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Taking the derivative of (31) with respect to ����, where ���� is the
entry of � located at row � and column �, based on the Wirtinger cal-
culus [8], yields
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Hence, after straightforward algebra, we have
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yielding
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Since by definition, ����� ��
��

� ������� ��
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�������� is the �th
row and �th column entry of the matrix
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Using this in (30) yields
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This completes the proof of Lemma 1.
Lemma 2 [6, Ch. 2]: The inequality
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where � � �� , � � �� , and � � � is equivalent to

� 	 �� �� ������ � � (36)

i.e., the set of nonlinear inequalities in (35) can be represented as (36).
Lemma 3 [3, Prop. 2]: Given matrices�,�, and	 with	 � 	�
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if and only if there exists a � � � such that
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A proof of Lemma 3 is given in [3].

REFERENCES

[1] S. A. Kassam and H. V. Poor, “Robust signal processing for communi-
cation systems,” IEEE Commun. Mag., vol. 21, no. 1, pp. 20–28, Jan.
1983.

[2] A. T. Erdogan, B. Hassibi, and T. Kailath, “MIMO decision feedback
equalization from an � perspective,” IEEE Trans. Signal Process.,
vol. 52, no. 3, pp. 734–745, Mar. 2004.

[3] Y. C. Eldar and N. Merhav, “A competitive minimax approach to robust
estimation and random parameters,” IEEE Trans. Signal Process., vol.
52, no. 7, pp. 1931–1946, Jul. 2004.

[4] S. S. Kozat and A. C. Singer, “Universal switching linear least squares
prediction,” IEEE Trans. Signal Process., vol. 56, no. 1, pp. 189–204,
Jan. 2008.

[5] Y. C. Eldar, A. Ben-Tal, and A. Nemirovski, “Robust mean-squared
error estimation in the presence of model uncertainties,” IEEE Trans.
Signal Process., vol. 53, no. 1, pp. 168–181, Jan. 2005.

[6] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Ma-
trix Inequalities in System and Control Theory, ser. Studies in Applied
Mathematics. Philadelphia, PA: SIAM, 1994.

[7] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation. Upper
Saddle River, NJ: Prentice-Hall, 2000.

[8] A. van den Bos, “Complex gradient and hessian,” Proc. IEE Vision
Image Signal Process, vol. 141, no. 6, pp. 380–383, Dec. 1994.

Least-Squares Design of DFT Filter-Banks Based on
Allpass Transformation of Higher Order

Heinrich W. Löllmann and Peter Vary, Fellow, IEEE

Abstract—The allpass transformation of higher order is a very gen-
eral concept to construct a frequency warped analysis–synthesis filter
bank (AS FB) with nonuniform time-frequency resolution. In contrast to
the more common allpass transformation of first order, the delay elements
of the analysis filter bank are substituted by allpass filters of higher order
to achieve a more flexible control over its frequency selectivity. Known
analytical closed-form designs for the synthesis filter bank can ensure
perfect reconstruction (PR), but the synthesis subband filters are not
necessarily stable and exhibit no distinctive bandpass characteristic. These
problems are addressed by a new least-squares error (LSE) filter bank
design. The coefficients of the finite-impulse-response (FIR) synthesis
filters are determined simply by a linear set of equations where the signal
delay is an adjustable design parameter. This approach can achieve a
perfect signal reconstruction with synthesis filters which are inherently
stable and feature a bandpass characteristic. The proposed filter bank is
of interest for various subband processing systems requiring nonuniform
frequency bands.

Index Terms—Allpass transformation, frequency warping, least squares,
nonuniform filter banks, perfect reconstruction.

I. INTRODUCTION

The allpass transformation is a common approach to design a
filter bank with a nonuniform time-frequency resolution [1]–[3].
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Such frequency warped filter banks are beneficial for applications
such as speech enhancement, e.g., [4], [5]. In addition, warped filter
banks exhibit a lower signal delay and complexity than comparable
nonuniform filter banks realized by a tree-structure, cf., [4].

The most common design approach for frequency warped filter
banks is to use an allpass transformation of first order where the
delay elements of the analysis filter bank are substituted by allpass
filters of first order. The synthesis filter bank design for such allpass
transformed filter banks is treated in several publications [4]–[10]
which achieve a nearly perfect signal reconstruction.

A more general design approach is to employ an allpass transfor-
mation of higher order where the delay elements of the analysis filter
bank are replaced by allpass filters of higher order [11], [12]. This con-
cept provides a more flexible control over the time-frequency resolu-
tion, which is exploited, e.g., for multiple description subband coding
[13], but it also complicates the synthesis filter bank design. An ana-
lytical closed-form design for the synthesis filter bank to achieve per-
fect reconstruction (PR) has been derived by several authors. In [12],
a tree-structured network is proposed for signal reconstruction. How-
ever, a causal and stable synthesis filter bank has only been found
for the special case of an allpass transformation of first order. In [13]
and [14], the synthesis subband filters are derived by inversion of the
aliasing component matrix. This yields infinite-impulse-response (IIR)
synthesis subband filters which are not necessarily stable and causal,
except for the special case of an allpass transformation of first order
where finite-impulse–response (FIR) filters are obtained. Another se-
vere drawback of all these closed-form solutions is that they do not
ensure a bandpass characteristic for the synthesis subband filters, even
if only an allpass transformation of first order is applied, cf., [14]. This
can cause high signal distortions if spectral modifications of the sub-
band signals are performed.

In this contribution, we tackle these problems by a novel de-
sign concept for a frequency warped DFT analysis–synthesis filter
bank (AS FB) based on an allpass transformation of first or higher
order. The presented least-squares error (LSE) design yields FIR
synthesis filters with a distinctive bandpass characteristic and can
achieve (almost) PR with adjustable signal delay.

This correspondence is organized as follows. In Section II, the con-
sidered nonuniform DFT filter bank based on an allpass transformation
of higher order is introduced. The new synthesis filter bank design is
presented in Section III. A comparison with related PR designs is pro-
vided in Section IV, and the main results of this contribution are sum-
marized in Section V.

II. ALLPASS TRANSFORMED DFT FILTER BANK

Basis for our design is a uniform DFT filter bank where the analysis
subband filters are complex modulated versions of a prototype lowpass
filter with FIR ���� of length � according to
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with �� � ��	��

��	�, cf., [15]. A well-known technique to
achieve a nonuniform time-frequency resolution is to perform an all-
pass transformation where the delay elements of the subband filters are
replaced by allpass filters of first order [1]–[3].

A more general approach is to substitute the delay elements by all-
pass filters of higher order [11], [12]:
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where 
��� and ���� represent the transfer functions of stable causal
allpass filters of order � and � � � according to
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with 	 denoting the conjugate complex. The frequency responses of
these allpass filters are written


 ��� � ���� ��� (5a)

� ��� � ���� ���� (5b)

The allpass transformation of (2) is a bilinear transformation and con-
verts (1) into the new transfer function
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to ease the notation. The common allpass transformation of first order
is included as special case for � � � so that
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The frequency responses of the uniform analysis subband filters
given by (1) and the nonuniform analysis subband filters given by (6)
are related by


�� ��� � ��������� ��� ��� ��� ��� (9)

���� ����� � �	���� �
���� (10)

The phase difference of (10) ensures that the allpass transformation
causes a frequency warping where a frequency interval of �� � 
� is
mapped onto an interval of 
� on the warped frequency scale:

��� 
�� � ��� 
�� � � �� ������ (11)

In contrast, the allpass transformation ��� � 
���� maps the fre-
quency interval of ��� 
�� onto an interval of�� � 
�� which causes
an undesirable comb-filter effect for � � �, cf., [11].

The warping characteristic is solely determined by ����� and thus
the transfer function ���� � 
��������. However, dependent on
the choice for ����, the transfer function ���� can become either un-
stable or noncausal. The additional filter with transfer function���� �
������� ensures that the warped subband filters of (6) are always
stable and causal.

The function of (11) is bijective, if the continuous (unwrapped) phase
response����� is monotone increasing, which is guaranteed by a pos-
itive group delay

������

��
� � ��� (12)

This property is required to ensure a unique mapping so that a comb-
filter effect is avoided. The choice

���� � ������� (13)

Authorized licensed use limited to: RWTH AACHEN. Downloaded on April 28,2010 at 12:34:36 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 4, APRIL 2010 2395

Fig. 1. DFT analysis filter bank designed by an allpass transformation of
second order with � � � � �� ���� � ������ ���� � ����� ���� � �:
(a) uniform analysis subband filters; (b) phase response of 	�� �; and
(c) warped analysis subband filters.

is of special interest as it reduces the implementation cost for the filter
bank and simplifies the design procedure. With ���� � ����������,
the requirement of (12) can be written [11]

�

���

�� �����
�� ����� ����	� ����� 
 ����� � � � � �	� (14)

The effects of an allpass transformation of second order �� � ��
with complex allpass poles on a DFT analysis filter bank with	 � �
channels and rectangular prototype filter 
��� �

�
�
	 of length

� � 	 is illustrated in Fig. 1. It is easily verified (and visible) that
the phase response ���	� fulfills (11) and (12). The bandwidths of
the subband filters decrease first and increase afterwards within the in-
terval 	 � �
� �� since the phase response ���	� has one inflection
point within this region. In contrast, such a flexible adjustment of the
frequency resolution can not be achieved by an allpass transformation
of first order.

An efficient implementation of the analysis filter bank can be ob-
tained by rewriting (7) as follows:
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� (15)

where it is assumed w.l.o.g. that � � ��	 with �� � . Fig. 2
shows the corresponding polyphase network (PPN) implementation
of the analysis filter bank, where the inverse discrete Fourier trans-
form (IDFT) can be efficiently calculated by the inverse fast Fourier
transform (IFFT).

The following synthesis subband filters are considered
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with ���� denoting the FIR of the synthesis prototype filter of length
�. The �� coefficients of the � transfer functions
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shall be determined in such a way that (almost) PR is achieved.
The FIR synthesis subband filters can be expressed by the PPN rep-

resentation
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with the “modified” polyphase components
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This efficient PPN implementation of the synthesis filter bank is shown
in Fig. 2. The uniform DFT AS FB is obtained for ���� � ������ �
��� and � ��� �� � ���
����� with � � �
� �� � � � � �� ��.

III. SYNTHESIS FILTER-BANK DESIGN

The output signal of the considered AS FB (shown in Fig. 2) can be
written in the �-domain as follows:
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�� � ������ (20)

with � � � �� 	 � 	 	�. The AS FB with subsampling by
� is a linear periodically time-varying (LPTV) system with period
� since � �

� � � ����
� for � � . This behavior is taken into ac-

count by determining the overall transfer function of the filter bank for
� time-shifted unit sample sequences as input, i.e.,  ��� � ��� for
� � �
� �� � � � � � � ��. By this means, (20) turns into the new overall
transfer function
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For our design, a matrix representation of the transfer function !���� in
dependence of the unknown ��� coefficients ����� of the synthesis
filter bank is required. In the following, bold lower-case variables de-
note vectors and matrices are marked by bold upper-case variables. The
superscripts ! and � indicate the transpose and Hermitian transpose
of a vector or matrix. The �
 � identity matrix is denoted by """
 and
� marks the Kronecker product of two matrices. Some manipulations
of (16) lead to the representation

������ � ###
�
� �$$$� ��� � ���� � � �
� �� � � � �	 � �� (22a)

���� ###� � ���� ��� ���� ���
��
����
� � � � �

� � � � ��������
� � ��
����

�

�

(22b)

$$$��� � """
 � %%%
 ��� (22c)
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Fig. 2. PPN implementation of the allpass transformed DFT AS FB with downsampling by � and � � �� (without spectral processing).
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for � � ��� �� � � � � �� ��. With (22), the transfer function of (21) can
now be formulated by the matrix notation
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where the complex vector ������ �� is of dimension �� ���.
A filter bank with perfect reconstruction is obtained, if the transfer

function of (21) fulfills the condition

	����
�
���� � � � ��� �� � � � � 
� �� (24)

with �� marking the overall signal delay of the AS FB. This require-
ment can be expressed by means of (23):

������ ��

������ ��
...

������
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�� ���

����
�
���� � �� (25)

where a column vector with
 ones is denoted by ��. The��� coeffi-
cients of the vector ��� are determined by the requirement that (25) shall
be fulfilled for � � ��� discrete values on the unit circle

� � �
�
� � �

�
 � �� � ��� �� � � � �� � ��� (26)

With the compact notation

��� �
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����� �
...
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� ���� (27a)
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...

�
�������
� � ��

� ���� (27b)

(25) turns into an 
-times overdetermined set of �
 linear equations

��� � ���
�
��������� (28)

A least-squares error solution is given by


��� � ��
 ��������
���

	��� � �����������	�

� ���
# �������� (29)

with���# denoting the pseudo-inverse of the matrix��� provided that the
matrix ������� is of full rank. Otherwise, a solution exists as well but is
nonunique.

Some properties of this design approach are worth mentioning.
The devised numerical LSE design strives towards a PR solution
which can only be achieved with a certain accuracy. However, it will
be shown later that these deviations are often such small that PR is
actually achieved given the limited numerical precision to implement
and evaluate a filter bank. A prerequisite for a PR solution is of course
that the underlying uniform filter bank achieves already PR.

For many design examples, synthesis filters with a distinctive band-
pass characteristic were obtained even though this is not an explicit
design criterion. The incorporation of additional design constraints to
improve such a behavior is also possible. However, this results in a
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more complex, constrained optimization and it remains to be verified
whether the PR constraint can still be fulfilled. An advantage of the pre-
sented approach is still its simplicity as only a linear set of equations
has to be solved according to (28).

Finding rules for the design parameters such that specific criteria
are fulfilled is inherently more difficult for numerical designs than for
analytical closed-form designs. For the signal delay, the choice �� �
�� � �� has been found suitable to achieve PR. For high subsam-
pling rates, such as critical subsampling �� � ��, it is still possible
to achieve PR, but the synthesis filters exhibit usually no distinctive
bandpass characteristic even for a high filter length ��. This might
be tolerable for certain applications such as [13] where the proposed
synthesis filters have a less pronounced bandpass characteristic. How-
ever, allpass transformed AS FBs are more commonly used for appli-
cations with noncritical subsampling such as speech enhancement sys-
tems, e.g., [4] and [5].

The obtained vector ���� is often sparse with many coefficients (almost)
equal to zero. For the same filter length ��, the computational com-
plexity of the new filter bank is comparable to that of [6], [9], and [10]
as well as [12]–[14], where similar filter bank structures (but different
designs) are proposed.

The properties of the new approach shall be examined by some de-
sign examples. First, the analysis filter bank of Fig. 1(c) is consid-
ered. The optimization of (29) is performed with parameters �� �
��� � � ��� � � and �� � ��. The obtained vector ���� is rather
sparse with about 48% of its coefficients having a value of less than
��	���. Fig. 3(a) shows that the obtained synthesis subband filters
feature a bandpass characteristic which is very similar to that of the
analysis subband filters plotted in Fig. 1(c). The frequency response of
(21) ���	��� � ����	����	��� ��� is evaluated for 
 � 	 by plot-
ting its magnitude response ����	���� and phase error 
�� ��� �
�� ���� ��� in Fig. 3(b) and (c). These curves indicate actual a PR
design.

A filter bank is a multirate system which can be analyzed by its
system response ����
�� 
��, that is, the response of the system at in-
stant 
� to a unit sample sequence at 
� [15]. The corresponding two-
dimensional frequency-domain representation is given by the bifre-
quency system function ����	�� � 	�� �, which is plotted in Fig. 4 for
the new design. It represents a PR system as no side diagonals with
aliasing components occur and the main diagonal is a constant line
with deviations equal to those of Fig. 3(b) (hence not plotted in greater
detail).

IV. COMPARISON WITH CLOSED-FORM PR DESIGNS

The proposed LSE filter bank design is now compared with the
closed-form PR design of [14].1 A DFT AS FB based on an allpass
transformation of first order is considered with rectangular prototype
filter and design parameters � � 	�� and � � ����� � �. In this
case, the closed-form design provides a (stable) FIR synthesis filter
bank with �� � ��� � and signal delay �� � �� �. A comparison
with the new LSE design is provided by Fig. 5. The new approach can
achieve PR for the same parameters as the closed-form design.2 In this
case, LSE and closed-form design provide both synthesis filters with
an insufficient bandpass characteristic. (This applies also for other
parameters such as critical subsampling where � � � .) However,
the new design enables the use of higher values for �� and �� so that
synthesis filters with a bandpass characteristic can be obtained while
maintaining PR as shown by the solid curves in Fig. 5(a) and (b).

1In [14], critical and noncritical subsampling is considered where the solution
for critical subsampling is equivalent to that of [13].

2For all designs of this section, the phase error �� ����� were below
�� � �� and the bifrequency system function equal to that of Fig. 4.

Fig. 3. Analysis of the new LSE synthesis filter bank design for� � 	
� � �
��	 � � and � � 		. (The analysis filter bank is shown in Fig. 1(c).):
(a) synthesis subband filters; (b) overall transfer function; and (c) phase error.

Fig. 4. Magnitude of bifrequency system function for LSE design of Fig. 3.

In contrast to the closed-form PR designs, the new design can also
provide a PR solution for a filter bank with longer prototype filters
where � � � . An example is given by the prototype filters

���� � ���� �

�
�

�
��

�
� �
�

�

�
��

�

�
(30)
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Fig. 5. Comparison of closed-form PR design and new LSE design for � �
�� � � ����� � � and � � ���: (a) overall transfer functions; (b) synthesis
subband filters for � � �.

Fig. 6. Transfer function for LSE design of a warped DFT AS FB with param-
eters � � �� � � ���� 	 � �� � ���� � ��
 � ��	� � � ���.

where � � �� and � � ��� �� � � � � �� ��, cf., [9], [16]. The transfer
function of a warped AS FB with such prototype filters and � � ��
channels is shown in Fig. 6. It can be observed that the LSE design
yields again actually a PR system.

V. CONCLUSION

A new LSE design for a warped DFT AS FB with subsampling is
presented whose time-frequency resolution is adjusted by an allpass
transformation of first or higher order. The coefficients of the FIR syn-
thesis filter bank are merely determined by a linear set of equations
without constraints which can be easily solved. The synthesis subband
filter are inherently causal and stable, and exhibit a significantly better
bandpass characteristic than the closed-form PR filter bank designs of
[12]–[14]. In addition, the signal delay is now an adjustable design pa-

rameter and the new approach provides also a solution for a PPN filter
bank where the prototype filter length exceeds the number of channels
�� � ��. For an appropriate choice of the design parameters, a filter
bank with PR can be achieved effectively for an allpass transformation
of first or higher order in contrast to the designs of [4]–[10]. A DFT
filter bank is considered here, but the devised LSE design can also be
applied to filter banks with other transformation kernels such as the dis-
crete cosine transform (DCT).
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