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A new system for single-channel speech enhancement is proposed which achieves a joint suppression of late reverberant speech
and background noise with a low signal delay and low computational complexity. It is based on a generalized spectral subtraction
rule which depends on the variances of the late reverberant speech and background noise. The calculation of the spectral variances
of the late reverberant speech requires an estimate of the reverberation time (RT) which is accomplished by a maximum likelihood
(ML) approach. The enhancement with this blind RT estimation achieves almost the same speech quality as by using the actual
RT. In comparison to commonly used post-filters in hearing aids which only perform a noise reduction, a significantly better
objective and subjective speech quality is achieved. The proposed system performs time-domain filtering with coefficients adapted
in the non-uniform (Bark-scaled) frequency-domain. This allows to achieve a high speech quality with low signal delay which is
important for speech enhancement in hearing aids or related applications such as hands-free communication systems.
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1. Introduction

Algorithms for the enhancement of acoustically disturbed
speech signals have been the subject of intensive research over
the last decades, cf., [1–3]. The wide-spread use of mobile
communication devices and, not at least, the introduction
of digital hearing aids have contributed significantly to the
interest in this field. For hearing impaired people, it is
especially difficult to communicate with other persons in
noisy environments. Therefore, speech enhancement systems
have become an integral component of modern hearing aids.
However, despite significant progress, the development of
speech enhancement systems for hearing aids is still a very
challenging problem due to the demanding requirements
regarding computational complexity, signal delay and speech
quality.

A common approach is to use a beamformer with
two or three closely spaced microphones followed by a
post-filter, e.g., [4, 5]. An adaptive beamformer is often
used, implemented by first- or second- order differential
microphone arrays or a generalized sidelobe canceller (GSC),
respectively, e.g., [5]. Due to the use of small microphone
arrays, only a limited noise suppression can be achieved by
this, especially for diffuse noise fields. Therefore, the output

signal of the beamformer is further processed by a (Wiener)
post-filter to achieve an improved noise suppression, e.g.,
[4–7]. A related approach is to use an extension of the
GSC structure termed as speech distortion weighted multi-
channel Wiener filter [8, 9]. This approach allows to balance
the tradeoff between speech distortions and noise reduction
and is more robust towards reverberation than a common
GSC.

So far, such systems achieve only a very limited sup-
pression of speech distortions due to room reverberation.
Such impairments are caused by the multiple reflections
and diffraction of the sound on walls and objects of a
room. These multiple echoes add to the direct sound at the
receiver and blur its temporal and spectral characteristics. As
a consequence, reverberation and background noise reduce
listening comfort and speech intelligibility, especially for
hearing impaired persons [10, 11]. Therefore, algorithms for
a joint suppression of background noise and reverberation
effects are of special interest for speech enhancement in
hearing instruments. However, many proposals are less
suitable for this application.

For example, dereverberation algorithms based on lin-
ear prediction such as [12] achieve mainly a reduction
of early reflections and do not consider additive noise,
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while algorithms based on a time-averaging [13] exhibit
a high signal delay. Coherence-based speech enhancement
algorithms such as [14] or [15] can suppress background
noise and reverberation, but they are rather ineffective if only
two closely spaced microphones can be used. This problem
can be alleviated to some extend by a noise classification
and binaural processing [16] which, however, requires two
hearing aid devices connected by a wireless data link. A
single-channel algorithm for speech dereverberation and
noise reduction has been proposed recently in [17]. However,
this algorithm is less suitable for hearing aids due to its
high computational complexity and signal delay as well as its
strong speech distortions.

A more powerful approach for noise reduction and dere-
verberation is to use blind source separation (BSS), e.g., [18].
Such algorithms do not require a priori knowledge about
the microphone positions or source locations. However, they
depend on a full data link between the hearing aid devices
and possess a high computational complexity. Therefore,
further work remains to be done to integrate such algorithms
into common hearing instruments [19].

In this contribution, a single-channel speech enhance-
ment algorithm is proposed, which is more suitable for
current hearing aid devices. It performs a suppression of
background noise and late reverberant speech by means of
a generalized spectral subtraction. The devised (post-)filter
exhibits a low signal delay, which is important in hearing
aids, e.g., to avoid comb filter effects. The calculation of the
late reverberant speech energy requires (only) an estimate
of the reverberation time (RT), which is accomplished by
a maximum likelihood (ML) approach. Thus, no explicit
speech modeling is involved in the dereverberation process
as, e.g., in [20] such that an estimation of speech model
parameters is not needed here.

The paper is organized as follows. In Section 2, the
underlying signal model is introduced. The overall system
for low delay speech enhancement is outlined in Section 3.
The calculation of the spectral weights for noise reduction
and dereverberation is treated in Section 4. An important
issue is the determination of the spectral variances of the late
reverberant speech, which in turn is based on an estimation
of the RT. These issues are treated in Sections 4.2 and 4.3. The
performance of the new system is analyzed in Section 5, and
the main results are summarized in Section 6.

2. Signal Model

The distorted speech signal x(k) is assumed to be given by
a superposition of the reverberant speech signal z(k) and
additive noise v(k) where k marks the discrete time index.
The received signal x(k) and the original (undisturbed)
speech signal s(k) are related by

x(k) = z(k) + v(k)

=
LR−1∑

n=0

s(k − n)hr(n, k) + v(k)
(1)

with hr(n, k) representing the time-varying room impulse
response (RIR) of (possibly infinite) length LR between
source and receiver. The reverberant speech signal can be
decomposed into its early and late reverberant components

z(k) =
Le−1∑

n=0

s(k − n)hr(n, k)

︸ ︷︷ ︸
=ze(k)

+
LR−1∑

n=Le

s(k − n)hr(n, k)

︸ ︷︷ ︸
=zl(k)

. (2)

The late reverberation causes mainly overlap-masking effects
which are usually more detrimental for the speech quality
than the “coloration” effects of early reflections.

Here, the early reverberant speech ze(k) (and not s(k))
constitutes the target signal of our speech enhancement
algorithm. This allows to suppress the late reverberant speech
zl(k) and additive noise v(k) by modeling them both as
uncorrelated noise processes and to apply known speech
enhancement techniques, such as Wiener filtering or spectral
subtraction, respectively. This concept, which has been
introduced by Lebart et al. [21] and further improved by
Habets [22], forms the basis of our speech enhancement
algorithm. It is more practical for hearing aids as it avoids
the high computational complexity and/or signal delay
required by algorithms which strive for an (almost) complete
cancellation of background noise and reverberation as, e.g.,
BSS.

3. Low Delay Filtering

A common approach for (single-channel) speech enhance-
ment is to perform spectral weighting in the short-term
frequency-domain. The DFT coefficients of the disturbed
speech X(i, λ) are multiplied with spectral weights Wi(λ) to
obtain M enhanced speech coefficients

Ŝ(i, λ) = X(i, λ) ·Wi(λ); i ∈ {0, 1, . . . ,M − 1}, (3)

where i denotes the frequency (channel) index and λ the
subsampled time index λ = �k/R�. (The operation �·�
returns the greatest integer value which is lower than or
equal to the argument.) For block-wise processing, the
downsampling rate R ∈ N corresponds to the frame shift
and λ to the frame index.

An efficient and common method to realize the short-
term spectral weighting of (3) is to use a polyphase network
DFT analysis-synthesis filter-bank (AS FB) with subsampling
which comprises the common overlap-add method as special
case, [2, 23]. A drawback of this method is that subband
filters of high filter degrees are needed to achieve a sufficient
stopband attenuation in order to avoid aliasing distortions,
which results in a high signal delay. For hearing aids, how-
ever, an overall processing delay of less than 10 milliseconds
is desirable to avoid comb filter effects, cf., [24]. Such
distortions are caused by the superposition of a processed,
delayed signal with an unprocessed signal which bypasses
the hearing aid, e.g., through the hearing aid vent. This is
especially problematic for devices with an “open fitting.”
Therefore, the algorithmic signal delay of the AS FB should
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be significantly below 10 ms. One approach to achieve a
reduced delay is to design the prototype lowpass filter of the
DFT filter-bank by numerical optimization with the design
target to reduce the aliasing distortions with constrained
signal delay, [25, 26].

A significantly lower signal delay can be achieved by the
concept of the filter-bank equalizer proposed in [27, 28]. The
adaptation of the coefficients is performed in the (uniform
or non-uniform) short-term frequency-domain while the
actual filtering is performed in the time-domain. A related
approach has been presented independently in [29] for
dynamic range compression in hearing aids. The concept
of the filter-bank equalizer has been further improved
and generalized in [30, 31]. This filter(-bank) approach
is considered here as it avoids aliasing distortions for the
processed signal. In addition, the use of the warped filter-
bank equalizer causes a significantly lower computational
complexity and signal delay than the use of a non-uniform
(Bark-scaled) AS FB for speech enhancement as proposed,
e.g., in [32–34].

A general representation of the proposed speech
enhancement system is provided by Figure 1. The subband
signals X(i, λ) are calculated either by a uniform or warped
DFT analysis filter-bank with downsampling by R, which
can be efficiently implemented by a polyphase network. The
choice of the downsampling rate R is here not governed by
restrictions for aliasing cancellation as for AS FBs since the
filtering is performed in the time-domain with coefficients
adapted in the frequency-domain. The influence of aliasing
effects for the calculation of the spectral weights is negligible
for the considered application.

The frequency warped version is obtained by replacing
the delay elements of the system by allpass filters of first order

z−1 −→ A(z) = 1− αz
z − α ; α ∈ R; |α| < 1. (4)

This allpass transformation allows to design a filter-bank
whose frequency bands approximate the Bark frequency
bands (which model the frequency resolution of the human
auditory system) with great accuracy [35]. This can be
exploited for speech enhancement to achieve a high (sub-
jective) speech quality with a low number of frequency
channels, cf., [30].

The short-term spectral coefficients of the disturbed
speech X(i, λ) are used to calculate the spectral weights for
speech enhancement Wi(λ) as well as the weights W̃i(λ) for
speech denoising prior to the RT estimation, see Figure 1.
These spectral weights are converted to the time-domain
filter coefficients wn(λ) and w̃n(λ) by means of a generalized
discrete Fourier transform (GDFT)

wn(λ)= h(n)
M

M−1∑

i=0

Wi(λ)e− j(2π/M)i(n−n0); n,n0∈{0, 1, . . . L},
(5)

and accordingly for the weights W̃i(λ). The sequence h(n)
denotes the real, finite impulse response (FIR) of the
prototype lowpass filter of the analysis filter-bank. For the

common case of a prototype filter with linear phase response
and even filter degree L, (5) applies with n0 = L/2. The
GDFT of (5) can be efficiently calculated by the fast Fourier
transform (FFT). It is also possible to approximate the
(uniform or warped) time-domain filters by FIR or IIR filters
of lower degree to further reduce the overall signal delay and
complexity. A more comprehensive treatment can be found
in [30, 31].

4. Spectral Weights for Noise Reduction
and Dereverberation

Two essential components of Figure 1 are the calculation of
the spectral weights and the RT estimation which are treated
in this section.

4.1. Concept. The weights are calculated by the spectral
subtraction rule

W (ss)
i (λ) = 1− 1√

γ̂(i, λ)
; i ∈ {0, 1, . . . ,M − 1}. (6)

This method achieves a good speech quality with low
computational complexity, but other, more sophisticated
estimators such as the spectral amplitude estimators of
Ephraim and Malah [36] or even psychoacoustic weighting
rules [37] can be employed as well, cf., [22].

The spectral weights of (6) depend on an estimation of
the a posteriori signal-to-interference ratio (SIR)

γ(i, λ) = |X(i, λ)|2
σ2
zl

(i, λ) + σ2
v (i, λ)

. (7)

The spectral variances of the late reverberant speech and
noise are given by σ2

zl
(i, λ) and σ2

v (i, λ), cf., (1) and (2).
Equation (6) can be seen as a generalized spectral subtraction
rule. If no reverberation is present, that is, z(k) = s(k),
(7) reduces to the well-known a posteriori signal-to-noise
ratio (SNR) and (6) to a “common” spectral magnitude
subtraction for noise reduction.

The problem of musical tones can be alleviated by
expressing the a posteriori SIR by the a priori SIR

ξ(i, λ) =
E
{
|Ze(i, λ)|2

}

σ2
zl

(i, λ) + σ2
v (i, λ)

= γ(i, λ)− 1, (8)

which can be estimated by the decision-directed approach of
[36]

ξ̂(i, λ) = η ·
∣∣∣Ẑe(i, λ− 1)

∣∣∣
2

σ̂2
zl

(i, λ− 1) + σ̂2
v (i, λ− 1)

+
(
1− η) ·max

{
γ̂(i, λ)− 1, 0

}
(9)

with 0.8 < η < 1. This recursive estimation of the a priori SIR
causes a significant reduction of musical tones, cf., [38]. The
spectral weights are finally confined by a lower threshold

Wi(λ) = max
{
W (ss)

i (λ), δw(i, λ)
}
. (10)
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Figure 1: Overall system for low delay noise reduction and dereverberation. The frequency warped system is obtained by replacing the delay
elements of the analysis filter-bank and both time-domain filters by allpass filters of first order.

This allows to balance the tradeoff between the amount of
interference suppression on the one hand, and musical tones
and speech distortions on the other hand. Alternatively, it
is also possible to bound the spectral weights implicitly by
imposing a lower threshold to the estimated a priori SIR.
The adaptation of the thresholds and other parameters can
be done similar as for “common” noise reduction algorithms
based on spectral weighting.

4.2. Interference Power Estimation. A crucial issue is the
estimation of the variances of the interfering noise and
late reverberant speech to determine the a priori SIR. The
spectral noise variances σ2

v (i, λ) can be estimated by common
techniques such as minimum statistics [39].

An estimator for the variances σ2
zl

(i, λ) of the late
reverberant speech can be obtained by means of a simple
statistical model for the RIR of (1) [21]

hm(k) = n(k)e−ρkTsε(k) (11)

with ε(k) representing the unit step sequence. The parameter
Ts = 1/ fs denotes the sampling period and n(k) is a
sequence of i.i.d. random variables with zero mean and
normal distribution.

The reverberation time (RT) is defined as the time span
in which the energy of a steady-state sound field in a room
decays 60 dB below its initial level after switching-off the
excitation source, [40]. It is linked to the decay rate ρ of (11)
by the relation

T60 = 3
ρ log10(e)

≈ 6.908
ρ

. (12)

Due to this dependency, the terms decay rate and reverbera-
tion time are used interchangeably in the following. The RIR
model of (11) is rather coarse, but allows to derive a simple
relation between the spectral variances of late reverberant
speech σ2

zl
(i, λ) and reverberant speech σ2

z (i, λ) according to
[21]

σ2
zl

(i, λ) = e−2ν(i,λ)Tl · σ2
z (i, λ−Nl). (13)

The value ν(i, λ) denotes the frequency and time dependent
decay rate of the RIR in the subband-domain whose blind

estimation is treated in Section 4.3. The integer value Nl =
�Tl fs/R� marks the number of frames corresponding to
the chosen time span Tl where fs denotes the sampling
frequency. The value for Tl is typically in a range of 20 to
100 ms and is related to the time span after which the late
reverberation (presumably) begins.

The variances of the reverberant speech can be estimated
from the spectral coefficients Ẑ(i, λ) by recursive averaging

σ̂2
z (i, λ) = κ · σ̂2

z (i, λ− 1) + (1− κ) ·
∣∣∣Ẑ(i, λ)

∣∣∣
2

(14)

with 0 < κ < 1. The spectral coefficients of the reverberant
speech are obtained by spectral weighting

Ẑ(i, λ) = X(i, λ) · W̃i(λ) (15)

using, for instance, the spectral subtraction rule of (6) based
on an estimation of the a posteriori SNR. It should be noted
that the spectral weights W̃i(λ) are also needed for the
denoising prior the the RT estimation (see Figure 1).

A more sophisticated (and complex) estimation of the
late reverberant speech energy is proposed in [22]. It
takes model inaccuracies into account, if the source-receiver
distance is lower than the critical distance and requires an
estimation of the direct-to-reverberation ratio for this.

4.3. Decay Rate Estimation. The estimation of the fre-
quency dependent decay rates ν(i, λ) of (13) requires non-
subsampled subband signals, which causes a high computa-
tional complexity. To avoid this, we estimate the decay rate
in the time-domain at decimated time instants λ′ = �k/R′�
from the (partly) denoised, reverberant speech signal ẑ(k) as
sketched by Figure 1. The prime indicates that the update
rate for this estimation R′ is not necessarily identical to that
for the spectral weights Wi(λ) and W̃i(λ). In general, the
update intervals for the RT estimation can be longer than for
the calculation of the spectral weights as the room acoustics
changes usually rather slowly.

The filter coefficients w̃n(λ) for the “auxiliary” time-
domain filter which provides ẑ(k) are obtained by a GDFT
of the spectral weights W̃i(λ) used in (15), see Figure 1. The
frequency dependent decay rates ν(i, λ′), needed to evaluate
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(13), are obtained by the time-domain estimate of the decay
rate ρ̂(λ′) according to

ν̂(i, λ′) ≈ ρ̂(λ′) ∀i ∈ {0, 1, . . . ,M − 1}. (16)

This approximation is rather coarse, but it yields good results
in practice with a low computational complexity.

A blind estimation of the decay rate (or RT) can be
performed by a maximum likelihood (ML) approach first
proposed in [41, 42]. A generalization of this approach to
estimate the RT in noisy environments has been presented in
[43]. The ML estimators are also based on the statistical RIR
model of (11).

For a blind determination of the RT, an ML estimation
for the decay rate ρ is performed at decimated time instants
λ′ on a frame with N samples ẑ(λ′R′ −N + 1), ẑ(λ′R′ −N +
2), . . . , ẑ(λ′R′) according to

ρ̂(λ′) = arg

{
max
ρ

{
L(λ′)

}
}

(17)

with the log-likelihood function given by

L(λ′) = −N
2

⎛
⎝(N − 1)ln(a)

+ln

⎛
⎝2π
N

N−1∑

i=0

a−2i ẑ2(λ′R′ −N + 1 + i)

⎞
⎠ + 1

⎞
⎠,

(18)

where a = exp{−ρTs}, cf., [43]. The corresponding RT is
obtained by (12).

A correct RT estimate can be expected, if the current
frame captures a free decay period following the sharp
offset of a speech sound. Otherwise, an incorrect RT is
obtained, e.g., for segments with ongoing speech, speech
onsets or gradually declining speech offsets. Such estimates
can be expected to overestimate the RT, since the damping
of sound cannot occur at a rate faster than the free decay.
However, taking the minimum of the last Kl ML estimates
is likely to underestimate the RT, since the ML estimate
constitutes also a random variable. This bias can be reduced
by “order-statistics” as known from image processing [44].
In the process, the histogram of the Kl most recent ML
estimates is built and its first local maximum is taken as RT
estimate T̂

(peak)
60 (λ′) excluding maxima at the boundaries. The

effects of “outliers” can be efficiently reduced by recursive
smoothing

T̂60(λ′) = β · T̂60(λ′ − 1) +
(
1− β) · T̂(peak)

60 (λ′) (19)

with 0.9 < β < 1. A strong smoothing can be applied as the
RT changes usually rather slowly over time.

The devised RT estimation relies only on the fact that
speech signals contain occasionally distinctive speech offsets,
but it requires no explicit speech offset detection [21] or a
calibration period [45]. Another important advantage of this
RT estimation is that it is developed for noisy signals as the
prior denoising can only achieve a partial noise suppression.
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Figure 2: Measured RIR with T60 = 0.79 seconds.
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Figure 3: Group delay of the warped filter-bank equalizer with filter
degree L = 32 and allpass coefficient α = 0.5.

In principle, it is also conceivable to use other methods
for the continuous RT estimation, such as the Schroeder
method [46] or a non-linear regression approach [47].
However, the use of such estimators has lead to inferior
results as the obtained histograms showed a higher spread
and less distinctive local maxima. This resulted in a much
higher error rate in comparison to the ML approach.

5. Evaluation

The new system has been evaluated by means of instrumental
quality measures as well as informal listening tests. The
distorted speech signals are generated according to (1) for
a sampling frequency of fs = 16 kHz. A speech signal of 6
minutes duration is convolved with a RIR shown in Figure 2.
The RIR has been measured in a highly reverberant room
and possesses a RT of 0.79 s. (This value for T60 has been
determined from the measured RIR by a modified Schroeder
method as described in [43].) The reverberant speech signal
z(k) is distorted by additive babble noise from the NOISEX-
92 database with varying global input SNRs for anechoic
speech s(k) and additive noise v(k).

For the processing according to Figure 1, a warped filter-
bank equalizer is used with allpass coefficient α = 0.5,
M = 32 frequency channels, a downsampling rate of R =
32 and a Hann prototype lowpass filter of degree L =
M. This processing with non-uniform frequency resolution
allows to achieve a good subjective speech quality with low
signal delay, cf., [30]. The time-invariant group delay of
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both warped time-domain filters is shown in Figure 3. The
group delay varies only between 0.5 ms and 3.125 ms for
fs = 16 kHz. Such variations do not cause audible phase
distortions so that a phase equalizer is not needed here. In
contrast, the use of a corresponding warped AS FB yields
not only a significantly higher signal delay but requires also a
phase equalization, see [31].

The spectral weights are calculated by the spectral
subtraction rule of (6) using the thresholding of (10) with
δw(i, λ) ≡ 0.2 for the weights Wi(λ) and δw(i, λ) ≡ 0.1 for
the weights W̃i(λ). The spectral noise variances are estimated
by minimum statistics [39] and the variances of the late
reverberant speech by (13). For the blind estimation of the
RT according to Section 4.3, a histogram size of Kl = 400
values and an adaptation rate of R′ = 256 are used. A
smoothing factor of β = 0.995 is employed for (19).

The quality of the enhanced speech is evaluated in the
time-domain by means of the segmental signal-to-interference
ratio (SSIR) (cf., [48]). The difference between the anechoic
speech signal of the direct path sd(k) and the processed
speech y(k) = ŝ(k) (after group delay equalization) is
expressed by

SSIR
dB

= 10
C(Fs)

∑

l∈Fs
log10

( ∑Nf−1
n=0 s2d(l − n)

∑Nf−1
n=0

(
sd(l − n)− y(l − n)

)2

)
.

(20)

The set Fs contains all frame indices corresponding to frames
with speech activity and C(Fs) represents its total number of
elements.

The speech quality is also evaluated in the frequency-
domain by means of the mean log-spectral distance (LSD)
between the anechoic speech of the direct path and the
processed speech according to

LSD
dB

= 1
C(Fs)

∑

l∈Fs

√√√√√ 1
Nf

Nf−1∑

i=0

∣∣∣Ssd (i, l)− Sy(i, l)
∣∣∣

2
(21)

with

Ssd (i, l) = max
{

20log10(|Sd(i, l)|), δLSD

}
,

Sy(i, l) = max
{

20log10(|Y(i, l)|), δLSD

}
,

(22)

where Sd(i, l) and Sy(i, l) denote the short-term DFT coeffi-
cients of anechoic and processed speech for frequency index
i and frame l. The lower threshold δLSD confines the dynamic
range of the log-spectrum and is set here to −50 dB. Half-
overlapping frames with Nf = 256 samples are used for the
evaluations.

A perceptually motivated spectral distance measure is
given by the Bark spectral distortion (BSD) [49]. The Bark
spectrum is calculated by three main steps: critical band
filtering, equal loudness pre-emphasis and a phone-to-sone
conversion. The BSD is obtained by the mean difference

between the Bark spectra of undistorted speech Bsd (i, l) and
enhanced speech By(i, l) according to

BSD =
∑

l∈Fs
∑Nf−1

i=0

(
Bsd (i, l)−By(i, l)

)2

∑
l∈Fs

∑Nf−1
i=0 Bsd (i, l)2 . (23)

A modification of this measure is given by the modified Bark
spectral distortion (MBSD) which takes also into account the
noise masking threshold of the human auditory system [50].
The (M)BSD has been originally proposed for the evaluation
of speech codecs, but it can also be used as (additional)
quality measure for speech enhancement systems, cf., [22].

The curves for the different measures are plotted in
Figure 4. The joint suppression of late reverberant speech and
noise yields a significantly better speech quality, in terms of
a lower LSD and MBSD as well as a higher SSIR, in compar-
ison to the noise reduction without dereverberation where
σzl (i, λ) = 0 for (8) and (9), respectively. (Using the cepstral
distance (CD) measure led to almost identical results as for
the LSD measure.) For low SNRs, the dereverberation effect
becomes less significant due to the high noise energy, cf., (8).
This is a desirable effect as the impact of reverberation is
(partially) masked by the noise in such cases. For high SNRs,
the noise reduction alone still achieves a slight improvement
as the noise power estimation does not yield zero values.
The estimation errors of the blind RT estimation are small
enough to avoid noteworthy impairments; the curves for
speech enhancement with blind RT estimation are almost
identical to those obtained by using the actual RT. (Using
other RIRs and noise sequences led to the same results.)
Therefore, the new speech enhancement system achieves a
speech quality as the comparable approach of [22] which,
however, assumes that a reliable estimate of the RT is given
(and considers a common DFT AS FB).

The results of the instrumental measurements com-
ply with our informal listening tests. The new speech
enhancement system achieves a significant reduction of
background noise and reverberation, but still preserves a
natural sound impression. The speech signals enhanced with
blind RT estimation and known RT have revealed no audible
differences. The noise reduction alone achieves only a slightly
audible reduction of reverberation.

6. Conclusions

A new speech enhancement algorithm for the joint sup-
pression of late reverberant speech and background noise
is proposed which addresses the special requirements of
hearing aids. The enhancement is performed by a generalized
spectral subtraction which depends on estimates for the
spectral variances of background noise and late reverberant
speech. The spectral variances of the late reverberant speech
are calculated by a simple rule in dependence of the RT.
The time-varying RT is estimated blindly (without dedicated
excitation signals) from a noisy and reverberant speech signal
by means of an ML estimation and order-statistics filtering.

In reverberant and noisy environments, the devised
single-channel speech enhancement system achieves a sig-
nificant reduction of interferences due to late reverberation
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Figure 4: Log-spectral distance (LSD), modified Bark spectral dis-
tortion (MBSD) and segmental signal-to-interference ratio (SSIR)
for varying global input SNRs and different signals.

and additive noise. The enhancement with the blind RT
estimation achieves actually the same speech quality as by
using the actual RT.

In contrast to existing algorithms for dereverberation
and noise reduction, the proposed algorithm has a low
signal delay, a reasonable computational complexity and it
requires no (large) microphone array, which is of particular
importance for speech enhancement in hearing aids. In
comparison to commonly used post-filters in hearing aids
which only perform noise reduction, a significantly better
subjective and objective speech quality is achieved by the
devised system.

Although the use for hearing instruments has been
considered primarily here, the proposed algorithm is also
suitable for other applications such as speech enhancement
in hands-free devices, mobile phones or speech recognition
systems.
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