
DESIGN OF CRITICALLY SUBSAMPLED DFT FILTER-BANKS WITH
ALLPASS POLYPHASE FILTERS AND NEAR-PERFECT RECONSTRUCTION
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ABSTRACT
A new design for a recursive DFT analysis-synthesis filter-bank
(AS FB) with critical subsampling and near-perfect reconstruction
is proposed. The analysis filter-bank consists of allpass polyphase
filters to achieve a high frequency selectivity with a low algorith-
mic complexity and low signal delay. The condition for perfect
reconstruction (PR) leads to either unstable or anti-causal synthesis
filters. This problem is solved by stable allpass polyphase synthesis
filters which are designed by analytical closed-form expressions.
The first design can achieve arbitrarily small aliasing, amplitude
and phase distortions in dependence of the tolerable signal delay
and algorithmic complexity. The second design avoids aliasing and
amplitude distortions and minimizes the phase distortions at the
expense of an increased system delay. The proposed IIR filter-bank
possesses also a significantly lower algorithmic complexity than
comparable FIR filter-banks.

Index Terms— DFT filter-bank, allpass polyphase filters, IIR
phase equalizer, closed-form design, low complexity

1. INTRODUCTION

Critically subsampled analysis-synthesis filter-banks (AS FBs) are
used for a variety of applications such as compression or subband
coding systems, e.g., [1, 2]. In most cases, FIR AS FBs are used
whose design is well explored, e.g., [3, 4]. However, the use of re-
cursive filter-banks is an interesting alternative due to their low al-
gorithmic complexity and signal delay. One design approach for an
IIR polyphase network (PPN) DFT filter-bank is to use allpass filters
for its polyphase components [5, 6]. Such a filter-bank can be used
for subband coding of images or audio signals [6, 7].
Perfect reconstruction (PR) of the input signal can be achieved

by a PPN synthesis filter-bank whose polyphase filters consist of
the inverse allpass polyphase filters of the analysis filter-bank. This
straightforward approach leads to either unstable or non-causal syn-
thesis filters, which can be (approximately) implemented by differ-
ent techniques. In [6], the finite-length of image signals is exploited
to implement the synthesis filters in a non-causal fashion. For the
processing of infinite-length signals, such as speech and audio sig-
nals, a double buffering scheme can be used [8]. This approach
causes a fairly high system delay and requires the transmission of
initial filter states to the synthesis filter-bank, which is disadvanta-
geous for audio subband coding, cf., [7]. The transmission of such
side information can be avoided by the modified scheme of [7] at
the price of a further increased computational complexity and signal
delay.
A closed-form design for a causal FIR synthesis filter-bank is

presented in [9]. This design achieves near-perfect reconstruction

(which is sufficient for many applications) and avoids the problem
of non-causal filters.
In this paper, we present an analytic closed-form design for a

causal and stable synthesis filter-bank with allpass polyphase filters.
In contrast to the approach of [9], aliasing and amplitude distortions
can be avoided and a significantly lower algorithmic complexity is
achieved. The remaining signal distortions can be made arbitrarily
small in dependence of the tolerable signal delay and computational
complexity, respectively.

2. ALLPASS-BASED DFT ANALYSIS FILTER-BANK

The general structure of a critically subsampled AS FB with M
channels is shown in Fig. 1. The analysis subband filters of a DFT
filter-bank are complex modulated versions of a prototype lowpass
filter according to

Hi(z) = H(z W i
M ) ; i ∈ {0, 1 . . . , M − 1} (1)

withWM = exp{−j 2π/M}. Here, a recursive prototype lowpass
filter is considered whose PPN representation is given by

H(z) =
1

M

M−1X
λ=0

z−λ Aλ

`
zM
´

. (2)

ItsM polyphase components are different allpass filters of orderKλ

with transfer functions

Aλ(z) =

KλY
k=1

1− αk(λ)z

z − αk(λ)
; −1 < αk(λ) < 1 (3)

max
k,λ

{|αk(λ)|} < |z| ; λ ∈ {0, 1, . . . , M − 1}

where Aλ(z) = 1 for Kλ = 0. The (real) coefficients of the
allpass polyphase components for this prototype lowpass filter can
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Fig. 1. General structure of a uniform analysis-synthesis filter-bank
(AS FB) withM subbands and critical subsampling.
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Fig. 2. Magnitude response of the IIR analysis prototype lowpass
filter with design parametersM = 8 and Ωp = 0.6π/M .

be determined by the algorithm presented in [5]. An example for
such a prototype filter is provided by Fig. 2, which has been deter-
mined by the non-linear phase design of [5] for a passband edge
frequency of Ωp = 0.6π/M and allpass filter degrees Kλ = 1
for λ ∈ {0, 1, . . . , M − 2} and KM−1 = 0. The width of the in-
evitable side-lobes and the transition-band can be reduced at the
price of a diminished stopband attenuation and vice versa. However,
the frequency selectivity of such an IIR prototype filter is signifi-
cantly higher than for a comparable FIR prototype filter.

Eq. (1) and (2) lead to the following PPN representation for the
analysis subband filters

Hi(z) =
1

M

M−1X
λ=0

z−λ Aλ

`
zM
´
W−λ i

M ; i ∈ {0, 1, . . . , M − 1} .

(4)

The corresponding PPN implementation of the analysis filter-bank
is shown in Fig. 3 (cf., [4]). The inverse discrete Fourier transform
(IDFT) can be efficiently calculated by the inverse fast Fourier trans-
form (IFFT), e.g., [10]. TheM maximally decimated subband sig-
nals can be expressed in the z-domain as follows

Xi(z) =
1

M2

M−1X
r=0

X
“
z

1

M W r
M

” M−1X
λ=0

z−
λ

M W
−λ (i+r)
M Aλ(z) .

(5)
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Fig. 3. Polyphase network (PPN) implementation of the critically
subsampled DFT analysis filter-bank.
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Fig. 4. PPN DFT synthesis filter-bank with upsampling.

3. SYNTHESIS FILTER-BANK DESIGN

3.1. General Concept

The general structure of the PPN synthesis filter-bank is depicted
in Fig. 4. Some straightforward calculations lead to the following
z-domain representation for the output signal

Y (z) =
z−M+1

M

M−1X
r=0

X (z W r
M )

M−1X
λ=0

Aλ

`
zM
´
Bλ

`
zM
´
W−λ r

M

= z−(M−1)

 
X(z)

1

M

M−1X
λ=0

Aλ(zM )Bλ(zM )

| {z }
= Tlin(z)

+

M−1X
r=1

X (z W r
M )

1

M

M−1X
λ=0

Aλ(zM )Bλ(zM )W−λ r
M| {z }

= Ur(z)

!
.

(6)

The function Tlin(z) marks the linear transfer function of the AS FB
andUr(z) represents the r-th aliasing component due to the subsam-
pling. The peak aliasing distortions of the AS FB are given by [4]

EApeak(Ω) =

vuutM−1X
r=1

|Ur(ejΩ)|2 . (7)

Eq. (6) reveals that the condition

Aλ(z)Bλ(z)
!
= z−D ∀ λ ∈ {0, 1, . . . , M − 1} (8)

leads to an AS FB with PR having an overall signal delay of
τo = M − 1 + M D sample instants. This condition can be ful-
filled by the choiceBλ(z) = Aλ(z−1)which, however, corresponds
to a causal, unstable filter for a region of convergence (ROC) given
by max{|αk(λ)|} < |z|, and a stable but anti-causal filter for a ROC
max{|αk(λ)|} > |z|. In the following, an alternative design will be
devised to avoid the drawbacks associated with non-causal filtering
pointed out before.
Instead of a filter inversion problem, Eq. (8) can also be inter-

preted as a phase equalization problem: The non-linear phase re-
sponse of the allpass filters Aλ(z) shall be linearized by a phase
equalizer Bλ(z). One method to obtain such a phase equalizer is
to employ a numerical design approach to construct an allpass filter
with prescribed phase response, e.g., [11, 12]. However, such tech-
niques have a relatively high design complexity and do not always
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provide a stable allpass filter. To circumvent these problems, we use
the following closed-from design for a stable allpass phase equalizer

P
(λ)
AP (z) =

KλY
k=1

Nλ(k)−1Y
n=0

1 + αk(λ)2
n

z2n

z2n + αk(λ)2n
; Nλ(k) ∈ N\{0}

(9)

which has been originally devised in [13] for the construction of all-
pass transformed DFT filter-banks.1 The transfer functions of allpass
filter and phase equalizer are given by

T
(λ)
AP (z) = Aλ(z) · P

(λ)
AP (z)

=

KλY
k=1

1− αk(λ)dλ(k) · zdλ(k)

zdλ(k) − αk(λ)dλ(k)
; dλ(k) = 2Nλ(k) (10)

and represents allpass filters of order

Dλ =

KλX
k=1

dλ(k) ∀ λ ∈ {0, 1, . . . , M − 1} . (11)

These allpass filters are always stable since |αk(λ)| < 1 and tend to
a pure delay of z−Dλ for growing values dλ(k). It should be noted
that the allpass property is maintained even for quantized allpass co-
efficients, and that the poles of the allpass phase equalizer of Eq. (9)
are closer to the origin than for the allpass filters of Eq. (3).
The proposed phase equalizer of Eq. (9) has a filter degree ofPKλ

k=1(dλ(k)− 1) and needs 2
PKλ

k=1 log2 dλ(k) real multipli-
ers, 2

PKλ

k=1 log2 dλ(k) real adders and
PKλ

k=1(dλ(k)− 1) delay
elements.2 In contrast, a general allpass phase equalizer with the
same degree requires 2

PKλ

k=1 dλ(k) multipliers, 2
PKλ

k=1 dλ(k)

adders and
PKλ

k=1 dλ(k) delay elements. The corresponding
FIR phase equalizer of [9] requires

PKλ

k=1 dλ(k) multipliers,PKλ

k=1(dλ(k)− 1) adders and
PKλ

k=1(dλ(k)− 1) delay elements.

3.2. Design I

Near-perfect reconstruction can be accomplished by means of the
following allpass polyphase synthesis filters

Bλ(z) = P
(λ)
AP (z) · z−(Dmax−Dλ) with Dmax = max

λ
{Dλ} .

(12)

Inserting Eq. (12) into Eq. (6) yields the linear transfer function

Tlin(z) =
1

M
z−M Dmax

M−1X
λ=0

T
(λ)
AP

`
zM
´
· zM Dλ (13)

and aliasing components

Ur(z) =
1

M
z−M Dmax

M−1X
λ=0

T
(λ)
AP

`
zM
´
· zM Dλ ·W−λ r

M (14)

1This phase equalizer concept can also be applied in case of complex
allpass filter coefficients.
2The cascade allpass filter structure is considered consisting of real-

valued allpass filters of first order each implemented by two multipliers, two
adders and one delay element.

with T
(λ)
AP (z) given by Eq. (10). The linear and aliasing distortions

can be made arbitrarily small by using higher values for dλ(k). The
overall signal delay of the filter-bank amounts to

τo = M − 1 + M Dmax (15)

sample instants.

3.3. Design II

Inspection of Eq. (6) reveals that complete aliasing cancella-
tion is achieved, if the product Aλ(z)Bλ(z) is identical for all
λ ∈ {0, 1, . . . , M − 1}. This can be accomplished by the following
polyphase synthesis filters

Bλ(z) =

λ−1Y
ρ=0

T
(ρ)
AP (z) · P

(λ)
AP (z) ·

M−1Y
i=λ+1

T
(i)
AP (z) . (16)

The linear transfer function is now given by

Tlin(z) =
M−1Y
λ=0

T
(λ)
AP

`
zM
´

. (17)

This is an allpass filter so that no amplitude distortions occur. The
remaining phase distortions can be made arbitrarily small in depen-
dence of the tolerable signal delay, which amounts to

τo = M − 1 + M
M−1X
λ=0

Dλ (18)

sample instants.

4. DESIGN EXAMPLES

The design of a maximal decimated DFT filter-bank with M = 8
subbands is considered whose analysis prototype filter is shown in
Fig. 2. For the synthesis filter-bank design, the proposed allpass
polyphase filters have been taken. For comparison, the correspond-
ing FIR synthesis filter-bank design of Galijašević and Kliewer [9]
is considered for the same filter degrees and signal delay.
For the synthesis filter-bank design I, the filter degrees Dλ

according to Eq. (11) are equal to [2, 4, 4, 8, 8, 16, 16, 0]. The
zero value indicates an ’identity branch’ for λ = M − 1 where
AM−1(z) = 1 and BM−1(z) = z−Dmax . The linear transfer func-
tion and the peak aliasing distortions according to Eq. (6) and (7)
are plotted in Fig. 5.3 The curves for the new design (marked by the
solid blue line) reveal almost no amplitude distortions, but slightly
higher group delay distortions in comparison to the corresponding
FIR design of [9] (marked by the red dotted curve). The peak
aliasing distortions according to Eq. (7) are more alternating than
for the FIR synthesis filter-bank design but have a similar mean
value.
For the synthesis filter-bank design II, the coefficients Dλ are

equal to [2, 4, 4, 8, 8, 16, 32, 0]. The resulting transfer function is
plotted in Fig. 6. The new design does not cause amplitude and alias-
ing distortions, but exhibits slightly higher group delay distortions in
comparison to the FIR synthesis filter-bank design. The signal delay
is considerably higher than for the design II, but still lower than for a
comparable synthesis filter-bank implemented by a non-causal filter-
ing approach, cf., [7]. Moreover, the proposed synthesis filter-bank
design exhibits a significantly lower algorithmic complexity than the
FIR design of [9] (cf., Section 3.1).

3In practice, a higher signal reconstruction error is often tolerable so that
the synthesis filters can have a lower degree than for these design examples.
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Fig. 5. Analysis of the transfer function of an IIR DFT AS FB with
the new IIR synthesis filter-bank design I (blue solid line) and the
corresponding FIR synthesis filter-bank of [9] (red dotted line).

5. CONCLUSIONS

A novel design for a maximally decimated DFT AS FB with allpass
polyphase filters and near-perfect reconstruction is proposed. The
synthesis subband filters consist of stable allpass polyphase filters
designed by simple closed-form expressions. This allows to control
the trade-off between signal distortions and signal delay in a simple
and flexible manner. In comparison to the FIR synthesis filter-bank
design of [9], a significantly lower algorithmic complexity is accom-
plished and the filter-bank causes no or negligible amplitude distor-
tions. Aliasing and amplitude distortions can be completely avoided
at the expense of a higher signal delay and increased complexity.
The slightly higher phase distortions in comparison to an FIR synthe-
sis filter-bank are usually tolerable for speech and audio processing
applications due to the insensitivity of the human auditory systems
towards moderate phase modifications. The analysis and synthesis
subband filters have the same magnitude responses, but the analy-
sis filter-bank has a significantly lower algorithmic complexity than
the synthesis filter-bank. Thus, the exchange of analysis and synthe-
sis filter-bank is possible for compression or transmission systems
where encoder and decoder have a different computational power.
A DFT filter-bank is considered here, but the new approach can be
easily applied for other transformation kernels such as the discrete
cosine transform (DCT).
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