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Abstract

The reverberation time (RT) is an important measure for
the characterization of reverberant environments, which
can be determined by different acoustical measurement
methods. However, they use mostly a special mea-
surement setup and dedicated excitation signals, which
is inapplicable for most speech processing algorithms
requiring knowledge about the RT.

In this contribution, a new method is devised which
allows to estimate the RT from noisy observations. It is
based on a maximum likelihood (ML) estimation which
is derived from a statistical model of the sound decay
in reverberant and noisy enclosures. This allows to
determine the RT from a measured sound decay (or room
impulse response) despite the presence of noise. It is also
shown, how the ML estimator can be used to determine
the RT blindly from a noisy and reverberant speech
signal. This blind RT estimation can be employed for the
enhancement of noisy and reverberant speech signals.

Introduction

The reverberation time (RT) is a well-known and im-
portant measure for the characterization of reverberant
enclosures. It is defined as the time span in which the
energy of a steady-state sound field decays 60 dB below
its initial level after switching-off the excitation source
[1]. Knowledge about the RT is of interest, among others,
for the characterization of acoustic environments [1],
predicting the subjective preference of reverberant speech
[2], or for the enhancement of distorted speech signals,
e.g., [3, 4]. Accordingly, methods for reverberation

time estimation (RTE) are a subject of interest for
acousticians and engineers alike.

The RT can be determined by measuring the sound
decay after turning-off the excitation source, e.g., by
means of the interrupted noise method [5]. Schroeder has
developed a method to calculate the ensemble average of
different decay curves from the measured room impulse

response (RIR) [6]. The Schroeder (impulse) method
forms the basis for other approaches to estimate the RT
by means of excitation sound sources, e.g., [7, 8]. The
method of Xiang [8] allows also to estimate the RT from
a noisy sound decay by means of non-linear regression.
The RT is calculated by an iterative procedure which,
however, relies very much on a good initial guess for the
first iteration and does not necessarily converge.
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For speech enhancement systems, the use of an excitation
sound source to acquire the RT is of course impractical.
Instead, the RT must be estimated blindly from a
reverberant and mostly noisy speech signal. Methods
for a (semi-)blind RT estimation have been proposed,
e.g., in [9, 3, 10]. In [9], room characteristics are
’learned’ by using a neural network approach. Other
methods try to detect speech offsets (gaps) in the
speech signal to measure the sound decay using either
one or two microphones [3, 10]. Algorithms for an
entirely blind estimation of the RT are presented in
[11, 12, 13]. However, all these proposals for a (partly)
blind estimation of the RT deal not (explicitly) with the
impairments due to additive noise.

Hence, estimating the RT in noisy environments and
with little efforts is still a challenging problem. In
this contribution, we will review recent proposals to
tackle this problem by means of a maximum likelihood

(ML) estimator and outline its application for speech
enhancement based on [14, 15].

Sound Decay Model

It is assumed that the observed sequence y(k) contains
the sound decay due to reverberation hM(k) and additive
noise n(k):

y(k) = hM(k) + n(k). (1)

The noise sequence n(k) is assumed to be uncorrelated
with hM(k) and represents i.i.d. random variables with
zero mean and normal distribution N (0, σ2

n). The sound
decay is modeled as a discrete random process

hM(k) = Ar v(k)e−ρ k Ts ǫ(k) (2)

with real amplitude Ar > 0. The variable k marks the
discrete sample index and ǫ(k) the unit step sequence.
The parameter Ts = 1/fs represents the sampling period
and v(k) is a sequence of i.i.d. random variables with zero
mean and normal distribution N (0, 1). Eq. (2) can also
be seen as a simple statistical model for the RIR, which
considers only the effects of late reflections and models
them as diffuse noise. The energy decay curve for the
corresponding time-continuous sound decay model reads

Eh̃(t)
.
= E

{
h̃2

M(t)
}

= A2
r e−2ρ t ǫ̃(t) (3)

where the tilde indicates the time-continuous counter-
parts to the discrete quantities of Eq. (2). A relation
between the decay rate ρ and the reverberation time T60
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can be established by the requirement

10 log10

(
Eh̃(0)

Eh̃(T60)

)
!
= 60 (4)

which leads to the equation

T60 =
3

ρ log10(e)
≈ 6.908

ρ
. (5)

Due to this relation, the terms decay rate and RT will be
used interchangeably in the following.

According to our model, y(k) is a random variable with
the Gaussian probability density function (PDF)

py(k)(x) =
1√

2πσ2 ξ(k)
exp

{
− x2

2σ2 ξ2(k)

}
(6)

with ξ(k) =
√

A2
r · a2 k · ǫ(k) + σ2

n and a = e−Ts ρ .

(7)

Hence, the sequence y(k) for k ∈ {0, . . . , N − 1} consists
of N independent random variables with zero mean
and non-identical PDFs having normal distributions
N (0, ξ2(k) · σ2).

Maximum Likelihood Estimation

The model introduced before enables the use of a maxi-
mum likelihood (ML) estimator (cf., [16]) for the RT. The
likelihood function (joint PDF) for an observed sequence
of N (noisy) samples y(k) is derived from Eq. (6):

Lf (y, ξ, σ) =
1

(2πσ2)
N

2

N−1∏
i=0

ξ(i)

exp

{
− 1

2σ2

N−1∑

i=0

y2(i)

ξ2(i)

}

(8)

which yields the following log-likelihood function (LLF)

L (y, ξ, σ) = ln
(
Lf (y, ξ, σ)

)

= − N

2
ln(2πσ2) −

N−1∑

i=0

ln (ξ(i))

− 1

2σ2

N−1∑

i=0

y2(i)

ξ2(i)
(9)

with ln(·) representing the natural logarithm. The un-
known damping factor a (and thus T60) can be estimated
by the maximum of the LLF

â = arg
a

{
maximum
Ar,a,σ,σn

{L (y, ξ, σ)}
}

(10)

where the dependence from the variables (y, ξ, σ) will be
omitted in the following to simplify the notation. The
noise variance σ2

n can be assumed to be known as it can be
determined by the noise floor following the sound decay.
Eq. (10) can be solved by setting the partial derivatives
towards the unknowns equal to zero which leads after
some manipulations to the new LLF [14]

L = −N

2

(
ln

(
2π

N

N−1∑

i=0

y2(i)

ξ2(i)

)
+ 1

)
−

N−1∑

i=0

ln
(
ξ(i)

)
.

(11)

The unknown damping factor is then determined by

â = arg
a

{
maximum

Ar,a
{L}

}
. (12)

This approach is termed as generalized maximum like-

lihood (GML) estimator as it enables a RTE in noisy
environments in contrast to the ML estimator of [11].

The exact evaluation of Eq. (12) requires a high algorith-
mic complexity since there exists no simple closed-form
solution. Therefore, we use an an iterative procedure
to obtain â : In an initial step (j = 0), a guess

for the amplitude Â
(0)
r is made. In iteration step j,

Eq. (12) is solved for â(j) with a fixed value Â
(j−1)
r .

Afterwards, Eq. (12) is solved with the obtained value

â(j) to gain the new estimate Â
(j)
r and so on until no

further improvements are achieved. This iterative scheme
is suboptimal in comparison to an exact solution, but it
provides good results in practice as shown later.

If the interfering noise is not too strong, the value for Ar

can also be estimated by taking the mean

Âr =

√√√√ 1

L

L∑

i=0

y2(i). (13)

The value for L should cover a period of about 20 ms or
less so that the sound decay has no significant influence.
By this, the RT can be calculated directly by Eq. (12),
termed as non-iterative GML RTE.

An important special case is given, if no additive noise is
(assumed to be) present, i.e., σn = 0. In this case, it can
be shown that the LLF of Eq. (11) simplifies to

L = −N

2

(
(N − 1) ln(a) + ln

(
2π

N

N−1∑

i=0

a−2 iy2(i)

)
+ 1

)

(14)

so that the parameter Âr drops out and only the
parameter â needs to be determined. In this case, the
generalized ML estimator simplifies to the ML estimator
of [11].

The devised iterative and non-iterative GML estimator
have been used to determine the RT out of a measured
RIR disturbed by additive Gaussian noise shown in Fig. 1
(fs = T−1

s = 16kHz). For comparison, the Schroeder
method [6] and the ML approach of Ratnam et al. [11]
have been used (see also [14]). The obtained results are
complied in Table 1. For the original (noiseless) RIR,
the results of all ML estimators are identical as the GML

approach RIR
noiseless noisy

Schroeder method [6] 0.97 s 3.20 s
ML RTE [11] 1.01 s 2.00 s
iterative GML RTE 1.01 s 1.03 s
non-iterative GML RTE 1.01 s 1.07 s

Table 1: RTs determined by different estimation methods
from sequences shown in Fig. 1.
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Figure 1: Measured RIR distorted by adding white Gaussian
noise (σn = 0.02, fs = 16 kHz).

approach reduces to the simple ML RTE according to
Eq. (14). It can also be observed that the result of the
ML estimation is very close to the RT obtained by the
Schroeder method. For the noisy RIR, only the two
GML RTEs achieve satisfactory results despite the strong
noise, while the Schroeder method and the simple ML
RTE fail completely in this case.

Blind RT Estimation

The ML estimation can also be used for a blind RTE
from noisy and reverberant speech signals. It turned out
that the direct estimation of the RT from a noisy and
reverberant signal is difficult to perform. Instead, it is
feasible to denoise the degraded speech signal first. This
can be achieved by common speech enhancement tech-
niques such as spectral subtraction or Wiener filtering,
cf., [17]. It is important to notice that such methods
achieve only a partial noise reduction so that residual
noise still remains.

Afterwards, a blind RTE is performed by ML estimation
and order-statistics filtering similar to the approach of
[11]. The ML estimation of Eq. (14) is performed at inter-
vals of R sample instances to a frame y(λR − N + 1 + i)
with λ = ⌊k/R⌋ and i = 0, 1, . . . , N − 1. A correct RT
estimate can be obtained, if the current segment captures
a free decay period following the (sharp) offset of a
speech sound. Otherwise, an incorrect RT is obtained,
e.g., for segments with ongoing speech, speech onsets or
gradually declining speech offsets. Such estimates can
be expected to overestimate the RT since the damping
of sound cannot occur at a rate faster than the free
decay. However, taking the minimum of the last Kl

ML estimates is likely to underestimate the RT since the
estimation procedure is a stochastic process. A more
robust strategy is to built the histogram of the last
Kl ML estimates and to take the first local maximum
T̂

(peak)
60 (λ) as final RT estimate, an approach known
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Figure 2: Adaptive, blind estimation of the RT from a
reverberant speech signal (T60 = 0.94 s) distorted by babble
noise (SNR = 5dB, fs = 16 kHz).

as order-statistics filtering. The effects of outliers are
efficiently reduced by recursive smoothing

T̂60(λ) = β T̂60(λ − 1) + (1 − β) T̂
(peak)
60 (λ) (15)

with 0.9 < β < 1. In contrast to the approach of
[13], this blind estimation makes no assumption about
the statistical properties of the reverberant (subband)
signals (e.g., negative-side variance) and needs thus no
calibration procedure. Instead, the presented algorithm
exploits the fact that the observed signal contains oc-
casionally small pauses of some hundred milliseconds,
which is always fulfilled for speech signals. In contrast to
the algorithm of [12], it is also possible to estimate larger
RTs (T60 > 0.6 s).

The devised blind RT estimation has been applied to a
noisy speech signal x(k) as shown in Fig. 2. The speech
signal is first convolved with the RIR plotted in Fig. 1-a
and then distorted by adding babble noise taken from the
NOISEX-92 database (see Fig. 2-a). The denoising has
been performed by the spectral subtraction rule based on
a noise power estimation by means of minimum statistics,
cf., [17]. The histogram for the blind RTE is determined
by the 400 most recent ML estimates for a bin size
(resolution) of 0.11 s. For the ML estimation, a time
span of 0.19 s and a frame shift of 0.025 s are taken. A
factor of β = 0.995 is used for Eq. (15).

Fig. 2-b shows that the devised blind RTE achieves an
error of about ±0.16 s. Such an estimation accuracy
is usually sufficient for speech enhancement applications
outlined in the following.

Application to Speech Enhancement

Spectral enhancement of reverberant and noisy speech
relies on the following time-domain model: The distorted
signal x(k) is given by a superposition of reverberant
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speech z(k) and additive noise v(k):

x(k) = z(k) + v(k)

=

LR−1∑

n=0

s(k − n)hR(n, k) + v(k) (16)

with hR(n, k) denoting the time-varying RIR. The rever-
berant speech can be decomposed into its early and late
reverberant speech components according to

z(k) =

Le−1∑

n=0

s(k − n)hR(n, k)

︸ ︷︷ ︸
early rev. speech ze(k)

+

LR−1∑

n=Le

s(k − n)hR(n, k)

︸ ︷︷ ︸
late rev. speech zl(k)

.

(17)

The suppression of late reverberant speech zl(k) and
additive noise v(k) is then accomplished by modeling
them both as uncorrelated, random noise processes so
that (common) spectral enhancement techniques can be
applied [3, 4]. The estimation of the needed spectral
variances of the late reverberant speech requires (only)
an estimate of the (frequency dependent) RT out of a
noisy and reverberant speech signal. In [4], it is assumed
that the needed RT can be reliably estimated. In [3], the
RT is estimated by a heuristic speech offset detection
which, however, is less suitable for noisy speech. In
contrast, the blind RTE described before is also suitable
for noisy, reverberant speech. This can be used for speech
enhancement and allows to achieve a subjective speech
quality which is almost equal to the quality achieved by
using the actual RT as shown in [15].

Conclusions

A method to estimate the reverberation time (RT)
by means of a generalized maximum likelihood (GML)
approach is presented. It is derived from a statistical
model for the sound decay in reverberant rooms which
considers explicitly distortions due to additive noise. The
new approach allows to estimate the RT from a measured
room impulse response or sound decay distorted by
background or measurement noise. The needed noise
power estimate can be easily obtained from the observed
sequence. The other model parameters (damping factor
a and amplitude Ar) can be calculated by an iterative or
non-iterative procedure.

The ML estimation can also be used for a blind estima-
tion of the RT from a reverberant and noisy speech signal.
After applying a conventional noise reduction system, the
RT is estimated by means of a continuous ML estimation
followed by order-statistics filtering to select the most
likely RT estimate. This new blind RT estimator can
achieve an accuracy of less than ±0.2 s, which is sufficient
for the enhancement of noisy and reverberant speech by
means of spectral enhancement methods.
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