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ABSTRACT

An improved approach for the estimation of the frequency depen-
dent reverberation time (RT) by means of allpass transformed filter-
banks is presented. It is shown that by means of these warped filter-
banks, a much more accurate RT estimation at lower frequencies
can be obtained than by octave filter-banks, which are commonly
used for the estimation of the frequency dependent RT. Furthermore,
allpass transformed filter-banks can achieve a much better approx-
imation of the non-uniform frequency resolution of the human au-
ditory system than octave filter-banks. A uniform or non-uniform
(auditory) frequency resolution can thereby be simply adjusted by a
single allpass coefficient.
The RT estimation can be done with an allpass transformed DFT or
DCT filter-bank. The warped DCT filter-bank is of special interest
as it provides real-valued subband signals. This facilitates the use of
a maximum-likelihood (ML) estimator for either a non-blind estima-
tion of the frequency dependent RT from a room impulse response
or a blind estimation from a reverberant speech signal.

Index Terms— reverberation time, frequency warping, fre-
quency dependent decay, sound decay measurement

1. INTRODUCTION

The reverberation time (RT) T60 is one of the most important quan-
tities in room acoustics and plays a crucial role in the evaluation of
enclosed auditory spaces such as lecture rooms or concert halls [1].
Furthermore, knowledge about the RT can also be exploited for
speech dereverberation [2, 3].

The RT is defined as the time interval in which the energy of
a steady-state sound field decays 60 dB below its initial level after
switching off the exciting sound source. This time interval can be
calculated either by the ensemble average of different sound decays
or from a measured room impulse response (RIR) by means of the
Schroeder method [4, 5].

The sound decay or RT is often measured within different fre-
quency bands to take the frequency dependent sound absorption at a
surface into account. A well-established approach to determine the
frequency dependent RT is to filter the RIR by bandpass filters and
to apply the Schroeder method in each subband. The used analysis
filters have either full-octave bands or 1/3-octave bands according
to [6]. Such octave filters constitute a so-called constant-Q filter-
bank and account for the non-uniform frequency resolution of the
human auditory system, e.g., [7].

A known problem of this approach is that the octave bandpass
filters for the lower frequencies have a very small bandwidth, which
leads to unreliable RT estimates at these frequencies. In [8], it is

recommended that the product of bandwidth and RT should exceed
a value of 16 to obtain reliable results. An approach to alleviate
this problem is to use a wavelet filter-bank with 1/3-octave bands
[9]. Another approach is to perform a so-called time-reversed decay
measurement by means of zero-phase bandpass filters [10].

The use of bandpass filters with a very low bandwidth can be
avoided by employing a uniform filter-bank for the calculation of the
frequency dependent RT. One possibility is the use of a DFT filter-
bank. The RT can be calculated from the complex subband signals
by means of the energy decay relief (EDR) [11]. However, such an
approach is not comparable with the use of an octave filter-bank as
it does not account for the non-uniform frequency resolution of the
human auditory system.

In this contribution, it is shown that allpass transformed filter-
banks are very attractive for the calculation of the frequency de-
pendent RT. These warped filter-banks account for the non-uniform
frequency resolution of the human ear more accurately than octave
filter-banks and provide more reliable RT values at low frequencies.

This paper is organized as follows: In Sec. 2, the design of the
proposed filter-banks is introduced and compared to that of an oc-
tave filter-bank. The estimation of the frequency dependent RT by
means of different non-uniform filter-banks is elaborated in Sec. 3.
A benefit of the proposed warped DCT filter-bank is that common
maximum-likelihood (ML) based techniques to estimate the RT can
be applied, which is investigated in Sec. 4. The paper concludes with
a summary by Sec. 5.

2. WARPED FILTER-BANKS

The allpass transformation is a well-known technique to design
a digital filter-bank with a non-uniform time-frequency resolu-
tion [12–14]. In the process, the delay elements of the uniform
filter-bank are replaced by allpass filters of first order

z−1 → A(z) =
1− αz

z − α
with α ∈

{
R

∣∣ |α| < 1
}

. (1)

This bilinear transformation causes a frequency warping, which can
achieve a very good approximation of the Bark or equivalent rect-
angular bandwidth (ERB) frequency scale as shown in [15]. These
frequency scales model the non-uniform frequency resolution of the
human auditory system [16]. The relation between warping coeffi-
cient α and sampling frequency fs to approximate the Bark scale is
given by [15]

α̂ = 1.0674

√
2

π
arctan

(
0.05683

fs

kHz

)
− 0.1916. (2)
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This equation results an allpass coefficient of α = 0.776 for the
considered sampling frequency of fs = 48 kHz. An approximation
of the ERB scale can be achieved in a similar manner and the uniform
filter-bank is simply obtained for α = 0 according to Eq. (1).

The allpass transformation of Eq. (1) can be applied to a DFT
filter-bank as well as a DCT filter-bank [13, 14]. The DFT analysis
filters are obtained by a complex modulation of a prototype filter

hi(n) = p0(n) exp

{
j

2π

Mdft
in

}
(3)

with sample index n = 0, 1, . . . , L − 1 and subband index i =
0, 1, . . . ,Mdft − 1. The used FIR prototype filter p0(n) is an M -th
band filter of length L = 2Mdft given by

p0(n) =
win(n)
Mdft

si

(
π

Mdft

(
n−

L

2

))
(4)

with si(n) = sin(n)/n and win(n) marking the (Hann) window of
length L.

The analysis filters of the considered (type-IV) DCT filter-bank
are given by

hi(n) = 2p0(n) cos

(
π

Mdct
(i+ 0.5)

(
n−

L− 1

2

)
+ (−1)i

π

4

)
(5)

with subband index i = 0, 1, . . . ,Mdct − 1. The FIR prototype filter
p0(n) of length L = 2Mdct is designed by the approach of [17].
The DFT and DCT filter-bank can be both efficiently implemented
by means of a polyphase network, e.g., [7].

For the 1/3-octave filter-bank, Butterworth filters of 6-th order
are used which fulfill the design specifications for class 1 filters ac-
cording to [6].

Fig. 1 shows the magnitude responses of the analysis filters for
the considered allpass transformed DFT and DCT filter-bank and
the 1/3-octave filter-bank. The DCT filter-bank has Mdct = 31 chan-
nels, the DFT filter-bank Mdft = 60 channels and the 1/3-octave
filter-bank possesses Moct = 30 channels. The three filter-banks
are designed such that they have all the same number of unique
frequency bands.1 Fig. 1 reveals that the frequency bands of the
warped2 filter-banks are smaller for higher frequencies in compari-
son to those of the 1/3-octave filter-bank and vice versa for the lower
frequency bands.

3. FREQUENCY DEPENDENT RT ESTIMATION

The RT can be determined in the time-domain from a measured
RIR hR(t) by means of the Schroeder integral [5]. The logarithm
of the energy decay curve (EDC)

IS(t) = 10 log
10

∞∫
t

h2

R(τ ) d τ (6)

1A DFT of even size M provides complex subband signals, but has only
Mdft/2 + 1 unique subbands bands for a real input sequence. Therefore, a
DCT filter-bank with Mdct = Mdft/2 + 1 subbands is used. The number of
DCT bands Mdct is not identical to the number of octave filters Moct as the
octave filter-bank does not cover the region at Ω = π in comparison to the
DCT filter-bank (see Fig. 1).

2The terms frequency warping and allpass transformation are used inter-
changeably as only allpass transformed filter-banks are considered.
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Fig. 1. Magnitude responses of different analysis filters with
Ω = 2π f/fs.

is approximated by a linear function

fl(t) = b t+ c for t0 ≤ t ≤ t1 (7)

such that the (estimated) RT is given by T60 = 60/b [s]. The pa-
rameters b and c are determined by a least-squares (LS) fit us-
ing, e.g., the MATLAB function polyfit. The time interval
[t0, t1] corresponds to the interval where the normalized EDC
ĪS(t) = IS(t) − IS(0) declines from −5 dB to −35 dB. The nor-
malized least-squares error (NLSE)

ε =
1

t1 − t0

t1∫
t0

(
IS(τ )− fl(τ )

)
2

d τ (8)

is used here as reliability measure for the estimated RT value.
The outlined RT estimation is exemplified in Fig. 2. The RIR

is taken from the AIR database [18].3 It has been measured in a

3available at http://www.ind.rwth-aachen.de/AIR
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Fig. 2. RT estimation from a measured RIR. The blue solid line of
subplot b) shows the normalized energy decay curve (EDC) and the
red dotted line the regression line of Eq. (7).

lecture room with a source-receiver distance of 5.56m and without
a dummy head (fs = 48 kHz). A RT of T60 = 0.86 sec is calculated
with a NLSE of ε = 6.96 · 10−2.

For the estimation of the frequency dependent RT T60(f), the
described method is applied to a RIR after being filtered by the ana-
lysis filter-banks described in Sec. 2. For the DFT filter-bank with
complex subband signals, the squared magnitude of the spectral co-
efficients is taken to calculate the EDC. The used 1/3-octave filter-
bank performs a zero-phase filtering (by means of the MATLAB
function filtfilt). This reduces the estimation error at lower
frequencies [10], but causes also an increased computational load
(and signal delay).

For the RIR of Fig. 2, the frequency dependent RT T60(f) and
NLSE for each frequency band E(f) are plotted in Fig. 3.4 It can be
seen that the 1/3-octave filter-bank provides much less reliable RT
values at lower frequencies than the warped filter-banks. This is also
reflected by the average NLSE value over all frequency bands, which
amounts to 1.997 for the octave filter-bank where the values for the
warped DCT and DFT filter-bank are equal to 0.281 and 0.596, re-
spectively.

The above experiment has been conducted for 18 different RIRs
of the AIR database. The RIRs are measured at different source-
receiver distances and within different rooms (studio booth, office
room, meeting room, stairway hall, corridor). The RTs are within
the range 0.2 s ≤ T60 ≤ 1.6 s. The frequency dependent NLSE
averaged over all 18 measurements Eav(f) is plotted in Fig. 4. The
1/3-octave filter-bank exhibits again a significantly higher LS error
at lower frequencies than the warped filter-banks. The error for the
warped DCT filter-bank in turn is lower than for the warped DFT
filter-bank. Averaging the values of Eav(f) over all frequency bands
yields an error value of 0.857 for the DCT filter-bank, a value of
1.097 for the DFT filter-bank and a value of 2.402 for the 1/3-octave
filter-bank. These different error values can be explained by the
fact that very small filter bandwidths cause a high estimation error,
cf., [8]. The 1/3-octave filters have very narrow bandwidths at low
frequencies, which reasons the high error. The error value for the
DCT filter-bank is the lowest one since its bandwidths are higher as
for the DFT filter-bank (see Fig. 1).

4Even though a digital processing is performed, time-domain sequences
are plotted over time t (as in Fig. 2) and frequency-domain quantities over
frequency f (as in Fig. 3) to ease the physical interpretation.
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Fig. 3. Calculation of the frequency dependent RT by means of dif-
ferent analysis filter-banks. The black solid line marks the RT of
T60 = 0.86 s in the upper subplot and the NLSE of ε = 6.96 · 10−2
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Fig. 4. Average normalized LS error Eav(f) for the estimation of the
frequency dependent RT from 18 different RIRs.

4. ML-BASED RT ESTIMATION

A distinctive difference of the DCT filter-bank in comparison to the
DFT filter-bank is that it decomposes a real input signal into real
subband signals. This allows to apply algorithms in the frequency-
domain which have been developed for the RT estimation in the
time-domain. An important example is the RT calculation by means
of a maximum-likelihood (ML) estimation [19–21]. These ML
based techniques allow either to calculate the RT from a measured
RIR (non-blind RT estimation) or to calculate the RT from a rever-
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Fig. 5. Blind and non-blind estimation of the frequency dependent
RT using a warped DCT filter-bank (fs = 16 kHz).

berant speech signal (blind RT estimation). A blind RT estimation
is of importance, if a dedicated measurement setup cannot be used
as, for example, in the case of speech dereverberation systems,
cf., [2, 3].

An example for these different RT estimations is shown in Fig. 5.
The RIR of Fig. 2 downsampled to fs = 16 kHz is considered and
the frequency dependent RT is determined by means of the warped
DCT filter-bank. The non-blind RT estimations by the EDC and the
ML estimation of [20] yield similar curves for the frequency depen-
dent RT T60(f). For the blind RT estimation, a clean speech signal
of 15 s duration and 16 kHz sampling frequency is convolved with
the considered RIR. The reverberant speech is filtered by the warped
DCT filter-bank and the blind RT estimation of [21] is applied in
each subband. The solid curve in Fig. 5 shows the average RT value
for each frequency band (as the algorithm in [21] is designed to track
time-varying RTs). The comparison with the non-blind estimation
reveals an accuracy of about 150ms, which is similar to the accu-
racy that is achieved for a blind RT estimation in the time-domain,
cf., [20, 21].

It is also conceivable to estimate the frequency dependent RT
in noisy environments by applying the approach of [20] in the
frequency-domain. However, an elaboration of this case exceeds the
scope of this work.

5. CONCLUSIONS

An improved approach for the estimation of the frequency depen-
dent RT by means of an allpass transformed DCT or DFT filter-bank
is presented. These warped filter-banks achieve a much better ap-
proximation of the non-uniform frequency resolution of the human
ear than commonly used octave filter-banks. Moreover, a uniform
or non-uniform (Bark or ERB) frequency resolution is simply ad-
justed by a single allpass coefficient and the warped DCT or DFT
filter-bank can be efficiently implemented by means of a polyphase
network. It is shown that warped filter-banks estimate the frequency
dependent RT with a much lower error than commonly used 1/3-
octave filter-banks. The warped DCT filter-bank is of special interest
as it provides real-valued subband signals. This allows to apply an
ML estimator for either a non-blind estimation of the frequency de-
pendent RT from a RIR or a blind RT estimation from a reverberant
speech signal.
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