18].
A good approximation of the Bark scale is difficult to achieve by this approach.
The subband filters of these filter-banks need to have a relatively high filter
degree to achieve a sufficient stopband attenuation in order to keep alias-
ing distortions low, especially if subband processing takes place. This causes
still a comparatively high signal delay which depends, among others, on the
permitted aliasing distortions.

Many designs of uniform and non-uniform filter-banks allow to prescribe an
(almost) arbitrary signal delay, e.g., [16,18,40,69]. However, it is problematic
to achieve simultaneously a high stopband attenuation for the subband filters
as well as a low signal delay. Hence, there is a trade-off between a low signal
delay on the one hand and low aliasing distortions (high speech and audio
quality) on the other hand, cf. [16].

A low signal delay and an aliasing-free signal reconstruction can be
achieved by means of the filter-bank summation method (FBSM) depicted in
Fig. 2.10. The FBSM can be derived from the filter-bank interpretation of the
short-time DFT, e.g., [12]. A drawback of this filter-bank structure is its high
computational complexity as no downsampling of the subband signals can be
performed. Therefore, the AS FB is considered to be more suitable than the
FBSM for real-world applications such as speech enhancement [19]. Moreover,
the computational complexity of the FBSM is significantly increased, if we ap-
ply the allpass transformation to achieve a Bark-scaled frequency resolution.

y(n)
h0(n)

h1(n)

hM−1(n)

y0(n)

y1(n)

yM−1(n)

W0(n′)

W1(n′)

WM−1(n′)

v(n)

Fig. 2.10. Filter-bank summation method (FBSM) with time-varying spectral gain
factors adapted at a reduced sampling rate.
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In the following, we derive a uniform and warped low delay filter-bank without
the high algorithmic complexity of the FBSM.

2.3 The Filter-Bank Equalizer

An alternative filter-bank concept to that of the conventional AS FB will
be devised to perform adaptive subband processing with a significantly lower
signal delay.

2.3.1 Concept

The FBSM of Fig. 2.10 is considered. As for the AS FB, the real input signal
y(n) is split into the subband signals yi(n) by means of M bandpass filters. The
adaptation of the time-varying spectral gain factors Wi(n′) can be performed
by the same algorithms as for the AS FB. This adaptation is based on the
subband signals yi(n) and executed at intervals of R sample instants with n′

defined by5

n′ = 
n/R� · R ; R ∈ N . (2.28)

The operation 
.� provides the greatest integer which is lower than or equal
to the argument.

The impulse response hi(n) of the ith bandpass filter is obtained by mod-
ulation of a prototype lowpass filter with real impulse response h(n) of length
L + 1 according to

hi(n) =

{
h(n)Φ(i, n) ; i ∈ { 0, 1, . . . ,M − 1 } ; n ∈ { 0, 1, . . . , L }

0 ; else .
(2.29)

The choice for the general modulation sequence and the prototype filter affects
the spectral selectivity and time-frequency resolution of the filter-bank. The
modulation sequence Φ(i, n) can be seen as transformation kernel of the filter-
bank. In general, it has the periodicity

Φ(i, n + mM) = Φ(i, n)ρ(m) ; m ∈ Z (2.30)

where Z denotes the set of all integer numbers. The sequence ρ(m) depends
on the chosen transform as shown later. For many transforms (including the
DFT) it is given by ρ(m) = 1 ∀m.

The input-output relation for the FBSM of Fig. 2.10 can be written as

5 This definition is more suitable for the following treatment than the common
convention n = Rn′.
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v(n) =
M−1∑

i=0

Wi(n′)yi(n) (2.31)

=
M−1∑

i=0

Wi(n′)
L∑

l=0

y(n − l)hi(l)

=
L∑

l=0

y(n − l)h(l)
M−1∑

i=0

Wi(n′)Φ(i, l) (2.32)

for the modulated bandpass filters of Eq. 2.29. The second summation is the
spectral transform of the gain factors Wi(n′) which yields the coefficients

wl(n′) =
M−1∑

i=0

Wi(n′)Φ(i, l) ; l ∈ { 0, 1, . . . , L } (2.33)

= T {Wi(n′) } . (2.34)

These L + 1 time-domain weighting factors have the periodicity

wl+mM (n′) = wl(n′)ρ(m) (2.35)

due to Eq. 2.30 and Eq. 2.33. The input-output relation finally reads

v(n) =
L∑

l=0

y(n − l)h(l)wl(n′) (2.36)

=
L∑

l=0

y(n − l)hs(l, n′) . (2.37)

The obtained filter-bank structure is a single time-domain filter whose
coefficients

hs(l, n′) = h(l)wl(n′) ; l ∈ { 0, 1, . . . , L } (2.38)

are the product of the fixed impulse response h(n) of the prototype lowpass
filter and the time-varying weighting factors wl(n′) adapted in the short-
term spectral-domain.6 This efficient implementation of the FBSM (which
resembles a filter-bank used as equalizer) is termed as filter-bank equalizer
(FBE) [44, 82]. A sketch of this filter-bank structure is given in Fig. 2.11. A
distinctive advantage in comparison to the AS FB is that the output signal
v(n) is not affected by aliasing distortions. Moreover, a non-uniform (warped)
frequency resolution can be achieved by means of the allpass transformation
with lower efforts than for the AS FB as shown later in Sec. 2.3.6. The uniform

6 For the sake of clarity, the index l instead of the discrete time index n will be
used to indicate that L + 1 filter coefficients are considered.
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calculation

Spectral transformSpectral gain

Time−domain filter

Analysis filter−bank

with downsampling

y(n) v(n)

T {Wi(n′) }

yi(n′)
L + 1

M

M

hs(n, n′)

h(l)

Wi(n′)

wl(n′)

Fig. 2.11. Filter-bank equalizer (FBE) for adaptive subband filtering.

and non-uniform FBE can be used for speech and audio processing with low
signal delay, e.g., [45, 68].

A similar approach has been proposed independently in [39] for dynamic-
range compression in hearing aids. For acoustic echo cancellation and active
noise control applications, a related time-domain filtering approach can be
found in [57], where the coefficients are adapted in the uniform frequency-
domain. However, the following treatment will show that the concept of the
FBE is a much more general and comprehensive low delay filter-bank concept.

2.3.2 Prototype Filter Design

The objective of the prototype lowpass filter design is to achieve perfect recon-
struction according to Eq. 2.2. The FBE meets this condition if the following
two requirements are fulfilled [44]: Firstly, the general modulation sequence
of Eq. 2.29 must have the property

M−1∑

i=0

Φ(i, n) =

{
C ; C 	= 0 ; n = n0

0 ; n 	= n0

for n, n0 ∈ {0, 1, . . . ,M − 1}.

(2.39)

Secondly, a generalized M th-band filter with impulse response

h(n) =

⎧
⎪⎪⎨

⎪⎪⎩

1
C ρ(mc)

; n = n0 + mc M ; ρ(mc) 	= 0 ; mc ∈ Z

0 ; n = n0 + mM ; m ∈ Z\{mc}
arbitrary ; else

(2.40)
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is needed as prototype lowpass filter. Such a filter has equidistant zeros at
intervals of M samples and its modulated versions add up to a delay accord-
ing to

M−1∑

i=0

H
(
z Ei

M

)
· Ei n0

M =
M

C ρ(mc)
z−(n0+mc M) . (2.41)

The conditions of Eq. 2.39 and Eq. 2.40 can be easily met to achieve perfect
reconstruction with a delay of

d0 = n0 + mc M (2.42)

samples. A suitable Mth-band filter according to Eq. 2.40 is given by

h(n) =
1

C ρ(mc)
sin
(

2 π
M (n − d0)

)

2 π
M (n − d0)

winL(n) (2.43)

with the general window sequence defined by

winL(n) =

{
arbitrary ; 0 ≤ n ≤ L

0 ; else .
(2.44)

A rectangular window achieves a least-squares approximation error, but other
window sequences are often preferred to influence properties of the filter such
as transition bandwidth or sidelobe attenuation [59]. Commonly used window
sequences are the Kaiser window or the parametric window sequence

winL(n, β) =

{
β + (β − 1) cos

(
2 π
L n
)

; 0 ≤ n ≤ L ; 0.5 ≤ β ≤ 1
0 ; else .

(2.45)

The rectangular window (β = 1), the Hann window (β = 0.5), and the Ham-
ming window (β = 0.54) are included as special cases [63].

The condition of Eq. 2.39 is met, among others, by the Walsh and
Hadamard transform (cf. [2]) as well as the generalized discrete Fourier trans-
form (GDFT). The transformation kernel of the GDFT reads

ΦGDFT(i, n) = e−j 2 π
M (i−i0) (n−n0) (2.46)

n, n0 ∈ Z ; i ∈ { 0, 1, . . . ,M − 1 } ; i0 ∈ { 0, 1/2 }

where Eq. 2.30 applies with ρ(m) = (−1)2 i0 m. The DFT is included as special
case for n0 = i0 = 0. For i0 = 1/2, a GDFT filter-bank with oddly-stacked
frequency bands is obtained, cf. [12]. A value of i0 = 0 leads to the evenly-
stacked GDFT where the above equations apply with ρ(m) = 1 and C = M .

The Walsh and Hadamard transform are employed, among others, for im-
age processing, cf. [25]. The evenly-stacked GDFT is of interest for speech
and audio processing. Thus, this filter-bank type is considered primarily in
the following without loss of generality.
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2.3.3 Relation between GDFT and GDCT

For speech enhancement, the time-varying spectral gain factors Wi(n′) are
often calculated by means of a spectral speech estimator, e.g., [5, 20, 50, 52].
For a DFT-based adaptation, the gain factors have the properties

ε ≤ Wi(n′) ≤ 1 ; Wi(n′) ∈ R ; 0 ≤ ε < 1 (2.47)

and possess the symmetry

Wi(n′) = WM−i(n′) ; i ∈ { 0, 1, . . . ,M − 1 } ; M even (2.48)

as the input sequence y(n) is real. The limitation of the gain factors by a
lower (often time-varying) threshold ε is favorable to avoid unnatural sounding
artifacts such as musical noise, cf. [8]. The (I)DFT of the real gain factors of
Eq. 2.47 yields time-domain weighting factors wl(n′) corresponding to a (non-
causal) zero-phase filter. A linear phase response is obtained for the considered
(evenly-stacked) GDFT of Eq. 2.46 with n0 = L/2 and L being even so that
the coefficients exhibit the symmetry

wl(n′) = wL−l(n′) ; l ∈ { 0, 1, . . . , L } . (2.49)

If the used prototype filter has the same symmetry

h(l) = h(L − l) , (2.50)

the time-varying FIR filter of Eq. 2.38 is given by

hs(l, n′) = hs(L − l, n′) ; l ∈ { 0, 1, . . . , L } (2.51)

which implies a linear phase response. The GDFT of the gain factors Wi(n′)
can be computed by the FFT with a subsequent cyclic shift of the obtained
time-domain weighting factors by n0 samples. Instead of the GDFT analysis
filter-bank, the DFT filter-bank can be used for the FBE (see Fig. 2.11), be-
cause the magnitude of the subband signals is needed only for the calculation
of the spectral gain factors.

For the considered GDFT, the weighting factors of Eq. 2.33 are given by

wl(n′) =
M−1∑

i=0

Wi(n′)e−j 2 π
M i (l−n0) ; l ∈ { 0, 1, . . . , L } . (2.52)

The substitution M = 2N and exploiting the symmetry of Eq. 2.48 allows
the following conversion
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wl(n′) =
2 N−1∑

i=0

Wi(n′)e−j 2 π
2 N i (l−n0)

= W0(n′) +
N−1∑

i=1

Wi(n′)e−j π
N i (l−n0) + WN (n′) (−1)l−n0

+
N−1∑

i=1

W2N−i(n′)e−j π
N (2 N−i) (l−n0)

=
N∑

i=0

Wi(n′)ν(i) cos
( π

N
i (l − n0)

)
(2.53a)

with

ν(i) =

{
1 ; i ∈ {0, N}
2 ; i ∈ {1, 2, . . . , N − 1} .

(2.53b)

Eq. 2.53 represents a FBE with N +1 channels and the (evenly-stacked) gen-
eralized discrete cosine transform (GDCT) as modulation sequence7

ΦGDCT(n, i) = ν(i) cos
( π

N
i (n − n0)

)
; i ∈ { 0, 1, . . . , N } ; n, n0 ∈ Z .

(2.54)

For this transformation kernel, the condition of Eq. 2.39 is fulfilled with M =
N + 1 and C = 2N .

The relation between GDCT and GDFT FBE has been derived so far
without considering the process of the spectral gain calculation. For noise
reduction, the spectral gain factors are mostly calculated as (linear or non-
linear) functions of the squared magnitude of the subband signals (spectral
coefficients), cf. [4]. This can be expressed by the notation

Wi(n′) = f
(
|yi(n′)|2

)
; i ∈ { 0, 1, . . . , N } . (2.55)

Only N + 1 gain factors must be calculated due to the symmetry of Eq. 2.48.
The bar indicates that an averaged value (short-term expectation) is mostly
taken inherently. Examples are the calculation of the a priori SNR by the
decision-directed approach [20], or the estimation of the noise power spectral
density by recursively smoothed periodograms [54]. The subband signals are
complex for the (G)DFT so that

Wi(n′) = f
(

Re {yi(n′)}2 + Im {yi(n′)}2
)

. (2.56)

7 Except for a normalization factor, the DCT-I is obtained for n0 = 0, cf. [66].
For the oddly-stacked GDFT FBE (i0 = 1/2), a similar derivation leads to a
modulation sequence which includes the DCT-II for n0 = 0.
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It can be assumed that the real and imaginary part are uncorrelated and that
both have equal variances and equal probability density functions (PDFs),
e.g., [4]. Therefore, almost the same gain factors are obtained by considering
the real part of the subband signals only

Wi(n′) ≈ f
(

2Re {yi(n′)}2
)

(2.57)

due to the averaging process. Hence, the gain factors calculated by complex
DFT values are almost equal to those computed by real DCT values. Accord-
ingly, the replacement of the GDFT of Eq. 2.46 by the GDCT of Eq. 2.54
causes no noticeable differences for the speech enhanced by the FBE.8

2.3.4 Realization for Different Filter Structures

The choice of the filter structure plays an important role for digital filter
implementations with finite precision arithmetic as well as for time-varying
filters. Here, only the direct forms of a filter are of interest as they do not
require an involved conversion of the time-varying filter coefficients hs(l, n′)
such as the parallel form or the cascade form, cf. [59].

The realization of an FIR filter by means of the direct form and transposed
direct form is shown in Fig. 2.12. The input-output relations for these two
filter forms are given by

vdf(n) =
L∑

l=0

y(n − l)hs(l, n′) (2.58)

vtdf(n) =
L∑

l=0

y(n − l)hs(l, n′ − l) . (2.59)

Obviously, the derived FBE according to Eq. 2.37 uses a time-domain filter
in the direct form.

The input-output relation for the transposed direct form is obtained by
inserting Eq. 2.38 into Eq. 2.59 so that

vtdf(n) =
L∑

l=0

y(n − l)h(l)wl(n′ − l)

=
L∑

l=0

y(n − l)h(l)
M−1∑

i=0

Wi(n′ − l)Φ(i, l)

=
M−1∑

i=0

L∑

l=0

y(n − l)Wi(n′ − l)hi(l) (2.60)

8 In [19], a different comparison between DFT AS FB and DCT-II AS FB has
revealed a slightly lower noise suppression for the DCT AS FB.
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(a) Direct form

y(n)

vdf(n)

z−1z−1z−1

hs(0, n′) hs(1, n′) hs(2, n′) hs(3, n′)

(b) Transposed direct form

y(n)

vtdf(n)
z−1z−1z−1

hs(0, n′)hs(1, n′)hs(2, n′)hs(3, n′)

Fig. 2.12. Direct form implementations of a time-varying FIR filter with degree
L = 3.

due to Eq. 2.33 and Eq. 2.29. The obtained relation for the transposed direct
form corresponds to the FBSM of Fig. 2.10 with the important difference that
the spectral gain factors are now applied before the subband filters. Fig. 2.13
shows the derived filter-bank structure. The dash-dotted boxes mark delay
elements to account for the signal delay τa due to the analysis filter-bank
and gain calculation. These delay elements might be omitted for moderately
time-varying (smoothed) gain factors to avoid an additional signal delay.

Switching the coefficients of a digital filter during operation leads to tran-
sients which can cause ‘filter-ringing’ effects.9 These effects might be perceived
by perceptually annoying artifacts. The application to noise reduction revealed
that the FBE with time-domain filter in transposed direct form yields a bet-
ter perceived speech quality than the implementation with the direct form
filter. This can be explained by comparing the equivalent FBSMs of Fig. 2.10
and Fig. 2.13: For the transposed direct form, the transients caused by the
switching gain factors are smoothed by the following bandpass filters, which
is not the case for the direct form implementation.

An alternative method to smooth the FIR filter coefficients independently
of the filter form is to perform a kind of ‘cross-fading’ according to

9 The term ‘filter-ringing’ is sometimes used with a slightly different meaning in
the context of speech coding.
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spectral gain calculation
&

Analysis filter−bank

y(n)
h0(n)

h1(n)

hM−1(n)

Wi(n′)

W0(n′)

W1(n′)

WM−1(n′)

τa

τa

τa

vtdf(n)

Fig. 2.13. Filter-bank summation method (FBSM) corresponding to the filter-bank
equalizer (FBE) with time-domain filter in transposed direct form.

h̄s(l, n) = (1 − cf (n)) · hs(l, n′ − R) + cf (n) · hs(l, n′) (2.61a)

cf (n) =
n − n′

R
; l ∈ { 0, 1, . . . , L } (2.61b)

with n′ is defined by Eq. 2.28. An existing linear-phase property is maintained.
The proposed cross-fading method is very effective to avoid audible filter-
ringing artifacts and is especially useful if the direct form filter is used.

It should be noted that artifacts due to time-varying spectral gain factors
must also be avoided for AS FB systems, e.g., by non-critical subsampling,
a dedicated prototype filter design, and smoothing of the gain factors (cf.
Sec. 2.2.1).

2.3.5 Polyphase Network Implementation

An efficient polyphase network (PPN) implementation of the FBE shall be
developed, which eases the utilization of prototype filters with a long or even
infinite impulse response (IIR). This allows, for example, to improve the spec-
tral selectivity of the subband filters in order to reduce the cross-talk between
adjacent frequency bins. A low cross-talk can be favorable for some spectral
speech estimators since most of them do not consider correlation between the
frequency bands, cf. [55].

The FBE is a time-varying system. It can be described by the z-transform
of the frozen-time impulse response which yields the so-called frozen-time
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transfer function [42]. The direct form time-domain filter of Eq. 2.38 at sample
instant n′ has the frozen-time transfer function

Hs(z, n′) =
L∑

l=0

wl(n′)h(l)z−l . (2.62)

This transfer function10 can be expressed by means of the polyphase compo-
nents of Eq. 2.11 which leads to

Hs(z, n′) =
M−1∑

λ=0

wλ(n′)
lM−1∑

m=0

h(λ + mM)z−(λ+mM) ρ(m)

=
M−1∑

λ=0

wλ(n′) · H(M)
λ (zM ) · z−λ (2.63)

for ρ(m) = 1 and lM defined by Eq. 2.12. The subband signals yi(n) of
Eq. 2.31 are given by

yi(n) =
L∑

l=0

y(n − l)h(l)Φ(i, l) ; i ∈ { 0, 1, . . . ,M − 1 } . (2.64)

The z-transform leads to

Yi(z) = Y (z)
L∑

l=0

h(l)z−l Φ(i, l) . (2.65)

Applying Eq. 2.11 and Eq. 2.30 with ρ(m) = 1 results in

Yi(z) = Y (z)
M−1∑

λ=0

lM−1∑

m=0

h(λ + mM)z−(λ+m M) Φ(i, λ)

= Y (z)
M−1∑

λ=0

z−λ · H(M)
λ (zM ) · Φ(i, λ) . (2.66)

The derived PPN implementation of the direct form FBE according to
Eq. 2.63 and Eq. 2.66 is illustrated in Fig. 2.14. In contrast to the FBE real-
ization of Fig. 2.11, the time-domain filtering and calculation of the subband
signals is partly done by the same network. The PPN realization for the oddly-
stacked GDFT FBE can be derived in a similar manner (cf. [44]). The same
applies for an implementation with type 2 polyphase components.

The transposed direct form of a filter is derived from the direct form
representation by transposition of its signal flow graph [59]: Branch nodes

10 For the sake of brevity, the term transfer function refers to the frozen-time transfer
function or the conventional transfer function dependent on the context.
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Down−
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M )
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w1(n′)

wM−1(n′)
vdf(n)

(G)DFT GDFT

yi(n′) Wi(n′)

wl(n′)

Fig. 2.14. Polyphase network (PPN) implementation of the GDFT FBE for the
direct form time-domain filter.

and summations are interchanged as well as the system input and output. All
signal directions are reversed. The obtained PPN implementation of the FBE
for the transposed direct form is shown in Fig. 2.15. Delay elements might be
inserted in each branch of the time-domain filter to account for the execution
time τa to calculate the time-domain weighting factors wl(n′). These weighting
factors are calculated by a separate network similar to that of Fig. 2.14 but
with the difference that the downsampling is performed directly after the delay
elements. Thus, the PPN realization for the transposed direct form requires
only a slightly higher algorithmic complexity than the direct form realization,
which is discussed in Sec. 2.3.8 in more detail.

A polyphase network decomposition can be performed for FIR filters [3]
as well as for IIR filters [78]. The design of IIR Mth-band filters is proposed
in [67]. Hence, the developed PPN realization of the FBE enables a realization
of Eq. 2.36 for L being infinite, that is, a recursive prototype filter.
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Fig. 2.15. PPN implementation of the GDFT FBE: (a) calculation of the time-
domain weighting factors wl(n

′), (b) time-domain filter in transposed direct form.
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2.3.6 The Non-Uniform Filter-Bank Equalizer

The allpass transformation can be applied to the FBE to achieve a non-
uniform time-frequency resolution. The following treatment will show that the
obtained allpass transformed FBE has some distinctive advantages in compar-
ison to the corresponding allpass transformed AS FB11 treated in Sec. 2.2.4.

2.3.6.1 Concept

The application of the allpass transformation to the bandpass filter of Eq. 2.29
yields the warped frequency responses

Hi(z = ej ϕa(Ω)) =
L∑

l=0

h(l)Φ(i, l)e−j l ϕa(Ω) (2.67)

= H̃i(ej Ω) ; i ∈ { 0, 1, . . . ,M − 1 } . (2.68)

As before, the tilde-notation is used to mark quantities changed by the allpass
transformation. The uniform FBE can be seen as a special case for a = 0 where
ϕa(Ω) = Ω. The effect of this frequency warping on the frequency character-
istic of the subband filters has been discussed already in Sec. 2.2.4. Fig. 2.16
provides a block diagram of the allpass transformed FBE. This warped FBE
can be implemented efficiently by the PPN structures derived in Sec. 2.3.5
where the delay elements are substituted by allpass filters.

Phase equalizerTime−domain filter

Spectral transform

calculation

Allpass transformed
analysis filter−bank
with downsampling

Spectral gain

y(n) v(n)

T {Wi(n′) }

ỹi(n′)
L + 1

M

M

h̃s(n, n′)

h(l)

Wi(n′)

wl(n′)

p(n, dp)

Fig. 2.16. Allpass transformed FBE for adaptive subband filtering.

11 The corresponding AS FB uses the same type of analysis filter-bank as the FBE
with identical values for L and M . An identical analysis filter-bank can not always
be used due to different design constraints for signal reconstruction.
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2.3.6.2 Compensation of Phase Distortions

The uniform FBE with perfect reconstruction fulfills Eq. 2.2, which can be
expressed in the frequency-domain by the relation

V (ej Ω) = Y (ej Ω) · e−j d0 Ω . (2.69)

If the allpass transformation is applied, this relation turns into

Ṽ (ej Ω) = Y (ej Ω) · e−j d0 ϕa(Ω) . (2.70)

Thus, the input signal y(n) is filtered by an allpass chain of length d0. Perfect
reconstruction is achieved for a linear phase characteristic. This can be accom-
plished with an arbitrarily small error by means of a (fixed) phase equalizer
connected to the output of the FBE as indicated in Fig. 2.16 [44, 48]. The
design of the phase equalizer is similar to that for the AS FB structure II of
Fig. 2.7(b). However, a phase equalizer of significantly lower degree is needed
due to the lower signal delay d0 in comparison to the AS FB.

The described phase compensation is also effective for time-varying filter
coefficients if the symmetry of Eq. 2.48 holds. For the warped FBE with direct
form filter, the (frozen-time) frequency response reads

H̃s(ej Ω , n′) =
L∑

l=0

hs(l, n′)e−j l ϕa(Ω) . (2.71)

If the real filter coefficients have the symmetry of Eq. 2.51, it can be shown
that the transfer function of Eq. 2.71 can be expressed by

H̃s(ej Ω , n′) = e−j L
2 ϕa(Ω)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

L
2∑

l=0

2A(Ω, l, L, n′) − hs

(
L
2 , n′) ; L even

L−1
2∑

l=0

2A(Ω, l, L, n′) ; L odd

(2.72a)

A(Ω, l, L, n′) = hs(l, n′) cos
( [

L

2
− l

]
ϕa(Ω)

)
. (2.72b)

The non-linear phase term ϕa(Ω)L/2 can be compensated by a phase equal-
izer which has to fulfill Eq. 2.23 with dP = L/2 [48]. The expressions to the
right of the curly brace are real and cause only phase shifts of ±π. (This
can also be shown for the more general case of a complex prototype filter
with linear phase response, cf. [44].) Thus, the system has a generalized linear
phase response despite the time-varying coefficients, if a sufficient phase com-
pensation is performed. A system with a generalized linear phase response
has a constant group delay, if the discontinuities that result from the addi-
tion of constant phase shifts due to the real function are neglected [59]. For
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the transposed direct form filter, Eq. 2.72 is approximately fulfilled in case of
moderately time-varying coefficients.

For speech and audio processing, a phase equalizer might be omitted for
smaller phase distortions (dP < 20) as the human ear is relatively insensitive
towards minor phase distortions.

2.3.7 Comparison between FBE and AS FB

A comparison with the uniform and warped AS FB of Sec. 2.2 shows that the
concept of the FBE exhibits the following benefits:

• The FBE is not affected by aliasing distortions for the reconstructed signal.
Hence, the difficult problem of achieving a sufficient aliasing cancellation,
especially for time-varying spectral gain factors, does not occur. One con-
sequence is that the FBE does not require a prototype filter with high
degree and/or a low subsampling rate R to reduce aliasing distortions.
Moreover, the prototype filter design for the FBE is less complex than for
the AS FB.

• The allpass transformation of the FBE does not cause aliasing distortions
for the reconstructed signal. Thus, only the phase modifications due to
the frequency warping need to be compensated. Therefore, near-perfect
reconstruction can be achieved with an arbitrarily small error and much
lower efforts than for the AS FB.

• The signal delay d0 for the FBE is significantly lower than for the corre-
sponding AS FB. The uniform AS FB with linear-phase prototype filter
has a signal delay of d0 = L. In contrast, the uniform FBE with linear-
phase prototype filter has a signal delay of d0 = L/2, which can be further
reduced by a non-linear phase filter. Accordingly, the design objective of
Eq. 2.23 for the phase equalizer applies with dp = L for the warped AS
FB (structure II) and with dP = L/2 for the warped FBE. Therefore, a
phase equalizer with a significantly lower filter degree can be used for the
FBE which results a lower signal delay.

• The warped FBE can achieve an almost linear overall phase characteristic
even for time-varying coefficients, which can be beneficial for multi-channel
processing.

A drawback of the FBE is its higher algorithmic complexity for some
configurations, which is exposed in the following.

2.3.8 Algorithmic Complexity

Tab. 2.1 contrasts the algorithmic complexity of the developed uniform and
warped FBE to that of the corresponding uniform and warped AS FB for
the same values L, M , R, and Np. The real DFT of size M can be computed
in-place by a radix-2 FFT, e.g., [63]. The FFT of a real sequence of size M can
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Table 2.1. Algorithmic complexity for different realizations of a polyphase network
(PPN) DFT filter-bank with real valued prototype filter of length L + 1 = lM M .

2 real FFTs Remaining Additional operations due
operations to allpass transformation

AS FB

Multiplications 2 M
R

log2 M 1
R

(2L + 2 + M) 4L + Np + 1

Summations 3 M
R

log2 M 1
R

(L − M + 1) + L 4L + Np

Delay elements 2M 2L Np

Direct form FBE

Multiplications 2 M
R

log2 M L + 1 + M 2L + Np + 1

Summations 3 M
R

log2 M L 2L + Np

Delay elements 2M L Np

Transposed direct form FBE

Multiplications 2 M
R

log2 M L + 1 + M + L
R

4L + Np + 1

Summations 3 M
R

log2 M L + 1
R

(L + 1 − M) 4L + Np

Delay elements 2M 2L Np

be calculated by a complex FFT of size M/2, which requires approximately
half the algorithmic complexity as a complex M -point FFT [62]. The GDFT
can be computed by the FFT with similar complexity as for the DFT.

The last column contains the additional operations and delay elements
due to the allpass transformation. The implementation of an allpass filter
according to Fig. 2.4 is considered. This requires two real multiplications, two
real summations, and one delay element for a real allpass coefficient a = α. A
LS phase equalizer of degree NP is applied to compensate phase distortions.

It should be noted that allpass transformed filter-banks are usually op-
erated with a smaller number of channels M than uniform filter-banks. As
reasoned before, a higher subsampling rate R and a lower phase equalizer de-
gree Np are needed for the warped FBE in comparison to the warped AS FB.
Therefore, the warped FBE has a lower algorithmic complexity than the cor-
responding warped AS FB for most parameter configurations. Contrariwise,
the uniform AS FB has a lower complexity than the uniform FBE. A design
example for these filter-banks is given later in Sec. 2.5.

2.4 Further Measures for Signal Delay Reduction

Even though the FBE causes only about half the algorithmic signal delay
than the corresponding AS FB, a further reduced delay might be required for
applications with very demanding system delay constraints. One example are
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the initially mentioned hearing aid devices. For such cases, a modification of
the FBE concept will be discussed, which allows a further lowering of the signal
delay and computational complexity with almost no loss for the perceived
quality of the enhanced speech.

2.4.1 Concept

One approach to reduce the signal delay of a filter-bank is to reduce the
transform size M to allow for a lower prototype filter degree and to adjust the
gain calculation to the altered time-frequency resolution (smoothing factors
etc.), e.g., [28]. For the FBE, a further reduction of the signal delay can also
be accomplished by approximating the original time-domain filter by a filter
of lower degree. This approach offers a greater flexibility in the choice of the
time-domain filter and requires no adjustment of the spectral gain calculation.
The principle is illustrated in Fig. 2.17. In contrast to the FBE of Fig. 2.11,
an additional module for the filter approximation is inserted, which evaluates
the new LD + 1 filter coefficients al(n′) from the L + 1 original FIR filter
coefficients hs(l, n′).

In the following, we investigate an FIR and IIR filter approximation for
the uniform FBE first, before the results are extended to the more general
case of allpass transformed filters.

2.4.2 Approximation by a Moving-Average Filter

The time-domain filter of the FBE can be approximated by an FIR filter of
lower degree LD < L following a technique very similar to FIR filter design by

Time−domain filter

Spectral gain

calculation

Spectral transform

Analysis filter−bank

with downsampling Filter approximation

y(n) v(n)

T {Wi(n′) }

yi(n′)
L + 1M

M

ĥs(n, n′)

h(l)

Wi(n′)

wl(n′)

hs(l, n′)

al(n′)

LD + 1

Fig. 2.17. Modification of the FBE to achieve a further reduced signal delay.
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windowing, e.g., [63]. The impulse response hs(l, n′) of Eq. 2.38 is truncated
by a window sequence of length LD + 1. This yields the FIR filter coefficients

al(n′) = ĥs(l, n′) = hs(l + lc, n
′)winLD

(l) ; l ∈ { 0, 1, . . . , LD } (2.73)

where the window sequence is defined by Eq. 2.44. The value for lc determines
the part of the impulse response to be truncated, e.g., to maintain the sym-
metry of Eq. 2.51 for linear-phase filters. The truncation by a window results
in a smoothed frequency response which is influenced by the choice of the
window sequence, cf. [59].

This modified FBE based on an FIR filter approximation is named as
moving-average low delay filter (MA LDF) [46]. The term ‘low delay filter’
(LDF) refers to the overall system according to Fig. 2.17, while the term ‘MA
filter’ denotes the actual time-domain filter.

2.4.3 Approximation by an Auto-Regressive Filter

Instead of a (linear-phase) FIR filter, a minimum-phase IIR filter is now con-
sidered for the filter approximation. A filter can always be decomposed into
an allpass filter and a minimum-phase filter, e.g., [59]. The group delay of the
minimum-phase filter is lower than or equal to the group delay of the orig-
inal filter for all frequencies. The approximation of a mixed-phase filter by
a minimum-phase filter leads to a different phase response. This effect, how-
ever, is mostly tolerable for speech and audio processing as the human ear
is relatively insensitive towards phase modifications, cf. [80, 84]. An allpole
filter or auto-regressive (AR) filter is used here, because the calculation of
its coefficients demands a lower computational complexity than for a general
minimum-phase IIR filter (with zeros outside the origin), cf. [63]. The filter
to be approximated contains no sharp zeros in its spectrum, if the threshold
ε in Eq. 2.47 is greater than zero, which further supports the idea of an AR
filter approximation.

The transfer function of the considered AR filter of degree LD is given by

Ĥs(z, n′) = HAR(z, n′) =
a0(n′)

1 −
LD∑
l=1

al(n′)z−l

. (2.74)

The AR filter coefficients can be determined by the Yule-Walker equations,
e.g., [63]

⎡

⎢⎣
ϕh̄h̄(1)

...
ϕh̄h̄(LD)

⎤

⎥⎦ =

⎡

⎢⎣
ϕh̄h̄(0) . . . ϕh̄h̄(1 − LD)

...
. . .

...
ϕh̄h̄(LD − 1) . . . ϕh̄h̄(0)

⎤

⎥⎦ ·

⎡

⎢⎣
a1

...
aLD

⎤

⎥⎦ (2.75)
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where the dependence on n′ is omitted for the sake of simplicity. The LD + 1
auto-correlation coefficients ϕh̄h̄(λ) are computed by the rule12

ϕh̄h̄(λ) =
L−|λ|∑

l=0

h̄(l) h̄(l + λ) ; 0 ≤ |λ| ≤ LD (2.76a)

h̄(l) = hs(l)winL(l) ; l ∈ { 0, 1, . . . , L } . (2.76b)

The scaling factor a0 in Eq. 2.74 is given by

a0 =

√√√√ϕh̄h̄(0) −
LD∑

l=1

al ϕh̄h̄(l) (2.77)

and ensures that the AR filter and the original filter have both the same
amplification. The calculation of the auto-correlation coefficients according to
Eq. 2.76 guarantees a symmetric Toeplitz structure for the auto-correlation
matrix of Eq. 2.75. This allows to solve the Yule-Walker equations efficiently
by means of the Levinson-Durbin recursion. The auto-correlation matrix is
positive-definite so that the obtained AR filter has minimum-phase property,
which implies a stable filter, cf. [63].

The devised modification of the FBE is named as auto-regressive low delay
filter (AR LDF) in analogy to the terminology of the previous section [46].

2.4.4 Algorithmic Complexity

The algorithmic complexity for the low delay filter concept – in terms of com-
putational complexity and memory consumption – is listed in Tab. 2.2. The
complexity for the calculation of the original filter coefficients hs(l, n′) has
been discussed in Sec. 2.3.8. The variable Mdiv marks the number of multi-
plications needed for a division operation, and Msqrt represents the number
of multiplications needed for a square-root operation. Accordingly, the vari-
ables Adiv and Asqrt denote the additions needed for a division and square-root
operation, respectively. Their values depend on the numeric procedure and ac-
curacy used to execute these operations. (An equivalent of 15 operations will
be assigned to these variables for the later complexity assessment in Sec. 2.5.).
A rectangular window is assumed for Eq. 2.76b.

Most of the computational complexity for the AR filter conversion is
required to compute the LD + 1 auto-correlation coefficients according to
Eq. 2.76. A lower computational complexity can be achieved by calculating
Eq. 2.76 by means of the fast convolution or the Rader algorithm [65] with
savings dependent on LD and L.

12 An alternative to this ‘auto-correlation method’ is the use of the ‘covariance
method’. However, this results in a more complex procedure for the calculation
of the AR filter coefficients, cf. [81].



48 H. W. Löllmann, P. Vary

Table 2.2. Algorithmic complexity for the MA and AR low delay filter (LDF).

Calculation of hs(l, n
′) and MA/AR filtering

Multiplications 1
R

(2M log2 M + 2L + 2) + LD + 1

Summations 1
R

(3M log2 M + L + 1 − M) + LD

Delay elements L + 2M + LD

Calculation of MA filter coefficients al(n
′)

Multiplications 1
R

(LD + 1)

Summations 0

Registers 0

Calculation of AR filter coefficients al(n
′)

Multiplications 1
R

((LD + 1)(L + 4) + LD (Mdiv + Msqrt))

Summations 1
R

((LD + 1)(L + 2) + LD (Adiv + Asqrt))

Registers 3LD

The MA filter conversion needs no multiplications, if a rectangular window
is used for Eq. 2.73. However, the AR filter degree is usually chosen signifi-
cantly lower than the MA filter degree so that both approaches have a similar
overall algorithmic complexity as exemplified later in Sec. 2.5.

2.4.5 Warped Filter Approximation

The discussed filter approximations can also be applied to the allpass trans-
formed FBE [47]. In the process, the delay elements of the analysis filter-bank
and the time-domain filter are replaced by allpass filters according to Eq. 2.15.
For the obtained warped MA LDF, a phase equalizer can be applied to obtain
an approximately linear phase response according to Sec. 2.3.6.2.

The direct realization of the warped AR filter is not possible since the
allpass transformation leads to delayless feedback loops. Different approaches
have been proposed to solve this problem for a real allpass transformation
(a = α) [29, 30, 74]. Here, the algorithm of Steiglitz [74] is preferred due to
its low computational efforts for time-varying filters. The modified transfer
function of the allpass transformed AR filter is given by

H̃AR(z) =
a0 ã0

1 − ã0
(1 − α2)z−1

1 − αz−1

LD∑
l=1

ãl HA(z)l−1

(2.78)

with coefficients ãl calculated by the recursion
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ãLD
= aLD

(2.79a)
ãl = al − αãl+1 ; l = LD − 1, . . . , 1 (2.79b)

ã0 =
1

1 + ã1 α
. (2.79c)

The computation of the new filter coefficients ãl(n′) needs only LD multipli-
cations, LD summations, and one division at intervals of R sample instants.
The warped AR filter according to Eq. 2.78 requires 3LD + 2 real multiplica-
tions and 3LD real summations per sample instant as well as LD + 1 delay
elements.

It can be proven that the minimum-phase property of the AR filter is
always maintained for a real allpass transformation but not for a complex
allpass transformation in general. This is an important result as it guarantees
stability for the warped AR filter. The use of a fixed phase equalizer (as for
the warped MA LDF) is neither feasible nor required.

The cross-fading approach of Eq. 2.61 can not be applied to the coefficients
of an IIR filter. Instead, we use a second filter with the previous coefficients
to achieve a smooth transition by a cross-fading of both output signals. This
general approach can be expressed by

H̄g(z, n) =
(
1 − cf (n)

)
· Hg(z, n′ − R) + cf (n) · Hg(z, n′) (2.80a)

cf (n) =
n − n′

R
. (2.80b)

A second filter is required for this smoothing technique which can be applied
to arbitrary filters and does not cause an additional signal delay.

2.5 Application to Noise Reduction

In this section, the treated filter-bank designs are employed for noise reduction
to compare the achieved performance with regard to speech quality, compu-
tational complexity, and signal delay.

2.5.1 System Configurations

The filtering of the noisy speech is done by the DFT AS FB, the GDFT FBE,
and the MA/AR LDF. The uniform and allpass transformed version of these
filter-banks are used each.13 A real allpass coefficient of a = 0.4 is considered,
which yields a good approximation of the Bark scale for a sampling frequency

13 The low delay filter of Sec. 2.4 can be seen as a filter-bank system as it is derived
from the FBE or FBSM, respectively.
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of 8 kHz [73]. In all cases, a transform size of M = 64 and a linear-phase FIR
prototype filter of degree L = 64 are used.14

A square-root Hann window derived from Eq. 2.45 is employed as common
prototype filter for the DFT AS FB. The uniform AS FB uses a subsampling
rate of R = 32 and the warped AS FB a rate of R = 8. A higher subsampling
rate R can be used for the warped AS FB as well. However, this increases
the signal delay significantly since subband filters with a higher stopband
attenuation are needed to achieve a sufficient aliasing cancellation. A LS phase
equalizer with a filter degree of Np = 141 is applied to the filter-bank output
according to Sec. 2.2.4.2.

The GDFT FBE is implemented in the transposed direct form. The MA
LDF possesses a filter degree of LD = 48. The LS FIR phase equalizer with
filter degree Np = 80 and Np = 56 is applied to the warped FBE and the
warped MA LDF, respectively. The considered AR LDF has a filter degree of
LD = 16. The cross-fading technique is used to avoid filter-ringing artifacts.
A subsampling rate of R = 64 is used for the analysis filter-banks of FBE and
LDF.

The spectral gain factors are computed by the super-Gaussian joint MAP
estimator [50]. This joint spectral amplitude and phase estimator is derived by
the more accurate assumption that the real and imaginary parts of the speech
DFT coefficients are rather Laplace distributed (considered here) or Gamma
distributed than Gaussian distributed. The needed a priori SNR is determined
by the decision-directed approach [20] with a fixed smoothing parameter of
0.9. The short-term noise power spectral density is estimated by minimum
statistics [54]. Speech presence uncertainty is taken into account by applying
soft-gains [52]. Independent of the subsampling rate R of the filter-bank, the
spectral gain factors are always adapted at intervals of 64 sample instants and
no individual parameter tuning is performed to ease the comparison.

2.5.2 Instrumental Quality Measures

The used audio signals of 8 kHz sampling frequency are taken from the noisy
speech corpus NOIZEUS presented in [32]. A total of 20 sentences spoken by
male and female speakers is used, each disturbed by five different, instationary
noise sequences (airport, babble, car, station, and street noise) with signal-
to-noise ratios (SNRs) between 0 dB and 15 dB.

The quality of the enhanced speech is evaluated by informal listening tests
and instrumental quality measures. (An overview of this topic is provided by
Chap. 9.) A common time-domain measure for the quality of the enhanced
speech v(n) = ŝ(n) is given by the segmental SNR

14 A lower number of frequency channels can be used for warped filter-banks whereas
a value of M = 256 is often preferred for speech enhancement using the uniform
DFT filter-bank (at 8 kHz sampling frequency). However, such different configu-
rations are not considered to ease the comparison of the filter-banks.
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SNRseg/ dB =

1
C(Fs)

∑

m∈Fs

10 log10

⎛

⎜⎜⎜⎝

K−1∑
µ=0

s2(mK + µ − τ0)

K−1∑
µ=0

(ŝ(mK + µ) − s(mK + µ − τ0))
2

⎞

⎟⎟⎟⎠ . (2.81)

The calculation comprises only frames with speech activity (m ∈ Fs) whose
total number is denoted by C(Fs).

In a simulation, the clean speech s(n) and the additive background noise
b(n) can be filtered separately with coefficients adapted for the disturbed
speech y(n) = s(n) + b(n). This provides the filtered speech s̄(n) and filtered
noise b̄(n) separately, where

v(n) = ŝ(n) = s̄(n) + b̄(n) . (2.82)

The algorithmic signal delay of non-linear phase systems is determined
here by the maximum of the cross-correlation between the clean speech s(n)
and the processed speech s̄(n) (due to their strong correlation) according to

τ0 = arg max
λ∈Z

{
ϕss̄(λ)

}
. (2.83)

The achieved segmental noise attenuation is calculated by the expression

NAseg/ dB =
1

C(F)

∑

m∈F

10 log10

⎛

⎜⎜⎜⎝

K−1∑
µ=0

b2(mK + µ − τ0)

K−1∑
µ=0

b̄2(mK + µ)

⎞

⎟⎟⎟⎠ (2.84)

where F marks the set of all frame indices including speech pauses, and C(F)
denotes the total number of frames.

A frequency-domain measure for the speech quality is provided by the
mean cepstral distance (CD) between the clean speech s(n) and the processed
speech s̄(n), cf. [64]. For all instrumental measures, a frame size of K = 256
is used, and 40 cepstral coefficients are considered for the CD measure.

2.5.3 Simulation Results for the Uniform Filter-Banks

The instrumental speech quality obtained with the different uniform filter-
banks is plotted in Fig. 2.18. The uniform FBE achieves the same (or even
better) objective speech quality as the uniform AS FB. Tab. 2.3 reveals that
the FBE possesses a slightly higher algorithmic complexity but achieves a
significantly lower signal delay. The MA and AR LDF achieve a further re-
duction of the signal delay and algorithmic complexity. Contrary to the MA
LDF, the enhancement by the AR LDF leads to a significantly decreased ob-
jective speech quality. The AR filter approximation causes phase modifications
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Fig. 2.18. Objective quality measures obtained with the uniform filter-banks.

which have a very detrimental effect on the segmental SNR measure. (Such
an effect can also be observed for warped filter-banks with an imperfect phase
compensation.) However, informal listening tests have revealed only negligible
differences for the perceived subjective speech quality. Therefore, a percep-
tual evaluation of the speech quality (PESQ) according to [33] has been con-
ducted in addition. This PESQ measure ranges from −0.5 (bad quality) to 4.5
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Table 2.3. Measured signal delay and average algorithmic complexity per sample
for the uniform filter-banks (M = L = 64).

Uniform filter-bank Signal delay Summations Multiplications Delay
[samples] (real) (real) elements

AS FB 64 101 31 256
FBE 32 83 142 256

MA LDF 24 67 64 240
AR LDF 0-2 75 74 272
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Fig. 2.19. Perceptual evaluation of the speech quality for the enhanced speech ŝ(k)
achieved with the uniform filter-banks.

(excellent quality). The PESQ measure is mainly used for the assessment of
speech codecs, but also employed as a perceptual quality measure for speech
enhancement systems, e.g., [4]. The measured PESQ values in Fig. 2.19 show
that all four filter-banks achieve an almost identical perceptual speech qual-
ity. The PESQ measure is no all-embracing quantity for the subjective speech
quality, but it complies well with the results of our informal listening tests.
Thus, the low delay filter concept is suitable to achieve a further reduced sig-
nal delay in a flexible and simple manner with negligible loss for the perceived
(subjective) speech quality.

2.5.4 Simulation Results for the Warped Filter-Banks

The curves for the objective speech quality obtained by means of the different
warped filter-banks are plotted in Fig. 2.20. The measured PESQ values are
not plotted again since they are as close together as in Fig. 2.19 but all about
0.25 PESQ units higher. Thus, the warped filter-banks achieve an improved
instrumental speech quality in comparison to the corresponding uniform filter-
banks. These results comply with our informal listening tests where the speech
enhanced by the warped filter-banks was rated to be superior.

The measured signal delay and algorithmic complexity of the used allpass
transformed filter-banks are listed in Tab. 2.4. It shows the increase of the
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Fig. 2.20. Objective quality measures obtained by the allpass transformed filter-
banks.

signal delay and algorithmic complexity due to the allpass transformation if
the same values for M and L are taken (see also Sec. 2.3.8). The warped FBE
causes a significantly lower signal delay and possesses a lower algorithmic
complexity than the corresponding warped AS FB, but achieves the same
objective and subjective speech quality.



Low Delay Filter-Banks for Speech and Audio Processing 55

Table 2.4. Measured signal delay and average algorithmic complexity per sample
for the allpass transformed filter-banks (M = L = 64).

Warped filter-bank Signal delay Summations Multiplications Delay
[samples] (real) (real) elements

AS FB 141 605 518 397
FBE 80 418 478 336

MA LDF 56 347 335 296
AR LDF 0-2 268 268 274

As for the uniform filter-banks, a further reduction of the signal delay and
algorithmic complexity can be achieved by the low delay filter approximation
with no loss for the subjective speech quality. The AR LDF is a minimum-
phase system and causes a very low signal delay of only a few samples.

2.6 Conclusions

Filter-bank systems used for speech and audio processing have to fulfill sev-
eral, partly conflicting requirements. A low signal delay and low algorithmic
complexity are important for many applications such as mobile communica-
tion devices or digital hearing aids. A non-uniform, Bark-scaled frequency
resolution is desirable to achieve a high speech and audio quality with a small
number of frequency bands.

In this chapter, we have investigated different design approaches for such
filter-banks. The main focus lies on allpass transformed filter-bank systems.
These frequency warped filter-banks are a generalization of the uniform filter-
bank. They are attractive for speech and audio processing due to their ability
to mimic the Bark frequency bands of human hearing with great accuracy.
However, the use of an allpass transformed analysis-synthesis filter-bank (AS
FB) leads to a high signal delay as well as a high algorithmic complexity.
This is attributed to the fact that synthesis subband filters of high degree are
needed to compensate the aliasing and phase distortions caused by the allpass
transformation of the analysis filter-bank.

These problems are addressed by the alternative concept of the filter-bank
equalizer (FBE). It is derived as an efficient realization of the filter-bank sum-
mation method (FBSM) and performs time-domain filtering with coefficients
adapted in the frequency-domain. Perfect signal reconstruction is achieved for
a broad class of transformations with significantly lower efforts than for the
common AS FB. The reconstructed signal is (inherently) aliasing-free so that
a prototype filter with a high filter degree to achieve a high stopband attenu-
ation is not essential. It is shown how the FBE can be efficiently implemented
by means of a polyphase network (PPN) structure. The explicit consideration
of the time-varying coefficients in the derivation has revealed the influence
of the filter structure on system delay, computational complexity, and signal
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quality. This has shown, among others, how the transposed direct form imple-
mentation achieves a stronger smoothing effect for time-varying coefficients
in comparison to the direct form implementation, which is beneficial to avoid
artifacts for the processed signal.

The presented allpass transformed FBE achieves a near-perfect, aliasing-
free signal reconstruction with significantly lower efforts than allpass trans-
formed AS FBs. The uniform FBE has a higher algorithmic complexity
than the corresponding uniform AS FB for most parameter configurations
(L,M,R), while the opposite applies for the allpass transformed FBE in com-
parison to the allpass transformed AS FB. The uniform and warped FBE
achieve a significantly lower algorithmic signal delay than the corresponding
AS FBs. A nearly linear phase response can be maintained even for time-
varying coefficients, which can be exploited, e.g., for binaural signal processing
in hearing aids.

The proposed filter-bank design provides a versatile concept for applica-
tions such as low delay speech enhancement. The uniform and warped FBE
achieve the same (or even better) objective and subjective quality for the en-
hanced speech as comparable AS FBs, but with a significantly lower signal
delay. The frequency warping can be utilized either to achieve an improved
speech quality or to use a lower number of frequency channels.

The concept of the low delay filter (LDF) is a modification of the FBE to
achieve a further reduction of signal delay and algorithmic complexity with
almost no compromise on the perceived (subjective) speech quality. In this
process, the time-domain filter of the FBE is approximated by a moving-
average (MA) filter or auto-regressive (AR) filter of lower degree. The use of
the uniform and warped MA filter allows to maintain a constant (near-linear)
phase characteristic, which is beneficial, e.g., for multi-channel processing. The
uniform and warped AR filter are minimum-phase systems and can achieve
an algorithmic signal delay of only a few sample instants.

The use for noise reduction has been considered primarily here, but the
presented low delay filter-bank concepts are also suitable for other speech and
audio processing algorithms.
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8. O. Cappé: Elimination of the musical noise phenomenon with the Ephraim and
Malah noise suppressor, IEEE Trans. on Speech and Audio Processing, 2(2),
345–349, April 1994.

9. I. Cohen: Enhancement of speech using Bark-scaled wavelet packet decomposi-
tion, Proc. EUROSPEECH ’01, 1933–1936, Aalborg, Denmark, September 2001.

10. A. G. Constantinides: Frequency transformation for digital filters, IEE Elec-
tronic Letters, 3(11), 487–489, November 1967.

11. R. E. Crochiere: A weighted overlap-add method of short-time Fourier analy-
sis/synthesis, IEEE Trans. on Acoustics, Speech, and Signal Processing, ASSP-
28(10), 99–102, February 1980.

12. R. E. Crochiere, L. R. Rabiner: Multirate Digital Signal Processing, Upper Sad-
dle River, NJ, USA: Prentice-Hall, 1983.
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