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ABSTRACT

This paper proposes a new speech enhancement algorithm for the
suppression of background noise and late reverberation without a
priori knowledge. A generalized spectral weighting rule based on
estimations for the spectral variances of the late reverberant speech
and background noise is used for speech enhancement. This allows
to suppress speech distortions due to late room reflections without
knowledge about the complete room impulse response. In contrast
to existing methods, all needed quantities are estimated entire blindly
from the reverberant and noisy speech signal. The new algorithm has
also a low signal delay which is important, e.g., for speech enhance-
ment in mobile communication devices or hearing aids.

Index Terms— speech enhancement, dereverberation, blind es-
timation, spectral weighting

1. INTRODUCTION

Algorithms for the enhancement of acoustically distorted speech sig-
nals are used for a variety of applications such as hands-free devices,
mobile phones or hearing aids. Commonly used systems for (single-
channel) speech enhancement achieve a suppression of disturbing
background noise, e.g., [1,2] but do not (notably) reduce speech dis-
tortions due to room reverberation. Such impairments are caused
through the multiple reflections and diffraction of the sound on walls
and objects of a room. These multiple echoes add to the direct sound
at the receiver and blur its temporal and spectral characteristic. As
a consequence, reverberation and background noise reduce listening
comfort and speech intelligibility, especially for hearing impaired
persons [3].
Numerous proposals for speech dereverberation have been made

in recent years (see, e.g., [4, 5] for an overview). Of special interest
for practical applications are dereverberation algorithms which are
based on spectral speech estimators, e.g., [5–7]. They are derived by
a simple statistical model for the room impulse response (RIR) and
perform speech enhancement by spectral weighting. This suppresses
the effects of late reverberation. The late echoes cause detrimental
overlap-masking effects where a phoneme is smeared over time and
overlaps with following phonemes, which impairs speech intelligi-
bility. Spectral speech enhancement algorithms have a manageable
computational complexity and do not require knowledge about the
complete RIR, but only some characteristic parameters such as the
reverberation time (RT).
However, the reverberation time estimation (RTE) is particularly

difficult as a blind estimation is required from the reverberant and

This work was supported by GN ReSound, Eindhoven, The Netherlands.

noisy speech signal. Hence, most proposals for speech dereverbera-
tion exclude this difficulty by assuming that the RT is known or can
be estimated reliably, e.g., [5, 7]. Lebart et al. [6] propose a partially
blind estimation of the RT by detecting suitable speech offsets in
the reverberant, noiseless speech signal which contain, e.g., a sound
decay after a sharp speech drop-off, but they do not describe the es-
timation method in detail.
In this contribution, a new algorithm for joint noise suppression

and dereverberation is proposed, which estimates all needed quanti-
ties blindly so that no a priori knowledge is required. The RT is es-
timated by a maximum likelihood (ML) approach without the need
for a (heuristic) speech offset detection. In addition, the new algo-
rithm has a low signal delay and moderate computational complex-
ity, which enables its use for speech enhancement systems in mobile
communication devices or hearing instruments.

2. SPEECH ENHANCEMENT SYSTEM

2.1. Signal Model

The distorted signal x(k) is given by the superposition of the rever-
berant speech signal z(k) and additive noise v(k), where k denotes
the discrete time index. The received signal x(k) and the original
(undistorted) speech signal s(k) are related by

x(k) = z(k) + v(k) =

LR−1X
n=0

s(k − n)hR(n, k) + v(k) (1)

with hR(n, k) denoting the time-varying RIR of length LR between
source and receiver. The reverberant signal can be decomposed into

z(k) =

Le−1X
n=0

s(k − n)hR(n, k)| {z }
= ze(k)

+

LR−1X
n=Le

s(k − n)hR(n, k)

| {z }
= zl(k)

. (2)

The signal ze(k) is termed as early speech component and consti-
tutes the target signal of our speech enhancement algorithm. The
suppression of late reverberant speech zl(k) and additive noise v(k)
is accomplished by modeling them both as uncorrelated, random
noise processes so that spectral enhancement techniques can be ap-
plied. This concept, which has been introduced by Lebart et al. [6]
and further improved by Habets [5,7], forms the basis for our speech
enhancement algorithm.
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Fig. 1. System for low delay noise reduction and dereverberation.

2.2. Low Delay Filtering

The speech enhancement is performed by spectral weighting in the
short-term frequency-domain

bS(i, λ) = X(i, λ) · Wi(λ) ; i ∈ {0, 1, . . . , M − 1} (3)

with i denoting the frequency (channel) index and λ marking the
subsampled time index λ =

¨
k
R

˝
. (The operation �.� returns the

greatest integer value which is lower than or equal to the argument.)
For block-wise processing, the downsampling rate R ∈ N\{0} cor-
responds to the frame shift and λ to the frame index.
Eq. (3) can be either implemented by the overlap-add method

[8], or the concept of the filter-bank equalizer [9], which is consid-
ered here. This approach allows for a low algorithmic signal delay
and is beneficial, if the vantages of a non-uniform (Bark-scaled) fre-
quency resolution should be exploited, e.g., for speech enhancement
in hearing aids, cf., [9].
A general representation of the overall system is provided by

Fig. 1. The subband signals X(i, λ) are calculated by a (uniform or
warped) DFT analysis filter-bank with downsampling by R, which
can be efficiently implemented by a polyphase network. The spec-
tral coefficients X(i, λ) are needed to calculate the spectral weights
Wi(λ) for speech enhancement as well as the weights W ′

i (λ) for
speech denoising prior to the RT estimation. These spectral weights
are converted to time-domain filter coefficients wn(λ) by means of
the generalized discrete Fourier transform (GDFT)

wn(λ) =
h(n)

M

M−1X
i=0

Wi(λ)e−j 2 π

M
i (n−L/2)

for n ∈ { 0, 1, . . . L − 1 } (4)

and accordingly for the coefficients w′n(λ). The sequence h(n) rep-
resents the real, finite impulse response of the prototype lowpass
filter for the analysis filter-bank. It is also possible to approximate
the (uniform or warped) time-domain filter by an FIR or IIR filter of
lower degree to further reduce signal delay and complexity. A more
detailed description can be found in [9].

2.3. Spectral Weights for Noise Reduction and Dereverberation

The weights are calculated by the spectral subtraction rule

W (ss)
i (λ) = 1 −

1p
γ̂(i, λ)

; i ∈ {0, 1, . . . , M − 1} . (5)

This method achieves a good speech quality with low computational
complexity, but other, more sophisticated estimators such as the
spectral amplitude estimator of [1] can be employed as well, cf., [5].
The spectral weights of Eq. (5) depend on an estimation of the a

posteriori signal-to-interference ratio (SIR)

γ(i, λ) =
E
˘
|X(i, λ)|2

¯
σ2

zl(i, λ) + σ2
v(i, λ)

(6)

which is related to the a priori SIR according to

ξ(i, λ) =
E
˘
|Ze(i, λ)|2

¯
σ2

zl(i, λ) + σ2
v(i, λ)

= γ(i, λ) − 1 (7)

due to the model of Eq. (2). If no reverberation is present, i.e.,
z(k) = s(k), Eq. (6) and Eq. (7) reduce to the well-known a pos-
teriori and a priori signal-to-noise ratio (SNR). The a priori SIR
can be estimated by the decision-directed approach of [1]

ξ̂(i, λ) = η ·
|Ẑe(i, λ − 1)|2

σ̂2
zl(i, λ − 1) + σ̂2

v(i, λ − 1)

+ (1 − η) ·max {γ̂(i, λ) − 1, 0} ; 0.8 < η < 1. (8)

Calculating the a posteriori SIR of Eq. (6) by means of the decision-
directed approach leads to a smoothing effect, which is beneficial to
avoid audible artifacts such as musical tones. The spectral weights
are confined by a lower threshold1

Wi(λ) = max
n

W (ss)
i (λ), εthr(i, λ)

o
, (9)

which allows to balance the trade-off between the amount of inter-
ference suppression on one hand, and speech distortions (artifacts)
on the other hand.

2.4. Interference Power Estimation

A crucial issue is the estimation of the spectral variances of the in-
terfering noise σ2

v(i, λ) and late reverberant speech σ2
zl(i, λ) to de-

termine the a priori SIR. The variance of the noise can be estimated
by common techniques such as minimum statistics [10].
The estimator for the spectral variance σ2

zl(i, λ) of the late rever-
berant speech can be obtained by means of a simple statistical model
for the RIR [6]

hM(t) =

(
nr(t)e−j ρ t for 0 ≤ t

0 for 0 > t
(10)

where nr(t) represents an uncorrelated, stationary, white Gaussian
noise processes with zero mean.
The reverberation time (RT) is defined as time span in which the

energy of a steady-state sound field in a room decays 60 dB below
its initial level after switching-off the excitation source. It is linked
to the decay rate ρ of Eq. (10) according to

T60 =
3

ρ log10(e)
≈

6.908

ρ
. (11)

Due to this relation, the terms decay rate and reverberation time are
used interchangeably in the following. The RIR model of Eq. (10)

1The spectral weights can also be bounded implicitly by imposing a lower
threshold to the a priori SIR of Eq. (7).
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is rather coarse, but allows to derive a relation between the spec-
tral variance σ2

zl(i, λ) of the late reverberant speech and the variance
σ2

z(i, λ) of the reverberant speech according to [6, 7]

σ2
zl(i, λ) = e−2 ν(i,λ) Tl · σ2

z(i, λ − Nl) . (12)

The value ν(i, λ) denotes the frequency and time dependent decay
rate of the RIR in the subband-domain. The integer value Nl =
�Tl fs/R� marks the number of frames corresponding to the chosen
time span Tl, where fs denotes the sampling frequency. The value
for Tl is typically in a range of 20 to 100ms and controls the time
span after which the late reverberation (presumably) begins.
The spectral variance of the reverberant speech can be estimated

from the spectral coefficients bZ(i, λ) by recursive averaging

σ̂2
z(i, λ) = γ · σ̂2

z(i, λ − 1) + (1 − γ) · | bZ(i, λ)|2 (13)

with 0 < γ < 1. The spectral coefficients of the reverberant speech
are obtained by spectral weighting

Ẑ(i, λ) = X(i, λ) · W ′

i (λ) (14)

using, for instance, the spectral subtraction rule of Eq. (5) based on
an estimation of the a posteriori SNR.
A more sophisticated estimation of the late reverberant energy is

proposed in [5], which takes model inaccuracies into account if the
source-receiver distance is lower than the so-called critical distance.
However, this algorithm is more complex as an estimate of the direct-
to-reverberation ratio is needed and hence not considered here.

2.5. Decay Rate Estimation

The estimation of the frequency dependent decay rate ν(i, λ) of
Eq. (12) requires non-subsampled subband signals which causes a
high computational complexity. To avoid this, we estimate the decay
rate in the time-domain at decimated time instants λ′ = �k/R′� out
of the partly denoised, reverberant speech signal ẑ(k) as sketched by
Fig. 1. The prime indicates that the update rate for this estimationR′

is not necessarily identical to that for the adaptation of the spectral
weights Wi(λ) and W ′

i (λ). The time-domain coefficients w′n(λ)
for denoising are obtained from the spectral weightsW ′

i (λ) used in
Eq. (14). The frequency dependent decay rate ν(i, λ′), needed to
evaluate Eq. (12), is obtained by the time-domain estimate for the
decay rate ρ̂(λ′) according to

ν̂(i, λ′) ≈ ρ̂(λ′) ∀ i ∈ { 0, 1, . . . , M − 1 } . (15)

This is a rather simple approximation which, however, yields rea-
sonable results with low computational complexity.
The decay rate (or RT) is estimated blindly by the maximum

likelihood (ML) approach proposed in [11]. A ML estimation for the
decay rate ρ is performed at decimated time instants λ′ on a frame
withN samples according to

ρ̂(λ′) = arg

j
max

ρ

˘
L(λ′)

¯ff
(16)

with log-likelihood function given by

L(λ′) = −
N

2

 
(N − 1) ln(a)

+ ln

 
2π

N

N−1X
i=0

a−2 i ẑ2(λ′R′ − N + 1 + i)

!
+ 1

!
(17)

and damping factor a = exp{−ρ/fs}. The corresponding RT is
obtained by Eq. (11).
A correct RT estimate can be expected, if the current frame

captures a free decay period following the sharp offset of a speech
sound. Otherwise, an incorrect RT is obtained, e.g., for segments
with ongoing speech, speech onsets or gradually declining speech
offsets. Such estimates can be expected to overestimate the RT, since
the damping of sound cannot occur at a rate faster than the free de-
cay. However, taking the minimum of the last Kl ML estimates is
likely to underestimate the RT since the estimation procedure is also
a stochastic process. A better strategy is to apply an order-statistics
filtering approach as known from image processing [12]. The his-
togram of theKl most recent ML estimates is built and its first local
maximum is taken as RT estimate bT (peak)60 (λ′). The effects of outliers
can be efficiently reduced by recursive smoothingbT60(λ

′) = β · bT60(λ
′ − 1) + (1 − β) · bT (peak)60 (λ′) (18)

with 0.9 < β < 1. The devised RT estimation exploits the fact
that speech signals always contain small pauses of some hundred
milliseconds, but it requires no speech offset detection as [6].

3. EVALUATION

The performance of the new algorithm is evaluated by means of in-
strumental quality measures. The distorted signals are generated ac-
cording to Eq. (1). A speech signal with fs = 16 kHz is convolved
with a real measured RIR having a RT of T60 = 0.64 s (determined
by a modified Schroeder method as described in [11]). The rever-
berant speech signal z(k) is distorted by additive car engine noise
from the NOISEX-92 database with varying global SNRs for ane-
choic speech s(k) and additive noise v(k).
The processing is done by means of the uniform filter-bank

equalizer [11] as sketched by Fig. 1. A uniform DFT analysis
filter-bank with Hann prototype filter,M = 256 frequency channels
and downsampling rate ofR = 128 is used. The time-domain filters
are of linear phase and have a length of L = M taps.2 Thus, this
system has only an algorithmic signal delay ofM/2 samples instead
ofM − 1 samples as for the corresponding DFT analysis-synthesis
filter-bank (or overlap-add method).
The spectral weights are calculated by the spectral subtraction

rule of Eq. (5) using the thresholding of Eq. (9) with εthr = 0.15 for
the weightsWi(λ) and εthr = 0.1 forW ′

i (λ). The noise variance is
estimated by minimum statistics [10] and those of the late reverber-
ant speech by Eq. (12). For the blind RTE according to Sec. 2.5, a
histogram size of Kl = 400 values and adaptation rate R′ = 256
are used. A smoothing factor of β = 0.995 is taken for Eq. (18).
The quality of the processed speech is evaluated in the

frequency-domain by means of the cepstral distance (CD) be-
tween the (anechoic) speech signal of the direct path sd(k) and
the enhanced speech ŝ(k) after delay compensation (cf., [2, 9]).
The segmental SIR is used as time-domain measure for the speech
quality according to (cf., [4])

SIRseg
dB

=
10

C(Fs)

X
l∈Fs

log10

0BBB@
Nf−1P
n=0

s2
d (l − n)

Nf−1P
n=0

`
sd(l − n) − ŝ(l − n)

´2
1CCCA.

(19)

2This filter-bank configuration is used as the employed instrumental mea-
sures are sensitive towards filtering with non-linear phase, even if this has no
audible effect, cf., [9].
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Fig. 2. Cepstral distance (CD) and segmental signal-to-interference
ratio (SIRseg) for varying global SNRs and different speech enhance-
ment configurations.

The set Fs contains all frame indices corresponding to frames with
speech activity and C(Fs) represents its total number of elements.
Non-overlapping frames with Nf = 256 samples are used and 40
coefficients are considered for the CD measure. The curves for dif-
ferent measures are plotted in Fig. 2.

The joint suppression of noise and later reverberation leads to
a significantly better speech quality, in terms of a lower CD and
higher SIR, in comparison to a common noise reduction by spec-
tral subtraction. For low SNRs, the dereverberation effect becomes
less significant due to the high noise energy, cf., Eq. (7). This is a de-
sirable effect as the impact of reverberation is masked by the noise in
such cases. For high SNRs, the noise reduction still achieves a slight
improvement as the noise power estimation does not yield zero val-
ues. The curves for speech enhancement with blind RTE are almost
identical to those obtained by using the actual RT. The blind RTE is
done with an estimation error of less than ±0.2 s [11], which is still
sufficient for this application and does not cause noteworthy impair-
ments.

The results of the instrumental measurements comply with
our informal listening tests. The new speech enhancement system
achieves a significant reduction of background noise and reverber-
ation, but still preserves a natural sound impression. The speech
signals enhanced with blind RTE and known RT have revealed
no audible differences. The noise reduction alone achieves only
a slightly audible reduction of reverberation. The use of other
(measured) RIRs with different RTs has lead to similar results.

4. CONCLUSIONS

A novel speech enhancement algorithm for the joint suppression of
background noise and late reverberation is proposed. The enhance-
ment is performed by a spectral amplitude subtraction rule based on
spectral variance estimations for the background noise and late rever-
berant speech. The variance of the late reverberant speech is calcu-
lated by a simple rule in dependence of the RT, which is determined
blindly by means of an adaptive ML estimation and order-statistics
filtering.
In reverberant and noisy environments, the new system achieves

a significantly better speech quality than common noise reduction
systems without dereverberation. The enhancement with blind RT
estimation achieves the same speech quality as algorithms assuming
the RT to be known such as [5, 7].
The proposed algorithm has a low signal delay and manageable

computational complexity, which is important, e.g., for speech en-
hancement systems in hands-free devices, mobile phones or hearing
aids. Another interesting application are speech recognition systems
where the suppression of noise and reverberation is beneficial to in-
crease the recognition rate, cf., [6].
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