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Abstract

Filter-banks are an essential component of many algorithms for digital signal processing,
which are nowadays employed in a variety of ubiquitous devices. Filter-banks enable
signal processing in the frequency-domain and their design has often a significant in-
fluence on the performance of a system with regard to its computational complexity,
signal quality and delay. In this thesis, novel design approaches for different types of
allpass-based analysis-synthesis filter-banks are devised. A substantial benefit of these
recursive filter-banks is that they can achieve a high frequency selectivity and/or a
non-uniform time-frequency resolution with a low signal delay.

One focus of this work is the design of allpass-based quadrature-mirror filter-banks
(QMF-banks) with near-perfect reconstruction. New synthesis filter-banks are pre-
sented which consist of allpass polyphase filters. They are designed by simple analytical
expressions such that the trade-off between reconstruction error and signal delay of the
filter-bank can be controlled in a simple manner. The devised QMF-bank has been
employed in a candidate proposal for a new ITU-T speech and audio codec and has
helped to achieve a high speech and audio quality with a low signal delay.

A key issue in the design of allpass-based filter-banks is to compensate non-linear
phase distortions caused by the recursive analysis filter-bank. Therefore, known as well
as novel phase equalizer designs for this purpose are presented and analyzed.

Another focus of this work is the design of allpass transformed analysis-synthesis
filter-banks. They can achieve a non-uniform time-frequency resolution similar to that
of the human auditory system, which is beneficial for speech and audio processing
systems. Novel closed-form and numerical designs for the synthesis filter-bank are
introduced, which aim for different design objectives. A benefit of the closed-form
designs is their simplicity, while the numerical designs allow the explicit control of
specific properties of the filter-bank such as signal delay, reconstruction error, bandpass
characteristic of the synthesis filters etc. The new numerical designs are all stated as a
convex optimization problem which can be solved rather easily.

Finally, an efficient implementation for the special case of an allpass transformed
filter-bank without subsampling is derived. This system, termed as filter-bank equal-
izer, allows to perform adaptive subband filtering with a low signal delay. It is shown
how this filter-bank can be used for noise reduction, speech dereverberation, or speech
intelligibility improvement in noisy environments. These low delay speech enhancement
systems are of particular interest for applications within cell phones, hands-free devices,
or digital hearing aids.



Kurzfassung

Filterbänke sind ein essentieller Bestandteil zahlreicher Algorithmen für die digitale Si-
gnalverarbeitung, die heutzutage in einer Vielzahl von unterschiedlichen Geräten einge-
setzt werden. Filterbänke ermöglichen eine Signalverarbeitung im Frequenzbereich und
deren Entwurf hat oft einen entscheidenden Einfluss auf die Leistungsfähigkeit eines
Systems in Bezug auf dessen Rechenkomplexität, Signalqualität und Verzögerungszeit.
In dieser Arbeit werden neuartige Entwurfsverfahren für unterschiedliche Klassen von
allpass-basierten Filterbänken entwickelt. Ein wesentlicher Vorteil dieser rekursiven Fil-
terbänke ist, dass sie eine hohe Frequenzselektivität und/oder eine nichtgleichförmige
Zeit-Frequenzauflösung mit einer gleichzeitig geringen Signallaufzeit erreichen können.

Ein Schwerpunkt dieser Arbeit bildet der Entwurf von allpass-basierten Quadrature-
Mirror-Filterbänken (QMF-Bänken) mit fast perfekter Signalrekonstruktion. Neuarti-
ge Synthese-Filterbänke werden vorgestellt, dessen Polyphasenkomponenten aus All-
passfiltern bestehen. Diese werden mittels einfacher geschlossener Formeln entworfen,
wodurch der Zielkonflikt zwischen Rekonstruktionsfehler und Signalverzögerung der Fil-
terbank in einfacher Weise kontrolliert werden kann. Die neu vorgestellte QMF-Bank
war Bestandteil eines neuen Sprach- und Audiocodecs der im Rahmen einer ITU-T
Standardisierung vorgeschlagen wurde, und hat dazu beigetragen eine hohe Sprach-
und Audioqualität mit einer gleichzeitig geringen Signallaufzeit zu erreichen.

Ein zentrales Problem beim Entwurf allpass-basierter Filterbänke ist die Kompensa-
tion nichtlinearer Phasenverzerrungen, die durch die rekursive Analyse-Filterbank ver-
ursacht werden. Daher werden bekannte sowie neue Ansätze zur Lösung dieses Phasen-
kompensationproblems vorgestellt und analysiert.

Ein anderer Schwerpunkt dieser Arbeit ist der Entwurf von allpass-transformierten
Analyse-Synthese-Filterbänken. Diese können eine Frequenzauflösung erreichen, die der
des menschlichen Gehörs sehr ähnelt, was von besonderem Interesse für die Sprach- und
Audiosignalverarbeitung ist. Neue geschlossene sowie numerische Entwurfsverfahren für
die Synthese-Filterbank werden vorgestellt, die unterschiedliche Entwurfsziele verfol-
gen. Ein Vorteil der geschlossenen Entwurfsverfahren ist deren Einfachheit, wohingegen
die numerischen Verfahren den Vorteil bieten, dass bestimmte Eigenschaften der Filter-
bank, wie dessen Rekonstruktionsfehler, Signalverzögerung, Bandpasscharakteristik der
Synthese-Filter etc., explizit beeinflusst werden können. Die neuen numerischen Verfah-
ren beruhen dabei auf konvexen Optimierungsproblemen, die relativ einfach zu lösen
sind.

Schließlich wird in dieser Arbeit eine besonders effiziente Realisierung für den
Spezialfall einer allpass-transformierten Filterbank ohne Unterabtastung entwickelt.
Dieses als Filter-Bank Equalizer bezeichnete System ermöglicht eine adaptive Signal-
filterung mit geringer Signallaufzeit. Es wird aufgezeigt, wie dieses Verfahren für
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die Störgeräuschreduktion, die Enthallung von Sprachsignalen oder die Verständlich-
keitsverbesserung in gestörten Umgebungen eingesetzt werden kann. Diese Sprach-
verbesserungssysteme mit geringer Latenz sind für den Einsatz in Mobilfunktelefonen,
Freisprecheinrichtungen oder digitalen Hörgeräten von besonderem Interesse.
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Chapter 1

Introduction

D
igital signal processing systems have replaced successively analog systems over
the past decades and can be found today in a variety of different devices such

as mobile communication systems, consumer and car electronics, or hearing aids. A
decisive advantage of digital signal processing is that systems can be realized which
cannot or only hardly be realized by analog processing. An essential component of
many algorithms for digital signal processing are filters and their concatenation as filter-
banks. Filter-banks are mainly used for the spectral analysis of signals [Boa03, SM05],
as transmultiplexers [Fli93], or to process a time-domain signal in the subband- or
frequency-domain [Vai93, AZ03]. The last mentioned application thereby requires an
analysis-synthesis filter-bank (AS FB) to obtain a reconstructed time-domain signal.
For many applications, it is necessary or at least beneficial to employ a filter-bank in
order to process the signal in the frequency-domain instead of the time-domain (even
though both approaches are often closely related). The variety of applications for digital
(analysis-synthesis) filter-banks has fostered the exploration of different variants.

Many filter-banks can be described as modulated filter-banks, e.g., [Var78, CR83,
Glu93, Vai93, Kli99]. The analysis and synthesis filters are obtained by a real or complex
modulation of a prototype filter such that the filter-bank design reduces to that of a
single prototype filter. Modulated filter-banks are based, for example, on the discrete
Fourier transform (DFT) or discrete cosine transform (DCT). Such a DFT or DCT
filter-bank can be efficiently implemented by means of a polyphase network (PPN).
Hence, this class of filter-banks is of overriding importance and a variety of filter-banks
– including those treated in this work – evolve thereof.

Most modulated filter-banks belong to the class of uniform AS FBs. Filter-banks
with a uniform time-frequency resolution are more commonly used and studied than
non-uniform filter-banks. Their design is easier and they have usually a lower com-
putational complexity than comparable non-uniform filter-banks. An advantage of
non-uniform filter-banks is that their frequency resolution can be adapted to a specific
application. For example, auditory filter-banks which mimic the non-uniform frequency
resolution of the human ear are of special interest for speech and audio processing.

The signal reconstruction error is another important property of a filter-bank. An
AS FB with perfect reconstruction (PR) provides an exact replica of the input signal,
if no subband processing takes place. For many applications, such as speech and audio
processing, a small reconstruction error is often tolerable. Filter-banks with near-perfect
reconstruction (NPR) can be of interest in such cases, which permit a low reconstruction
error in order to obtain more degrees of freedom for the filter-bank design.
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An analysis filter-bank can consist either of non-recursive filters with a finite impulse
response (FIR) or recursive filters having an infinite impulse response (IIR). FIR filter-
banks are much more popular and explored than IIR filter-banks, cf., [Glu93, Kli99,
VK95]. A problem in the design of recursive AS FBs with perfect reconstruction is
that the use of IIR analysis filters usually leads to unstable or non-causal synthesis
filters, e.g., [Vai93, VK95]. Therefore, it is in general much more difficult to design and
implement a filter-bank by means of IIR filters than by FIR filters. In addition, it is
much easier to realize a linear-phase system by means of FIR filters than by IIR filters.

An advantage of recursive filter-banks over their non-recursive counterparts is that
they can achieve a comparable frequency selectivity with a much lower filter degree,
which implies a lower algorithmic complexity and signal delay. In addition, a perfect
signal reconstruction or linear phase response is not required for many applications
such as speech and audio processing where small reconstruction errors or phase distor-
tions remain unnoticed. Therefore, IIR filter-banks are an attractive (and sometimes
overlooked) alternative to FIR filter-banks, which motivates their further exploration.

1.1 Allpass-Based Filter-Banks

This thesis deals with IIR (analysis-synthesis) filter-banks which are based on allpass
filters. The considered allpass-based filter-banks can be divided into two main classes:

• quadrature-mirror filter-banks (QMF-banks) and Pseudo QMF-banks

• allpass transformed filter-banks.

The considered allpass-based two-channel QMF-banks and M -channel Pseudo QMF-
banks use an analysis filter-bank whose polyphase components consist of allpass filters,
e.g., [Vai93]. These filter-banks have a uniform frequency resolution and perform critical
subsampling, which is attractive for subband coding applications.

An allpass transformed filter-bank is obtained by replacing the delay elements of
the underlying (uniform) filter-bank by allpass filters [OJS71, BO74]. This frequency
warping provokes a non-uniform time-frequency resolution. One advantage of allpass
transformed filter-banks is their ability to mimic the non-uniform frequency resolution
of the human auditory system with great accuracy [SA99], which is exploited, e.g., for
speech and audio processing.

A common property of these two filter-bank classes is that their allpass-based ana-
lysis filters possess a non-linear phase response. The compensation of these phase
distortions by means of a phase equalization at the synthesis side is a central design
issue for both filter-bank classes, which motivates their joint treatment.

1.2 Related Works & Open Problems

The considered allpass-based filter-banks are well-known and their design and applica-
tion has already been explored in previous PhD works such as [Kap98, Eng98, Gül01,
Gal02, dH04]. Nevertheless, the design of such filter-banks is yet challenging and there
exists still a number of open (and neglected) problems which are addressed in this work.

In [Gal02], a closed-form FIR phase equalizer design is devised, which is employed
for the construction of allpass-based (Pseudo) QMF-banks as well as allpass trans-
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formed AS FBs with near-perfect reconstruction. A benefit of this design approach is
its simplicity, but the obtained allpass transformed filter-banks exhibit a rather high sig-
nal delay and complexity, which motivates a thorough exploration of alternative phase
equalizer designs for allpass-based filter-banks.

In [Kap98], a filter-bank design based on an allpass transformation of first and higher
order is introduced. A closed-form solution for the synthesis filter-bank is derived, which
achieves a perfect signal reconstruction with a low signal delay. However, a stable and
causal synthesis filter-bank has only been found in case of an allpass transformation of
first order and the devised design does not apply for a filter-bank where the degree of
the prototype lowpass filter exceeds the number of channels. Another main problem of
this approach is that the synthesis filters exhibit no bandpass characteristic. This can
lead to severe signal distortions if subband processing takes place.

In [dH04], a numerical design approach for allpass transformed AS FBs is presented.
The coefficients of the analysis and synthesis prototype filter are determined with the
objective to obtain subband filters with a high frequency selectivity as well as a low
reconstruction error. The obtained allpass transformed AS FB exhibits a lower delay
than the filter-bank design of [Gal02]. However, a perfect aliasing cancellation or even
perfect reconstruction cannot be achieved with this approach as well as related numer-
ical designs [VN03, WdDC03]. This raises the question whether an allpass transformed
filter-bank with such properties can be obtained by a numerical design at all.

In [Eng98, Gül01], the application of an allpass-transformed DFT AS FB and a
tree-structured wavelet filter-bank to speech enhancement is presented and the benefits
of such non-uniform filter-banks for noise reduction systems are elaborated. However,
a problem of these AS FBs is their rather high signal delay, which excludes their use for
applications with demanding signal delay constraints such as digital hearing aids. This
motivates the search for a filter-bank structure which allows to exploit the benefits of
a non-uniform frequency resolution while having a low signal delay.

1.3 Structure of the Thesis

This thesis tackles, amongst others, the outlined problems and presents different novel
design approaches for allpass-based filter-banks. The structure of this work is as follows:

Chap. 2 reviews some fundamental terms and concepts about digital filter-banks and
allpass filters as far as needed for this work.

In Chap. 3, an improved design approach for allpass-based QMF-banks and Pseudo
QMF-banks is presented. The polyphase components of the synthesis filter-banks con-
sist of allpass filters which are designed by simple closed-form expressions. These syn-
thesis polyphase filters act as phase equalizers to account for the non-linear phase
responses of the analysis filters. Since many design proposals for allpass-based filter-
banks differ essentially by the way to solve this phase equalization problem, different
phase equalizer designs for this purpose are analyzed in the last part of this chapter.

The results of this analysis are also of importance for the design of allpass trans-
formed filter-banks, which is treated in Chap. 4. In the first part of this chapter, the
allpass transformation of first and higher order is reviewed and opposed to related
warping techniques to design a non-uniform filter-bank. In the second part, closed-
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form synthesis filter-bank designs are examined. Similar as for allpass-based (Pseudo)
QMF-banks, the synthesis filter-bank has to compensate the phase distortions intro-
duced by the allpass transformed analysis filter-bank. For this purpose, an improved
synthesis filter-bank design is developed and compared with previous approaches.

An advantage of closed-form designs is their simplicity, but it is very difficult to in-
corporate dedicated design objectives. This problem is addressed by a numerical design
framework, which is developed in the third part of this chapter. A new mathematical
description for allpass transformed AS FBs is introduced from which several synthesis
filter-bank designs are derived. They strive for different design objectives such as a
complete aliasing cancellation, a sparse design, or perfect reconstruction.

A frequent concern in the design of filter-banks is the signal delay, which is addressed
in Chap. 5. The concept of the uniform filter-bank equalizer (FBE) is derived, which
allows to perform adaptive subband filtering with a low signal delay. A generalization
of this concept is provided by the allpass transformed FBE. It is shown how a nearly
perfect signal reconstruction can be achieved and the concept of the FBE is contrasted
to that of a common AS FB with subsampling. For applications with very demanding
signal delay constraints, a modification of the FBE is proposed, which achieves a further
reduced signal delay in a simple and flexible manner.

In Chap. 6, the application of the introduced filter-bank designs is discussed for
some selected examples. In the first part of this chapter, the application of the new
QMF-bank design of Chap. 3 for hierarchical speech and audio coding is elaborated.
Important design and implementation aspects are discussed and the performance of
the new IIR QMF-bank design is contrasted to that of a comparable FIR QMF-bank.
In the second part, the application of the FBE for low delay speech enhancement is
investigated. It is shown how this system can be used for noise reduction, speech
dereverberation, or near-end listening enhancement, and the achieved performance is
compared to that of commonly used AS FBs with subsampling.

Chap. 7 concludes this work and summarizes the main results.
App. A lists the abbreviations, nomenclature and mathematical notation that is

used in this work. Supplementary proofs and derivations are provided in App. B. Some
related filter-bank designs are discussed in App. C. An overview of the employed error
norms and optimization methods is given in App. D. The instrumental measures which
are used for the evaluation of noise reduction systems are described in App. E.
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Chapter 2

Fundamentals of Digital Filter-Banks

F
undamental terms and concepts of analysis-synthesis filter-banks are introduced
in this chapter as far as needed for this work. The following treatment is partly

based on [CR83, Vai93, Kli99] where a more comprehensive exploration of (uniform)
filter-banks can be found.

2.1 Analysis-Synthesis Filter-Banks

A general representation of a digital analysis-synthesis filter-bank (AS FB) is shown in
Figure 2.1. The real input sequence x(k) with discrete time index (sample index) k ∈ Z

is a digital signal with sampling frequency fs = 1/Ts.1 This sequence is assumed to be
of finite energy so that its z-transform Z {x(k)} = X(z) exists. The (digital) signal2

x(k) is split into the subband signals xi(k) by means of an analysis filter-bank, which
consists of M analysis filters with passband widths ΔΩi and real or complex impulse
responses hi(k) for i ∈ {0, 1, . . . ,M − 1}. The limited bandwidths of the M subband

x(k) y(k)x0(k)

x1(k)

xM−1(k)

x0(k0)

x1(k1)

xM−1(kM−1)

y0(k0)

y1(k1)

yM−1(kM−1)

y0(k)

y1(k)

yM−1(k)

h0(k)

h1(k)

hM−1(k)

g0(k)

g1(k)

gM−1(k)

↑R0

↑R1

↑RM−1

↓R0

↓R1

↓RM−1

analysis filter-bank synthesis filter-bank

su
b
b
a
n
d
p
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ss
in
g

Figure 2.1: General structure of an analysis-synthesis filter-bank (AS FB).

1An overview of the used abbreviations and nomenclature can be found in App. A.
2The terms signal and sequence are used interchangeably as only digital signals are

considered in this work.
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Figure 2.2: Schematic of the magnitude responses of different filter-bank types
for M = 4 subbands:
(a) uniform filter-bank
(b) non-uniform filter-bank.

signals allow to perform a subsampling according to the rule [Mal92]

Ri ≤
2π

ΔΩi
for Ri ∈ {1, 2 . . . ,M} and

M−1∑
i=0

ΔΩi = 2π . (2.1)

This leads to different sampling periods Tsi = Ts Ri, which is indicated by the discrete
time index ki in Figure 2.1.

A filter-bank with different passband widths ΔΩi is termed as a non-uniform filter-
bank. Accordingly, a filter-bank with equal passband widths ΔΩi ≡ ΔΩ is denoted as a
uniform filter-bank. The subband filters of such filter-banks are sketched schematically
in Figure 2.2. For a uniform filter-bank, the same downsampling rate Ri ≡ R is taken
for each subband signal xi(k). In this case, critical subsampling is performed if R = M

and non-critical subsampling if R < M . This scenario of a single downsampling rate R
is considered in the following, which is indicated by the notation ki ≡ k′ for the discrete
time index after downsampling.

In general, an R−fold downsampler or decimator converts an input sequence xin(k)
into the downsampled sequence

xd(k′) = xin(k′R) for k′ ∈ Z . (2.2)

This downsampling operation without zero filling leads to a different sampling period
T ′

s = Ts R as indicated by the prime. The z-domain representation of Eq. (2.2) is given
by

Xd(z) =
1
R

R−1∑
r=0

Xin

(
z

1
R W r

R

)
(2.3)

where

WR = e−j 2 π
R . (2.4)
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It should be noted that the z-variable in Eq. (2.3) is based on the input sampling period
Ts where the relation to the variable z′, which is based on T ′

s , is given by z′ = zR. In
this work, all z-domain expressions are related to the input sampling period Ts.

Eq. (2.3) reveals that the decimation leads to a superposition of the spectra
Xin

(
ej 1

R
(Ω−2πr)

)
, which are frequency shifted and stretched versions (images) of

Xin

(
ej Ω
)
. These quantities are expressed in dependence of the normalized frequency

Ω =
2π f
fs

, (2.5)

which is simply termed as frequency, if there is no room for confusion. If the frequency
spectrum Xin

(
ej Ω
)

is not perfectly bandlimited with ΔΩ ≤ 2π/R, the superposition

of its images causes an overlap effect called aliasing.3

The task of the synthesis filter-bank is to obtain the output signal y(k) from the
M subband signals yi(k

′). In a first step, an upsampling is performed. In general, an
R-fold upsampler or expander inserts zeros according to

yu(k) =

{
yin(k′) if k = Rk′ ; k′ ∈ Z

0 otherwise.
(2.6)

The corresponding description in the z-domain is given by

Yu(z) = Yin

(
zR
)
. (2.7)

The upsampled signals yi(k) are interpolated by subsequent synthesis filters with im-
pulse responses gi(k) for i ∈ {0, 1, . . .M − 1} and finally added up to obtain the output
signal y(k) as depicted in Figure 2.1. Between analysis and synthesis filter-bank, the
actual subband processing takes places. For example, the subband signals can be mul-
tiplied with spectral gain factors to perform speech enhancement (e.g., [Eng98]) or they
might be quantized for subband coding applications (e.g., [Vai93]).

If no such subband processing takes place, yi(k
′) = xi(k

′) ∀ i and the filter-bank4

provides the reconstructed input signal y(k) = x̂(k). In this case, it is straightforward
to derive the following input-output relation by means of Eq. (2.3) and Eq. (2.7):

X̂(z) =
1
R

R−1∑
r=0

X
(
zW r

R

) M−1∑
i=0

Hi

(
zW r

R

)
·Gi(z) (2.8)

= X(z)
1
R

M−1∑
i=0

Hi(z) ·Gi(z)︸ ︷︷ ︸
= Tlin(z)

+
1
R

R−1∑
r=1

X
(
zW r

R

)M−1∑
i=0

Hi

(
zW r

R

)
·Gi(z)︸ ︷︷ ︸

= Dalias(z)

.

(2.9)

3An illustration of this effect can be found in [Vai93, Chap. 5].
4The term filter-bank is simply used, if it is obvious from the context whether an analysis,

synthesis, or analysis-synthesis filter-bank is meant.
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The function Tlin(z) denotes the linear transfer function of the AS FB. Its frequency
response and group delay are denoted by5

Tlin

(
ej Ω
)

=
∣∣Tlin

(
ej Ω
)∣∣ · e−j ϕlin(Ω) (2.10)

τlin(Ω) = gdl
{
Tlin

(
ej Ω
)}

. (2.11)

The function Dalias(z) represents aliasing distortions caused by the subsampling. A
frequency-domain measure for the maximal aliasing distortions is given by the peak
aliasing distortions [Vai93]

Dpeak(Ω) =

√√√√R−1∑
r=1

∣∣∣∣∣ 1
R

M−1∑
i=0

Hi

(
ej (Ω−2πr/R)

)
·Gi

(
ej Ω
)∣∣∣∣∣

2

. (2.12)

If no subband processing takes place, the filter-bank should provide an output signal
y(k) = x̂(k) which is – at least approximately – a replica of the input signal x(k). An
AS FB achieves perfect reconstruction (PR), if the output signal is only a scaled and
delayed copy of the input signal

x̂(k) = cs · x(k −Do) for Do ∈ N0 ; cs ∈ R+ . (2.13a)

The value of Do refers to the (overall) signal delay of the filter-bank. The set of all
positive integer numbers including zero is denoted by N0 and R+ marks the set of all
real numbers being greater than zero. If Eq. (2.13a) applies, the linear transfer function
and aliasing distortions of Eq. (2.9) are given by

Tlin(z) = cs · z−Do ∧ Dalias(z) ≡ 0 . (2.13b)

A filter-bank achieves perfect reconstruction in a strict sense, if Eq. (2.13) applies with
cs = 1 and Do = 0. However, this can only be achieved by trivial systems without any
practical relevance.

A filter-bank accomplishes near-perfect reconstruction (NPR), if

x̂(k) ≈ cs · x(k −Do), (2.14a)

which implies that

Tlin(z) ≈ cs · z−Do ∨ Dalias(z) ≈ 0 . (2.14b)

The tolerable deviations depend on the filter-bank design and the intended application,
respectively. In general, the reconstruction error of a filter-bank with near-perfect
reconstruction should be low enough such that no noticeable signal distortions occur, if
no subband processing takes place.

5For this work, it is beneficial to define the phase response with a negative sign in the

exponent, which differs to some definitions of the phase response in literature.
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The filter-bank described by Eq. (2.9) is a linear periodically time-varying (LPTV)
system with period R since W r

R = W r+m R
R for m ∈ Z. It becomes a linear time-

invariant (LTI) system, if a complete aliasing cancellation is achieved, i.e., Dalias(z) ≡ 0.
The filter-bank causes no linear magnitude distortions, if∣∣Tlin

(
ej Ω
)∣∣ = cs ∀ Ω (2.15)

where usually cs = 1. Accordingly, the system causes no linear phase distortions, if the
linear phase error

Δϕlin(Ω) = ϕlin(Ω)−Do Ω (2.16)

is identical to zero for all frequencies Ω.
Eq. (2.9) is commonly employed for the description and design of filter-banks, e.g.,

[Gal02, dH04]. For this work, a different representation is used in addition. The consid-
ered AS FBs with subsampling by R are LPTV systems with period R. This behavior
is taken into account by determining the response of the filter-bank for R time-shifted
unit sample sequences as input, i.e., X(z) = z−ν for ν ∈ {0, 1, . . . , R − 1}. This results
in the new overall transfer function given by6

Tν(z) =
X̂ν(z)
z−ν

for ν ∈ {0, 1, . . . , R − 1} . (2.17)

The z-domain expression X̂ν(z) represents the output signal of an AS FB without
subband processing for an input signal given by X(z) = z−ν . Frequency response and
group delay of the new overall transfer function read

Tν

(
ej Ω
)

=
∣∣Tν

(
ej Ω
)∣∣ · e−j ϕν (Ω) (2.18)

τν(Ω) = gdl
{
Tν

(
ej Ω
)}

. (2.19)

The evaluation of this overall transfer function at ν = 0 is used for the analysis of
filter-banks by calculating its logarithmic magnitude response∣∣T0

(
ej Ω
)∣∣ / dB = 20 log10

∣∣T0

(
ej Ω
)∣∣ (2.20)

and the (overall) phase error

Δϕ0(Ω) = ϕ0(Ω)−Do Ω . (2.21)

It should be noted that the overall transfer function T0(z) becomes equal to the linear
transfer function Tlin(z) for a filter-bank with perfect aliasing cancellation (or if no
subsampling is performed). The introduced transfer function of Eq. (2.17) is not only
used for the analysis of filter-banks, but also for their numerical design later in Chap. 4.

6In literature, the function Tlin

(
ej Ω
)

is also referred to as overall transfer function (of

the alias-free) system, e.g., [Vai93, AZ03]. This nomenclature is not adopted here to achieve

a more clear distinction between the linear transfer function and overall transfer function of

an AS FB.
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2.2 Modulated Filter-Banks

This thesis deals exclusively with modulated filter-banks, especially AS FBs based on
the discrete Fourier transform (DFT) and inverse discrete Fourier transform (IDFT),
respectively. The M analysis filters are obtained by complex modulation according to

Hi(z) = H
(
zW i

M

)
(2.22)

=

La−1∑
l=0

h(l) ·W−i l
M · z−l ∀ i ∈ {0, 1, . . . ,M − 1} (2.23)

with WM = e−j 2 π
M , e.g., [Vai93]. A causal filter with finite impulse response (FIR)

h(k) = 0 for k ≥ La and k < 0 (2.24)

is taken as analysis prototype (lowpass) filter from which the other M − 1 bandpass
filters are obtained by complex modulation. This modulation causes a frequency shift
according to

Hi

(
ej Ω
)

= H
(
ej (Ω− 2 π

M
i)
)

for i ∈ {0, 1, . . . ,M − 1}, (2.25)

which results in a uniform analysis filter-bank as sketched schematically in Figure 2.2-a.
The synthesis filters are also obtained by complex modulation of an FIR synthesis

prototype lowpass filter g(k) according to7

Gi(z) = G
(
zW i

M

)
·W−i

M (2.26)

=

Ls−1∑
l=0

g(l) ·W−i (l+1)
M · z−l . (2.27)

It should be noted that for the considered DFT AS FB H(z) = H0(z) and G(z) = G0(z)
which, however, does not for apply for all transformation kernels as, for example, the
oddly-stacked generalized discrete Fourier transform (GDFT) as shown in Sec. 5.1.1.
If not mentioned otherwise, it is assumed that the lengths of analysis and synthesis
prototype filter are identical

L = La = Ls . (2.28)

The prototype lowpass filters are designed with the goal to achieve a high stopband
attenuation in order to minimize or even eliminate aliasing distortions. The overall
transfer function of Eq. (2.9) is then approximately or even exactly equal to its linear
transfer function. It follows from Eq. (2.23) and Eq. (2.27) that the linear transfer

7This complex modulation scheme is not the only possibility, but beneficial for the later

treatment in Sec. 2.3.
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Figure 2.3: ELT prototype filter of Eq. (2.33) for R = M/4 = 4 and L = 32:
(a) impulse response
(b) magnitude response.

function of the considered DFT AS FB is given by

Tlin(z) =
1
R

M−1∑
i=0

L−1∑
l=0

L−1∑
m=0

h(l) · g(m) · ej 2 π
M

i (l+m+1) · z−(l+m) (2.29)

=
M

R

∑
λ∈Z

L−1∑
l=0

h(l) · g(λM − 1− l) · z−(λ M−1) . (2.30)

Thus

Tlin(z) = z−(L−1), (2.31)

if the condition

M

R

L−1∑
l=0

h(l) · g(λM − l − 1) =

{
1 if λM = L

0 if λM ∈ Z\{L}
(2.32)

is met. This means that the convolution of analysis and synthesis prototype filter
should provide an impulse response corresponding to an Mth band filter. The design
of prototype filters to fulfill this requirement is treated in several publications, e.g.,
[Wac86, Vai93, Fli93, Kli99]. A closed-form solution for Eq. (2.32) is given by

h(l) = g(l) =

√
R

L

(
1−

√
2 cos

(
π

M
(l + 0.5)

))
for l ∈ {0, 1, . . . , L− 1} and L = 2M . (2.33)

These filters are termed as ELT prototype filters since they have been originally de-
veloped for cosine modulated filter-banks known as extended lapped transform (ELT)
[Mal92, Kli99]. Impulse response and magnitude response of an ELT prototype fil-
ter are plotted in Figure 2.3. The ELT prototype filters of Eq. (2.33) achieve perfect
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reconstruction for an oversampled DFT filter-bank and are considered primarily for the
design examples in this work. If L = M , a rectangular prototype filter with

h(l) = g(l) =

√
R

M
∀ l ∈ {0, 1, . . . ,M − 1} (2.34)

is used for the design examples. It should be noted that perfect reconstruction cannot
be achieved with a DFT AS FB for critical subsampling, if L > M , e.g., [Kli99].

2.3 Polyphase Representation

The polyphase decomposition of FIR filters is introduced in [BBC76] and extended to
IIR filters in [Var79]. This concept is of fundamental importance for the design as well
as the efficient implementation of digital filter-banks, e.g., [Var78, VW83, Vai90, Vai93,
Glu93, Kli99].

The type 1 polyphase representation for the analysis filters of Eq. (2.23) is obtained
as follows

Hi(z) =

M−1∑
λ=0

lM −1∑
m=0

h(Mm+ λ) · z−(M m+λ) ·W−i (M m+λ)
M

=

M−1∑
λ=0

H
(M)
0,λ

(
zM
)
· z−λ ·W−i λ

M (2.35a)

with the type 1 polyphase components

H
(M)
0,λ (z) =

lM −1∑
m=0

h(Mm+ λ) · z−m (2.35b)

and

lM =
⌈
L

M

⌉
. (2.36a)

If Eq. (2.32) applies

lM =
L

M
∈ N . (2.36b)

The operation �.� returns the lowest integer which is greater or equal to the argument
and N marks the set of all positive integers excluding zero. The type 2 polyphase
representation of the synthesis filters of Eq. (2.27) reads

Gi(z) =

M−1∑
λ=0

lM −1∑
m=0

g
(
M (m+ 1)− λ− 1

)
· z−(M (m+1)−λ−1) ·W−i (M (m+1)−λ)

M

=

M−1∑
λ=0

Ḡ
(M)
0,λ

(
zM
)
· z−(M−λ−1) ·W i λ

M (2.37a)
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Figure 2.4: Polyphase network (PPN) implementation of a DFT AS FB with
subsampling by R and L = 2M (without subband processing).

with the type 2 polyphase components

Ḡ
(M)
0,λ (z) =

lM −1∑
m=0

g
(
M (m+ 1)− λ− 1

)
· z−m . (2.37b)

There exists also a type 3 polyphase representation [CR83, Fli93] which, however, is
not considered in this work.

Figure 2.4 shows the derived polyphase network (PPN) implementation of a DFT
AS FB. It should be noted that for the introduced DFT filter-bank neither the DFT
nor the IDFT perform here a scaling by 1/M , which is implicitly considered by the
choice for the prototype filter coefficients. The subsampling operations can be moved
towards the delay elements due to the Noble identities depicted in Figure 2.5 [Vai93].
The IDFT and DFT, respectively, can be computed efficiently by the fast Fourier
transform (FFT), e.g., [OSB99]. Hence, this PPN filter-bank implementation possesses
only a low computational complexity. The processing scheme of Figure 2.4 can also be
interpreted as weighted overlap-add method [Cro80, CR83]: The delay chains buffer the
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Figure 2.5: The Noble identities for multi-rate processing.

samples of the input and output frames whose overlap is determined by the subsampling
rate R. The weighting coefficients are given by the coefficients of the FIR prototype
filters. A ‘zero-padding’ can be achieved by setting some of these coefficients equal to
zero.

Another common description of PPN filter-banks is based on a matrix representa-
tion, e.g., [Vai93, Glu93, Kli99] which, however, is of less importance for this work.

2.4 Spectral Representation of Multi-Rate Systems

An analysis-synthesis filter-bank is a multi-rate system due to the subsampling opera-
tions. Such a system can be described by its system response tbi(k2, k1), which is the
response of the system at instant k2 to a unit sample sequence at instant k1 where the
sampling rates for k1 and k2 can be different [CR83, Sch08].

This work deals exclusively with uniform and non-uniform AS FBs which apply the
same subsampling rate R in each subband. Such filter-banks are LPTV systems with
period R according to Sec. 2.1. As a consequence, the system response has the property

tbi(k2, k1) = tbi(k2 +mR, k1 +mR) ∀ k2, k1,m ∈ Z (2.38)

where the sampling times for k1 and k2 are identical. In addition, the considered
filter-banks are causal systems such that tbi(k2, k1) = 0 for k1 > k2.

The representation of the system response in the frequency-domain reads

Tbi

(
ej Ω2 , ej Ω1

)
=

1
2π

∞∑
k1=−∞

∞∑
k2=−∞

tbi(k2, k1) · ej (Ω1 k1−Ω2 k2) . (2.39)

A general treatment of this bifrequency system function (BSF) can be found in [CR83,
Sch08]. The following derivation differs slightly as only systems with the property of
Eq. (2.38) are considered whose BSF is calculated for discrete frequencies

Ω1 =
2π
Nbi

i1 and Ω2 =
2π
Nbi

i2 with i1, i2 ∈ {0, 1, . . . , Nbi − 1} . (2.40)

The frequency sampled version for the BSF of Eq. (2.39) is given by

Tbi

(
e

j 2 π

Nbi
i2 , e

j 2 π

Nbi
i1

)
=

1

N2
bi

Nbi−1∑
k1=0

Nbi−1∑
k2=0

tbi(k2, k1) · ej 2 π

Nbi
(k1 i1−k2 i2)

. (2.41)
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As shown in App. B.1, this expression can be converted to

Tbi

(
e

j 2π
Nbi

i2 , e
j 2π

Nbi

(
i2+l

Nbi
R

))

=

⎧⎨⎩
1

RNbi

R−1∑
k1=0

Nbi−1∑
k=0

tbi(k1 + k, k1) · ej 2 π
R

k1l · e−j 2 π
Nbi

k i2 if l ∈ Z

0 if l /∈ Z

(2.42)

where it is sufficient to consider only the values for l ∈ {0,±1,±2, . . .± (R− 1)} due to
the 2π-periodicity. For a linear time-invariant (LTI) system

tbi(k1 + k, k1) = tbi(k, 0) (2.43)

so that the discrete BSF of Eq. (2.42) reduces to

Tbi

(
e

j 2π
Nbi

i2 , e
j 2π

Nbi
i2

)
=

1
Nbi

Nbi−1∑
k=0

tbi(k, 0) · e−j 2 π
Nbi

ki2 . (2.44)

In this case, the discrete BSF represents the linear transfer function of the filter-bank
Tlin

(
ej Ω
)

calculated by the DFT or FFT, respectively.
Since the allpass-based filter-banks treated in this work are recursive systems, the

transformation length Nbi is determined in dependence of the individual system re-
sponse tbi(k2, k1) by the rule∣∣tbi(k2, k1)

∣∣ ≤ εbi for k2 ≥ Nbi and k1 ∈ {0, 1, . . . , R − 1} (2.45)

to avoid (noticeable) spectral aliasing while keeping the length Nbi as short as possible.
The value taken for the threshold εbi is equal to 2 · 10−16 (which is below the relative
floating-point accuracy of MATLAB).

The properties of the BSF should be exemplified by means of Figure 2.6. It shows
the magnitude of the BSF for two different AS FBs with the same subampling rate.8

Only the frequency range of Ω1,Ω2 ∈ [0, 2π] is considered due to the 2π-periodicity
of Tbi

(
ej Ω2 , ej Ω1

)
. The BSF Tbi

(
ej Ω2 , ej Ω1

)
can have non-zero values only at the

frequency lines

Ω1 = Ω2 +
2π
R

l for l ∈ {0,±1, . . .± (R− 1)} (2.46)

according to Eq. (2.42). The values on the main diagonal at Ω1 = Ω2 correspond to the
magnitude response of the linear transfer function Tlin

(
ej Ω1

)
according to Eq. (2.44).

The BSFs in Figure 2.6 suggest both a low amount of linear magnitude distortions
as their main diagonals at Ω1 = Ω2 are constant (at this resolution for the plots).
The magnitude of the BSF is symmetric to this main diagonal. Hence, there are at

8The actual design of these filter-banks is not important for this discussion and explained

in Sec. 4.3.3 in connection with Example 4.3 and Example 4.4.
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Figure 2.6: Magnitude of the bifrequency system function (BSF) for two dif-
ferent AS FBs with a subsampling rate of R = 2 achieving a partial aliasing
cancellation (a) and a perfect aliasing cancellation (b).

most R − 1 unique elements on the side diagonals determined by Eq. (2.46), e.g., for
l ∈ {1, 2, . . . , R − 1}. They show the number and magnitude of non-canceled alias
components. This can be observed in Figure 2.6-a where an alias component occurs on
the side diagonal Ω1 = Ω2 + π since Eq. (2.46) applies here with R = 2.

It should be noted that if the peak alias distortions according to Eq. (2.12) are
(almost) zero for all frequencies Ω, this does imply a BSF without alias components
on its side diagonals. However, a BSF without alias components does not ensure in
general that Dpeak(Ω) ≡ 0. Therefore, the peak aliasing distortions indicate to some
extend how good (or bad) the aliasing cancellation works, if a modification of the
subband signals takes place. The representation by the BSF has the advantage that
the suppression of individual alias components becomes visible together with the linear
magnitude distortions. Therefore, both representation are used in this work for the
assessment of the achieved aliasing cancellation.

2.5 Allpass Filters

A common building block of all the filter-banks treated in this thesis are allpass filters.
Besides IIR filter-banks, these filters are also part of many other signal processing
systems and intensively treated, e.g., in [Vai93, RMV88, Sch08]. In the following, the
main properties of allpass filters are described as far as needed for the later treatment.

The system function of a causal stable allpass filter of degree K in its direct (filter)
form is given by

A[K](z) =

K∑
m=0

c∗(K −m) · z−m

K∑
m=0

c(m) · z−m

; c(m) ∈ C ; K ∈ N . (2.47)
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The asterisk marks the complex conjugate value and C the set of all complex numbers.
An alternative representation, which is primarily considered in this work, is the cascade
form

A[K](z) =

K∏
m=1

A
[1]
m (z) (2.48a)

=

K∏
m=1

1− a∗(m) · z
z − a(m)

; a(m) ∈
{
C

∣∣∣max
m
{|a(m)|} < 1

}
(2.48b)

with region of convergence

Rc =
{
z ∈ C

∣∣∣max
m
{|a(m)|} < |z|

}
. (2.48c)

The complex allpass poles are denoted by9

a(m) = α(m) · ej γ(m) ; α(m) ∈ R ; γ(m) ∈ {R | 0 ≤ γ(m) ≤ 2π } . (2.49)

The allpass filter becomes identical to a mere delay element

A[K](z) = z−K if a(m) = 0 ∀ m, (2.50)

which is a trivial allpass filter. As indicated by its name, a (unit-magnitude) allpass
filter has the property∣∣A[K]

(
ej Ω
)∣∣ = 1 ∀ Ω . (2.51)

As a consequence, allpass filters are lossless such that the (causal) input signal x(k)
and the output signal y(k) of an allpass filter have the same energy

∞∑
k=0

|x(k)|2 =

∞∑
k=0

|y(k)|2 .

An allpass filter of first order features the system function

A(z) = A[1](z) =
1− a∗z

z − a with a = α · ej γ ; α, γ ∈ R . (2.52)

Its frequency response is denoted by

A
(
ej Ω
)

=
1− a∗ej Ω

ej Ω − a = e−j ϕa(Ω) . (2.53)

9It should be noted that α = sign{� {a}} · |a| and not α = |a| to simplify the later

treatment.



18 2 Fundamentals of Digital Filter-Banks

 

 

Ω/π

ϕ
a
(Ω

)/
π

a = 0.5
a = −0.5

0

0.4

0.8

1.2

1.6

2

0 0.4 0.8 1.2 1.6 2
Ω/π

τ a
(Ω

)

0

0.5

1

1.5

2

2.5

3

0 0.4 0.8 1.2 1.6 2

(a) (b)

Figure 2.7: Frequency responses of allpass filters of first order with real poles:
(a) phase response
(b) group delay.

The phase response can be expressed as follows

ϕa(Ω) = Ω + 2 arctan
(

α sin(Ω− γ)
1− α cos(Ω− γ)

)
+ 2π χ(Ω) (2.54a)

= −Ω + 2 arctan
(

sin Ω− α sin γ
cos Ω− α cos γ

)
+ 2π χ(Ω) . (2.54b)

Calculating the angle of a complex number by the inverse tangent function yields the
principal value, which is within the range −π to π. This can cause phase jumps of
2π, which lead to discontinuities. This effect is avoided by the function χ(Ω) ∈ Z,
which ensures that the phase response is a continuous function for all frequencies (see
also [OSB99]). This unwrapped phase response is considered in this work to ease the
treatment. The group delay can be obtained by the derivative of the phase response

τa(Ω) =
∂ ϕa(Ω)
∂ Ω

=
1− α2

1− 2α cos(Ω− γ) + α2
. (2.55)

The group delay is always positive and has extrema given by

τmax = max
Ω
{τa(Ω)} =

1 + |α|
1− |α| for Ω = γ +

π

2

(
1− sign(α)

)
(2.56a)

τmin = min
Ω
{τa(Ω)} =

1− |α|
1 + |α| for Ω = γ +

π

2

(
1 + sign(α)

)
. (2.56b)

For allpass filters with real pole a = α, the above equations apply with γ = 0. Phase
response and group delay of such allpass filters are exemplified in Figure 2.7.

There exist different structures to implement an allpass filter, which becomes impor-
tant, among others, w.r.t. a (fixed-point) implementation on a digital signal processor
(DSP), e.g., [Mit98]. If not mentioned otherwise, the allpass filter implementation of
Figure 2.8 is considered henceforth.
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Y (z)
z−1

−a∗

a

Figure 2.8: Implementation of an allpass filter of first order in a direct form.

The frequency response of an allpass filter of higher order according to Eq. (2.48)
reads

A[K]
(
ej Ω
)

= e−j ϕ
[K]
aaa (Ω) (2.57)

with phase response and group delay given by

ϕ
[K]
aaa (Ω) =

K∑
m=1

ϕa(m)(Ω)

= K Ω + 2

K∑
m=1

arctan

(
α(m) sin

(
Ω− γ(m)

)
1− α(m) cos

(
Ω− γ(m)

)) (2.58)

τ
[K]
aaa (Ω) =

K∑
m=1

τa(m)(Ω)

=

K∑
m=1

1− α2(m)

1− 2α(m) cos
(
Ω− γ(m)

)
+ α2(m)

. (2.59)

The unwrapped phase response of an allpass filter is monotonically increasing so that
the group delay is always positive, which follows from Eq. (2.54) and Eq. (2.55).

An allpass filter which consists of a cascade of Lac identical allpass filters of first
order is termed as allpass (filter) chain. The system function for a chain of K = Lac

allpass filters is written

ALac (z) =
(
A[1](z)

)Lac
(2.60)

such that Eq. (2.58) and Eq. (2.59) reduce to

ϕ
[Lac]
aaa (Ω) = Lac · ϕa(Ω) (2.61)

τ
[Lac]
aaa (Ω) = Lac · τa(Ω) . (2.62)

A more comprehensive treatment of allpass chains can be found in [Kap98]. The design
of filter-banks by means of allpass filters is treated in the following chapter(s).



20 2 Fundamentals of Digital Filter-Banks



Chapter 3

Recursive QMF-Banks

T
he design of filter-banks by means of quadrature-mirror filters (QMFs) is a well-
known approach, e.g., [CR83, Vai93, Fli93]. A QMF-bank is a critically subsam-

pled two-channel filter-bank originally proposed in [CEG76, EG77]. QMF-banks and
variants thereof are used for a variety of applications such as subband coding or signal
compression, e.g., [VK95, SPA07]. Most design proposals for QMF-banks consider FIR
filters, cf., [VK95]. The main advantage of FIR QMF-banks over their IIR counterparts
is that a system with linear-phase filters or perfect reconstruction can be realized more
easily. However, IIR filter-banks are an attractive alternative as they can achieve a
similar frequency selectivity as FIR filter-banks but with a much lower filter degree,
which implies a lower signal delay and a lower computational complexity.

A common approach to realize a recursive QMF-bank is to use allpass polyphase
filters [Weg79, Sar85]. Allpass polyphase filters can also be employed for the construc-
tion of a critically subsampled M -channel DFT filter-bank [HR90, RS87] also termed as
Pseudo QMF-bank. A decisive advantage of such allpass-based analysis filter-banks is
that they require only a low number of filter coefficients. A perfect signal reconstruction
can be achieved by a synthesis filter-bank whose polyphase components are given by
the inverse system functions of the allpass polyphase filters of the analysis filter-bank.
However, such synthesis filters are either stable and anti-causal or causal and unstable.
There exist different approaches to tackle this problem.

One scheme to realize anti-causal synthesis filters is to buffer the input samples in
order to perform a ‘time-reversed’ filtering. Such a technique is proposed in [Ram88,
HR90] for signals of finite length such as digital images. For the processing of signals
of ‘infinite’ length, such as speech or audio signals, the anti-causal filtering can be
realized by a double-buffering schemes [MCB92, CM96]. The Pseudo QMF-bank of
[MCB92] achieves perfect reconstruction, but requires the transmission of filter states
to the synthesis filter-bank. This transmission is avoided by the NPR design of [CM96]
which, however, requires a rather high signal delay in order to avoid noticeable signal
distortions.

These problems can be circumvented by approximating the needed anti-causal IIR
filters by causal FIR filters, which results in an IIR/FIR (Pseudo) QMF-bank with near-
perfect reconstruction. One approach to calculate the FIR filter coefficients is to solve
this approximation problem numerically, e.g., by linear programming [ZAS98, LJW00,
KDL00, KD02]. Another main approach is to determine the coefficients of the FIR
synthesis filters by analytical expressions [GK01a, KB06]. Such a closed-form design can
be applied to two-channel QMF-banks as well as Pseudo QMF-banks [GK01b, Gal02].
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Figure 3.1: General structure of a two-channel QMF-bank without spectral
processing.

The QMF-banks presented in this work are also derived by a closed-form design
similar to the approach of [Gal02], but use allpass filters instead of FIR filters. A
benefit of such an IIR/IIR QMF-bank is that amplitude distortions can be completely
avoided and a lower algorithmic complexity is achieved in comparison to the related
IIR/FIR QMF-bank designs of [GK01a, KB06, KDL00, KD02]. The new QMF-bank
designs can also be extended to Pseudo QMF-banks similar to the designs of [Gal02].

The remainder of this chapter is organized as follows: The considered allpass-based
QMF-banks are introduced in Sec. 3.1.1. The new QMF-bank designs are presented in
Sec. 3.1.2. The extension of these designs to Pseudo QMF-banks is treated in Sec. 3.2. A
central issue in the design of allpass-based filter-banks is to perform a phase equalization
at the synthesis side. Therefore, different phase equalizer designs for this purpose are
discussed in Sec. 3.3. The results of this chapter are finally summarized in Sec. 3.4.

3.1 Two-Channel QMF-Bank

The general structure of a critically subsampled two-channel quadrature-mirror filter-
bank (QMF-bank) is shown in Figure 3.1, e.g., [Vai93]. This filter-bank is obtained
from the general AS FB of Figure 2.1 for M = 2 and Ri ≡ 2. The input-output relation
of Eq. (2.9) is now given by

X̂(z) = X(z) · Tlin(z) +X(−z) · Talias(z) (3.1)

with linear transfer function

Tlin(z) =
1
2

(
H0(z) ·G0(z) +H1(z) ·G1(z)

)
(3.2)

and aliasing transfer function

Talias(z) =
1
2

(
H0(−z) ·G0(z) +H1(−z) ·G1(z)

)
. (3.3)
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Thus, perfect reconstruction according to Eq. (2.13) is achieved if Tlin(z) = cs · z−Do

and Talias(z) ≡ 0. If the analysis filters are related by

H1(z) = H0(−z), (3.4)

they exhibit the property
∣∣H1

(
ej Ω
)∣∣ =

∣∣H0

(
ej (π−Ω)

)∣∣ for FIR filters with real coef-
ficients, which led to the term quadrature-mirror filters (QMFs) [EG77, Vai93]. Such
an analysis filter-bank can be seen as special case of a DFT analysis filter-bank with
M = 2 channels, cf., Sec. 2.2. The choice

G0(z) = H1(−z) and G1(z) = −H0(−z) (3.5)

ensures complete aliasing cancellation (Talias(z) ≡ 0) and a linear transfer function
given by

Tlin(z) =
1
2

(
H2

0 (z)−H2
0 (−z)

)
. (3.6)

Thus, the idea is to tolerate aliasing due to critical subsampling and to compensate
these distortions by the synthesis filter-bank so that analysis filters with a limited
stopband attenuation and non-zero transition bandwidth can be used. Due to Eq. (3.4)
and Eq. (3.5), only a single prototype lowpass filter has to be designed.

The analysis filters can be represented by a type 1 polyphase network (PPN) ac-
cording to Eq. (2.35) as follows

H0(z) = H
(2)
0,0

(
z2
)

+ z−1 H
(2)
0,1

(
z2
)

(3.7a)

H1(z) = H
(2)
1,0

(
z2
)

+ z−1 H
(2)
1,1

(
z2
)

= H
(2)
0,0

(
z2
)
− z−1 H

(2)
0,1

(
z2
)

(3.7b)

due to Eq. (3.4). Inserting Eq. (3.7) into Eq. (3.5) yields the following PPN representa-
tion for the synthesis filters

G0(z) = H
(2)
0,0

(
z2
)

+ z−1 H
(2)
0,1

(
z2
)

(3.8a)

G1(z) = −H(2)
0,0

(
z2
)

+ z−1 H
(2)
0,1

(
z2
)
. (3.8b)

The resulting PPN implementation is depicted in Figure 3.2 and termed as standard
QMF-bank, cf., [Fli93, GG04].1 The linear transfer function of Eq. (3.6) is now given
by

Tlin(z) = 2 z−1 H
(2)
0,0

(
z2
)
·H(2)

0,1

(
z2
)
. (3.9)

For FIR filters, perfect reconstruction can be achieved, if and only if the polyphase
components of Eq. (3.9) are given by [Vai93]

H
(2)
0,0(z) = h0(l0) · z−l0 and H

(2)
0,1(z) = h0(l1) · z−l1 . (3.10)

However, this trivial solution does not permit filters with a high frequency selectivity.
There are different approaches to overcome this problem, e.g., [CR83, Vai93, Fli93].

One is to relax the PR constraint while another main approach is to strive for perfect
reconstruction by giving up the condition of Eq. (3.4). These two approaches to design
an FIR/FIR QMF-bank are briefly described in App. C.1.

1The term standard QMF-bank is not consistently used in literature.
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Figure 3.2: PPN implementation of a two-channel standard QMF-bank.

3.1.1 Allpass-Based QMF-Banks

Common design concepts for allpass-based QMF-banks are briefly described, which
form the basis (and motivation) for the new design approach.

A wide family of rational system functions can be represented as sum of two all-
pass filters, e.g., [AL85, Sar85, VMN86, Vai93]. A Butterworth, Chebyshev, or elliptic
lowpass filter is considered whose system function is given by

H0(z) =
A

[KI ]
I (z) +A

[KII ]
II (z)

2
. (3.11)

If the filter degree Df = KI + KII of H0(z) is even, the allpass filters with system
functions A[KI ]

I (z) and A
[KII ]
II (z) have complex coefficients for their direct form imple-

mentation. The coefficients of A[KI ]
I (z) are complex conjugate to those of A[KII ]

II (z) and
the filter degrees are related by KI = KII = Df/2.

If the filter degree Df is odd, which is considered here, the coefficients of the two
allpass filters are real and Df = KI +KII . The properties of these allpass-based filters
follow from the allpass decomposition theorem [Vai93]:

The irreducible rational system functions H0(z) and H1(z) of two stable IIR filters
with odd degree Df = KI +KII can be expressed by the sum of two allpass filters with
degrees KI and KII and real coefficients according to

H0(z) =
CI(z)
Dcom(z)

=

Df∑
m=0

cI(m) · z−m

Df∑
m=0

d(m)

=
A

[KI ]
I (z) +A

[KII ]
II (z)

2
(3.12a)

H1(z) =
CII(z)
Dcom(z)

=

Df∑
m=0

cII(n) · z−m

Df∑
m=0

d(m)

=
A

[KI ]
I (z)−A[KII ]

II (z)

2
(3.12b)

if the following conditions are satisfied:

• The rational system functions of H0(z) and H1(z) have real coefficients and their
magnitude responses are bounded by unity, i.e.,

∣∣Hi

(
ej Ω
)∣∣ ≤ 1 for i ∈ {0, 1}.



3.1 Two-Channel QMF-Bank 25

• The polynomial CI(z) is symmetric and CII(z) is anti-symmetric such that

cI(m) = cI(Df −m) ∧ cII(m) = −cII(Df −m) (3.13)

for m ∈ { 0, 1, . . . , Df } and cI(m), cII(m) ∈ R.

• H0(z) and H1(z) are power complementary, i.e.,
∣∣H0

(
ej Ω
)∣∣2 +

∣∣H1

(
ej Ω
)∣∣2 = 1.

Due to the last property, this class of subband filters is also referred to as power sym-
metric filters. Such filters can be used to construct an IIR QMF-bank, e.g., [RMV88,
Vai93]. The choice

A
[KI ]
I (z) = A

[K0]
0

(
z2
)

and A
[KII ]
II (z) = z−1 A

[K1]
1

(
z2
)

(3.14)

with A
[Ki]
i (z) =

Ki∏
m=1

1− a∗
i (m) · z

z − ai(m)
; i ∈ { 0, 1 } (3.15)

for the two allpass filters of Eq. (3.12) yields the analysis filters

H0(z) =
1
2

(
A

[K0]
0

(
z2
)

+ z−1 A
[K1]
1

(
z2
))

(3.16a)

H1(z) =
1
2

(
A

[K0]
0

(
z2
)
− z−1 A

[K1]
1

(
z2
))

. (3.16b)

These allpass-based analysis filters of a QMF-bank are related by Eq. (3.4). Applying
Eq. (3.5) to Eq. (3.16) yields the synthesis filters

G0(z) =
1
2

(
A

[K0]
0

(
z2
)

+ z−1 A
[K1]
1

(
z2
))

(3.17a)

G1(z) =
1
2

(
−A[K0]

0

(
z2
)

+ z−1 A
[K1]
1

(
z2
))

. (3.17b)

The filter degree of these subband filters is odd and amounts to Df = 2 (K0 +K1) + 1.
The polyphase components of the standard QMF-bank of Figure 3.2 now read

H
(2)
0,0(z) =

1
2
A

[K0]
0 (z) and H

(2)
0,1(z) =

1
2
A

[K1]
1 (z) . (3.18)

This realization of the standard QMF-bank is referred to as classical allpass-based
QMF-bank in this work.2 The linear transfer function of Eq. (3.9) is now given by

Tlin(z) =
1
2
z−1 A

[K0]
0

(
z2
)
·A[K1]

1

(
z2
)

(3.19)

so that
∣∣Tlin

(
ej Ω
)∣∣ = 1/2 ∀ Ω. Therefore, this IIR filter-bank design causes only phase

distortions, but no amplitude and aliasing distortions. The amount of phase distortions
depends on the allpass sub-filters. For example, the choice A[K1]

1 (z) = z−K1 is proposed
in [ZI95], which yields the linear transfer function

Tlin(z) =
1
2
A

[K0]
0

(
z2
)
· z−(2 K1+1) . (3.20)

2There exists no common term for this type of QMF-bank in literature.
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Figure 3.3: Allpass-based analysis filters with coefficients a0 = −0.1806 and
a1 = −0.6485 obtained by an LS error design for Ωs = 0.64π:
(a) magnitude responses of the analysis filters
(b) phase responses of the allpass sub-filters of the prototype lowpass filter.

By this, lower phase distortions can be achieved than for the classical QMF-bank and
the subband filters have an almost linear phase response in the passband, cf., [ZI95]. A
drawback of this approach is that the degrees of freedom to design the prototype lowpass
filter are reduced such that it is more difficult to achieve a desired filter characteristic
regarding stopband attenuation, transition bandwidth etc.

The coefficients of the prototype lowpass filter can be determined by a least-squares
(LS) error design approach, e.g., [Vai93]. The allpass filter coefficients are determined
by minimizing the stopband energy of the prototype lowpass filter

ES =

π∫
Ωs

∣∣H0

(
ej Ω
)∣∣2 d Ω . (3.21)

This approach yields, for example, the allpass poles a0 = −0.1806 and a1 = −0.6485 for
a stopband frequency of Ωs = 0.64π and allpass filters of first order, i.e., K0 = K1 = 1.
The corresponding analysis filters of degree Df = 5 are examined in Figure 3.3. The
phase responses ϕKI

(Ω) and ϕKII
(Ω) of the allpass sub-filters according to Eq. (3.12a)

are also plotted to demonstrate the design principle of such filters: In the passband
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Figure 3.4: Phase error Δϕlin(Ω) = ϕlin(Ω)− 18 Ω for the classical QMF-bank
with allpass-based subband filters according to Figure 3.3.

0 ≤ Ω ≤ Ωp, the phase responses of the two allpass filters are approximately equal so
that

∣∣H0

(
ej Ω
)∣∣ ≈ 1 in this region. In the stopband Ωs ≤ Ω ≤ π, the phase responses

differ approximately by π so that
∣∣H0

(
ej Ω
)∣∣ ≈ 0 in this region. The plot of the

magnitude responses reveals that it is possible to achieve a stopband attenuation of
43 dB with a filter degree of 5 only, which cannot be accomplished by an FIR filter with
such a low filter degree (cf., Sec. C.1).

It is obvious from Eq. (3.19) that the overall phase response of the classical allpass-
based QMF-bank is non-linear. This is exemplified in Figure 3.4 where the phase error
according to Eq. (2.16) is plotted. Hence, the classical allpass-based QMF-bank has
the advantages that it possesses a low signal delay and a low computational complex-
ity. In addition, it achieves a complete aliasing cancellation and causes no amplitude
distortions. However, the main problem of this approach are the considerable phase
distortions, which become even stronger if allpass sub-filters of higher degrees are used
in order to achieve an increased stopband attenuation and a lower transition bandwidth,
respectively.

The considered allpass-based analysis filters according to Eq. (3.12) are not the
only way to construct an IIR QMF-bank. The use of the lifting scheme is an important
alternative to design an allpass-based QMF-bank with perfect reconstruction [PKVA95,
CMH00]. The system functions of the analysis filters are given by

H0(z) = z−2 d0 + z−1A0

(
z2
)

(3.22a)

H1(z) = −B1

(
z2
)
·H0(z) + z−2 d1−1 . (3.22b)

The analysis and synthesis filters are related by Eq. (3.5) and the linear transfer function
of this filter-bank reads

Tlin(z) = 2 z−2 d0−2 d1−1 . (3.23)

One option is to use an allpass filter for A0(z) and a linear-phase FIR filter for B1(z)
[CMH00]. An alternative, purely allpass-based design is considered in [PKVA95]. The
choice A0(z) = B1(z) = A[K](z), d0 = K and d1 = 2K − 1 for Eq. (3.22) leads to the
filter-bank shown in Figure 3.5. The filter coefficients can be obtained by minimization
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Figure 3.5: Realization of an allpass-based QMF-bank with perfect reconstruc-
tion by means of the lifting scheme.
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Figure 3.6: Magnitude responses of the analysis filters for the allpass-based
IIR QMF-bank of Figure 3.5 with K = 3 and allpass poles a(1) = 0.4551,
a(2) = −0.0688 and a(3) = 0.0114.

of the stopband energy of the analysis filters [PKVA95]. A drawback of such designs
based on the lifting scheme is that it is more difficult to obtain subband filters with a
high frequency selectivity due to the PR constraint being structurally imposed on the
design process. This is exemplified in Figure 3.6. The analysis filters are designed by
means of an LS error minimization of the stopband energy of Eq. (3.21) for a stopband
frequency of Ωs = 0.7π. It can be observed that the analysis filters exhibit a high
transition bandwidth and a ‘superelevation’ in the transition band.3

Hence, the design of allpass-based QMF-banks with perfect reconstruction is pos-
sible, but the constraint for perfect reconstruction can be overly restrictive for some
applications. An example are speech and audio processing systems where small signal
distortions remain mostly unnoticed. For such applications, it is beneficial to tolerate
a small signal reconstruction error in order to obtain more degrees of freedom for the
filter-bank design. These degrees of freedom might be used, for instance, to obtain
subband filters with an improved frequency selectivity in order to reduce the cross-talk.
Another option can be to trade the signal reconstruction error against a reduced signal
delay and computational complexity, respectively. An allpass-based QMF-bank design
which pursues this concept is presented in the following.

3A discussion of further QMF-bank designs which, for example, avoid a ‘superelevation’

in the transition band can be found in [SB02, Bre03].
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Figure 3.7: General PPN implementation of a two-channel QMF-bank with
allpass-based analysis filters.

3.1.2 New IIR/IIR QMF-Bank Designs

Different closed-form designs for a purely allpass-based QMF-bank are now presented
based on [LV08c]. The presented designs achieve either a partial or complete aliasing
cancellation in the same manner as the IIR/FIR QMF-bank designs of [Gal02, GK01a,
KB06], where the synthesis polyphase components consist now of allpass filters instead
of FIR filters, which leads to filter-banks with very different properties.

3.1.2.1 Concept

The PPN representation of the considered QMF-bank is shown in Figure 3.7, e.g.,
[Gal02, KD02]. The analysis filters comply with Eq. (3.16), but the synthesis filters
are now given by

G0(z) = B1

(
z2
)

+ z−1 B0

(
z2
)

(3.24a)

G1(z) = −B1

(
z2
)

+ z−1 B0

(
z2
)

(3.24b)

instead of Eq. (3.17). The linear transfer function of Eq. (3.2) and aliasing transfer
function of Eq. (3.3) turn into

Tlin(z) =
z−1

2

(
A

[K0]
0

(
z2
)
·B0

(
z2
)

+A
[K1]
1

(
z2
)
·B1

(
z2
))

(3.25)

Talias(z) =
z−1

2

(
A

[K0]
0

(
z2
)
·B0

(
z2
)
−A[K1]

1

(
z2
)
·B1

(
z2
))

. (3.26)

Thus, a complete aliasing cancellation is achieved if

A
[K0]
0 (z) ·B0(z) = A

[K1]
1 (z) ·B1(z) . (3.27)

The more demanding condition for perfect reconstruction reads

A
[Ki]
i (z) ·Bi(z)

!
= z−ψ̄ for ψ̄ ≥ 0; i ∈ { 0, 1 } . (3.28)

This requirement states a phase equalization problem: The non-linear phase response
of the allpass filter shall be equalized by a phase equalizer to obtain an (almost) linear
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overall phase response and a constant magnitude response. The trivial solution

Bi(z) =
(
A

[Ki]
i (z)

)−1

(3.29)

yields either an anti-causal or unstable IIR filter dependent on the region of convergence.
This problem is avoided by the following allpass phase equalizer

Pap
i,1(z) =

Ji−1∏
n=0

1 + (a∗
i z)2n

z2n + a2n

i

; Ji ∈ N0 for i ∈ { 0, 1 } (3.30)

designed for an allpass filter of first order according to Eq. (2.52)

Ai(z) =
1− a∗

i z

z − ai
. (3.31)

It should be noted that Eq. (3.30) includes the empty product

Pap
i,1(z) ≡ 1 for Ji = 0 (3.32)

as special case. The transfer function of allpass filter and phase equalizer

Ai(z) · Pap
i,1(z) =

1− (a∗
i z)2Ji

z2Ji − a2Ji

i

; i ∈ {0, 1} (3.33)

is an allpass filter of degree 2Ji . For allpass filters of higher order according to Eq. (3.15),
the equalization can be accomplished by cascading the phase equalizer of Eq. (3.30):

Pap
i,Ki

(z) =

Ki∏
m=1

Ji(m)−1∏
n=0

1 + (a∗
i (m) · z)2n

z2n

+ (ai(m))2n ; Ji(m) ∈ N0 . (3.34)

Such a kind of phase equalizer is referred to as cascaded phase equalizer in this work.
The filter degree of this allpass phase equalizer amounts to

Nap
i =

Ki∑
m=1

(
2

Ji(m)

− 1
)
. (3.35)

The transfer function of an allpass filter of degree Ki and its phase equalizer

Ψap
i (z) = A

[Ki]
i (z) · Pap

i,Ki
(z) (3.36a)

=

Ki∏
m=1

1− (a∗
i (m) · z)I(i,m)

zI(i,m) − (ai(m))I(i,m)
; I(i,m) = 2Ji(m) (3.36b)

is an allpass filter of degree

di =

Ki∑
m=1

I(i,m) ∀ i ∈ { 0, 1 } . (3.37)
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The allpass filter of Eq. (3.36) is always stable since |ai(m)| < 1 and tends to z−di for
growing values of I(i,m). It should be noted that the allpass property is maintained
even for quantized allpass coefficients and that the poles of the allpass phase equalizer
of Eq. (3.36) are closer to the origin than those of the allpass filter A[Ki]

i (z).
A more comprehensive treatment of the proposed allpass phase equalizer as well as

a comparison with alternative phase equalizer designs for allpass-based filter-banks is
conducted later in Sec. 3.3.

3.1.2.2 Design I

The first design follows from Eq. (3.28), which can be approximately fulfilled by the
following choice for the synthesis polyphase filters

B0(z) = Pap
0,K0

(z) · z−(d1−d0) (3.38a)

B1(z) = Pap
1,K1

(z) (3.38b)

with allpass phase equalizer given by Eq. (3.34). The linear transfer function is obtained
by inserting Eq. (3.38) into Eq. (3.25) such that

Tlin(z) =
z−1

2

(
Ψap

0

(
z2
)
· z−2 (d1−d0) + Ψap

1

(
z2
))

(3.39)

due to Eq. (3.36). The delay element z−2 (d1−d0) accounts for the different signal delays
of Ψap

0

(
z2
)

and Ψap
0

(
z2
)

where it is assumed that d1 ≥ d0 w.l.o.g. Thus, the transfer

function of Eq. (3.39) tends to z−(2 d1+1), if the values for d0 and d1 are increased. If
allpass polyphase filters of first order are used for the analysis filters, Eq. (3.36) reduces
to Eq. (3.33) such that Eq. (3.39) is given by

Tlin(z) =
z−2 (d1−d0)−1

2

1−
(
a∗

0z
2
)d0

z2 d0 − ad0

0

+
z−1

2

1−
(
a∗

1z
2
)d1

z2 d1 − ad1

1

. (3.40)

The aliasing transfer function is obtained by inserting Eq. (3.38) into Eq. (3.26):

Talias(z) =
z−1

2

(
Ψap

0

(
z2
)
· z−2 (d1−d0) −Ψap

1

(
z2
))

(3.41)

which evaluates for allpass polyphase filters of first order to

Talias(z) =
z−2 (d1−d0)−1

2

1−
(
a∗

0z
2
)d0

z2d0 − ad0

0

− z−1

2

1−
(
a∗

1z
2
)d1

z2d1 − ad1

1

. (3.42)

If d0 = d1, the transfer functions of Eq. (3.40) and Eq. (3.42) simplify to

Tlin(z) =
z−1

2

(
1−
(
a∗

0z
2
)d0

z2d0 − ad0

0

+
1−
(
a∗

1z
2
)d0

z2d0 − ad0

1

)
(3.43)

Talias(z) =
z−1

2

(
1−
(
a∗

0z
2
)d0

z2d0 − ad0

0

−
1−
(
a∗

1z
2
)d0

z2d0 − ad0

1

)
. (3.44)
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Figure 3.8: Transfer functions for IIR QMF-bank design I with parameters
d0 = 8, d1 = 16 and analysis filters according to Figure 3.3:
(a) linear group delay
(b) magnitude response of the linear transfer function
(c) magnitude response of the aliasing transfer function.

Example 3.1: An allpass-based QMF-bank with K0 = K1 = 1 is considered.
Figure 3.3-a shows the magnitude responses of the employed analysis filters, which are
almost identical to those of the synthesis filters (hence not plotted). The parameters
d0 = 8 and d1 = 16 are used for the synthesis filter-bank design according to Eq. (3.38).
Figure 3.8 shows group delay and magnitude response of the linear transfer function ac-
cording to Eq. (3.40) as well as the magnitude response of the aliasing transfer function
given by Eq. (3.42). The new design causes almost no amplitude distortions and only
a low amount of aliasing and group delay distortions. The amount of signal distortions
can thereby be easily traded against delay and complexity by the choice for d0 and d1.
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Figure 3.9: Implementation of IIR QMF-bank design II as a cascade of the
classical allpass-based QMF-bank and a subsequent allpass phase equalizer.

3.1.2.3 Design II

The condition of Eq. (3.27) for complete aliasing cancellation can be met by the follow-
ing synthesis polyphase filters

B0(z) = Pap
0,K0

(z) ·Ψap
1 (z) (3.45a)

B1(z) = Pap
1,K1

(z) ·Ψap
0 (z) (3.45b)

with allpass phase equalizers and transfer functions given by Eq. (3.34) and Eq. (3.36),
respectively. The linear transfer function of Eq. (3.25) is now given by

Tlin(z) = z−1 Ψap
0

(
z2
)
·Ψap

1

(
z2
)

(3.46)

which is an allpass filter of degree 2 (d0 + d1) + 1. The linear transfer function reads

Tlin(z) = z−1
1−
(
a∗

0z
2
)d0

z2d0 − ad0

0

1−
(
a∗

1z
2
)d1

z2d1 − ad1

1

, (3.47)

if allpass filters of first order are used for the analysis polyphase components.
Due to Eq. (3.36a), the linear transfer function of Eq. (3.46) can be decomposed

into the linear transfer function of the classical allpass-based QMF-bank according to
Eq. (3.19) and a subsequent allpass phase equalizer

Tlin(z) = 2 · 1
2
z−1 A

[K0]
0

(
z2
)
·A[K1]

1

(
z2
)︸ ︷︷ ︸

Eq. (3.19)

· Pap
0,K0

(
z2
)
· Pap

1,K1

(
z2
)︸ ︷︷ ︸

= P ap(z)

. (3.48)

The corresponding QMF-bank is shown in Figure 3.9. Hence, the classical allpass-
based QMF-bank is a special case of the new design and obtained if Eq. (3.32) applies.
This generalization allows to make the remaining phase distortions arbitrarily small in
dependence of the values for d0 and d1, but without introducing amplitude distortions.

Example 3.2: Example 3.1 is now repeated with the new synthesis filter-bank
design II according to Eq. (3.45). The group delay of the linear transfer function of
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Figure 3.10: Overall group delay for IIR QMF-bank design II with parameters
d0 = 8, d1 = 16 and analysis filters according to Figure 3.3.

Eq. (3.47) is plotted in Figure 3.8. A comparison with Figure 3.8-a shows that the
group delay is higher and exhibits greater ripples as for the previous design I, but the
design II avoids aliasing and magnitude distortions for the reconstructed signal.

For practical applications, such as speech or audio processing, a higher signal recon-
struction error than for these design examples can usually be tolerated while subband
filters with a higher stopband attenuation are desirable. Such aspects are discussed
later in Sec. 6.1.

3.1.2.4 Design III

A more linear phase characteristics for the subband filters can be achieved by means of
the following modification of the analysis filters

H ′
0(z) =

1
2

(
Ψap

0

(
z2
)

+ z−1 A
[K1]
1

(
z2
)
· Pap

0,K0

(
z2
))

(3.49a)

H ′
1(z) =

1
2

(
Ψap

0

(
z2
)
− z−1 A

[K1]
1

(
z2
)
· Pap

0,K0

(
z2
))

(3.49b)

and synthesis filters

G′
0(z) = z−1 Ψap

1

(
z2
)

+A
[K0]
0

(
z2
)
· Pap

1,K1

(
z2
)

(3.50a)

G′
1(z) = z−1 Ψap

1

(
z2
)
−A[K0]

0

(
z2
)
· Pap

1,K1

(
z2
)
. (3.50b)

The relations to the subband filters of the classical QMF-bank according to Eq. (3.16)
and Eq. (3.17) are given by

H ′
i(z) = Hi(z) · Pap

0,K0

(
z2
)

(3.51)

G′
i(z) = 2Gi(z) · Pap

1,K1

(
z2
)

with i ∈ {0, 1} . (3.52)

It follows from these relations and Eq. (3.19) that the overall transfer function for this
design is given by Eq. (3.48). Hence, the reconstruction error is the same as for the
previous design II, but the algorithmic complexity of the QMF-bank is higher. As for
design II, the magnitude responses of the subband filters are exactly the same as for
the classical allpass-based QMF-bank in contrast to the original approach of [Gal02]
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where FIR phase equalizers are used. The phase responses of the modified subband
filters become more linear because of the multiplication with Pap

i,Ki

(
z2
)
, which leads to

a partial phase compensation as exemplified in the following.
Example 3.3: The new design III is applied to the analysis filters of Figure 3.3. The

plots of Figure 3.11 show that the group delay of the new analysis filters is more constant
than for the original subband filters. The corresponding curves for the synthesis filters
are not plotted as they are similar to those of the analysis filters.

3.1.2.5 Evaluation

The proposed IIR/IIR QMF-bank designs I and II are now compared with the related
IIR/FIR QMF-bank designs of [GK01a, KDL00]. These designs can also achieve either
a partial or complete aliasing cancellation, but use FIR phase equalizers instead of
allpass phase equalizers. In addition, the para-unitary QMF Lattice design of [VH88]
is considered to include an FIR/FIR QMF-bank with perfect reconstruction.4 The
different filter-banks are designed in such a manner that they have all approximately
the same overall signal delay Do and achieve a similar aliasing cancellation.

Table 3.1 contrasts the resulting reconstruction errors of the different filter-banks. In
addition, their algorithmic complexity is also listed, which comprises here the number of
real multiplications and summations per sample instant as well as the number of delay
elements.5 The considered NPR designs use the same allpass-based analysis filters

4A brief description of this FIR/FIR QMF-bank design is provided by App. C.1. A

comparison of the proposed IIR/IIR QMF-bank design with the FIR/FIR QMF-bank design

of Johnston [Joh80] is conducted in Sec. 6.1.
5This algorithmic complexity is a very general and common measure for the assessment

of the complexity of a system. This measure can (only) serve as a rough estimate for

the actual computational complexity of a system if implemented, e.g., on a DSP where

the computational load depends on the specific chip architecture, the instruction set etc.

However, such a specific analysis exceeds the scope of this work where the terms algorithmic

complexity and computational complexity are used interchangeably.
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Table 3.1: Comparison of different QMF-bank designs regarding the minimum
stopband attenuation (MSA), maximal aliasing distortions (MALD) for∣∣Talias

(
ej Ω
)∣∣, maximal amplitude distortions (MAMD) for

∣∣Tlin

(
ej Ω
)∣∣− 1

and maximal group delay deviations (MGDD) for τlin(Ω)−Do. The last
column contains the overall number of real multipliers (M), real adders (A)
and the number of delay elements (D). A value of approximately zero lies
within the floating-point accuracy of MATLAB.

QMF-bank MSA MALD MAMD MGDD M/A/D

[dB] [dB] [samples]

signal delay Do = 33

new design I -43 -60.2 +4.8 · 10−7 ±3.1 · 10−2 9/12/24

NPR FB [GK01a] -43 -66.2 ±5 · 10−4 ±1.6 · 10−2 15/17/36

NPR FB [KDL00] -43 -61.9 ±8 · 10−4 ±2.3 · 10−2 15/17/36

PR FB [VH88] -68 none ≈ 0 ≈ 0 36/35/37

signal delay Do = 49

new design II -43 none ≈ 0 ±6.3 · 10−2 11/14/40

NPR FB [GK01a] -43 none ±9.8 · 10−4 ±3.1 · 10−2 16/18/52

NPR FB [KDL00] -43 none ±16 · 10−4 ±4.6 · 10−2 27/29/52

PR FB [VH88] -88 none ≈ 0 ≈ 0 52/51/52

of degree Df = 5 as shown in Figure 3.3 so that the minimum stopband attenuation
(as defined in [Vai93]) is equal for these filter-banks. In contrast, the considered para-
unitary QMF-bank uses analysis filters of degrees 32 and 49, respectively, which explains
the better stopband attenuation and higher algorithmic complexity.

The QMF-banks with near-perfect reconstruction achieve a similar aliasing cancel-
lation and have a significantly lower complexity than the para-unitary FIR QMF-bank
with perfect reconstruction at the expense of small reconstruction errors. The new
IIR/IIR QMF-bank causes no or negligible magnitude distortions and features the low-
est algorithmic complexity of all considered designs at the expense of slightly higher
group delay distortions. Due to these properties, the proposed design is of special
interest for speech and audio processing since the human auditory systems is rather
insensitive towards phase or group delay distortions, respectively. Such an application
of the new QMF-bank is elaborated in Chap. 6.

3.2 M-Channel Pseudo QMF-Bank

The concept of the two-channel QMF-bank can be generalized, which leads to a modu-
lated M -channel AS FB. Therefore, modulated M -channel filter-banks are also termed
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Figure 3.12: Magnitude response of an IIR analysis prototype filter obtained by
the non-linear phase design of [RS87] for M = 8 and Ωp = 0.6π/M .

as Pseudo QMF-banks, cf., [Fli93].6 As for the two-channel IIR QMF-bank treated be-
fore, it is also possible to construct such filter-banks by means of allpass polyphase filters
[Ram88, HR90]. Accordingly, synthesis filter-bank designs for allpass-based QMF-banks
can also be extended to such M -channel Pseudo QMF-banks [Gal02]. Similar to the
approach of [Gal02], the use of the new allpass phase equalizer for such filter-banks is
treated in the following based on [LV09e].

3.2.1 Filter-Bank Structure

A critically subsampled DFT AS FB with M channels is considered whose analysis
filters are given by

Hi(z) = H
(
zW i

M

)
for i ∈ { 0, 1, . . . ,M − 1 } . [2.22]

In contrast to the DFT filter-bank treated in Sec. 2.3, a recursive prototype lowpass
filter is now taken whose type 1 polyphase representation reads

H(z) =
1
M

M−1∑
λ=0

A
[Kλ]
λ

(
zM
)
· z−λ . (3.53)

The M analysis polyphase filters are now allpass filters according to Eq. (2.48) [HR90].
The real poles of the allpass filters A

[Kλ]
λ (z) can be determined by the algorithms

presented in [RS87].
An example for such a prototype lowpass filter is provided by Figure 3.12, which is

determined by the non-linear phase design of [RS87] for a passband edge frequency
of Ωp = 0.6π/M and allpass filter degrees Kλ = 1 for λ ∈ {0, 1, . . . ,M − 2} and
KM−1 = 0 with M = 8. The corresponding allpass coefficients a0, . . . , aM−1 are
equal to 0.1038, 0.2078, 0.3144, 0.4260, 0.5458, 0.6774, 0.8263 and 0.

6It is also common to name such AS FBs simply as M-channel QMF-banks and/or to

term only M-channel cosine modulated filter-banks as Pseudo QMF-banks.
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Figure 3.13: PPN implementation of a critically subsampled DFT AS FB with
allpass polyphase filters (without spectral processing).

The width of the inevitable side-lobes and the transition-band can be reduced at
the expense of a diminished stopband attenuation and vice versa. The side-lobes are
caused by so-called ‘don’t care bands’ and can be avoided by the design of [RNM86]
at the price of an increased algorithmic complexity and signal delay. However, this
approach is not considered here as the proposed synthesis filter-bank design can also
be applied to this filter-bank in a straightforward fashion, cf., [Hil08].

Eq. (3.53) and Eq. (2.35a) lead to the following type 1 polyphase representation of
the analysis filters

Hi(z) =
1
M

M−1∑
λ=0

A
[Kλ]
λ

(
zM
)
· z−λ ·W−iλ

M ; i ∈ {0, 1, . . . ,M − 1} . (3.54)

The type 2 polyphase representation of the synthesis filters according to Eq. (2.37a) is
now given by

Gi(z) =

M−1∑
λ=0

Bλ

(
zM
)
· z−(M−1−λ) ·W iλ

M . (3.55)

The corresponding PPN implementation of this allpass-based DFT AS FB is shown
in Figure 3.13. The QMF-bank of Figure 3.7 is included as special case of this Pseudo
QMF-bank for M = 2. Accordingly, the following synthesis filter-bank designs can be
seen as generalization of the previous QMF-bank designs I and II.
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3.2.2 New Synthesis Filter-Bank Designs

Inserting Eq. (3.54) and Eq. (3.55) into Eq. (2.8) leads (after some steps) to the relation

X̂(z) =
z−(M−1)

M

M−1∑
r=0

X
(
zW r

M

) M−1∑
λ=0

A
[Kλ]
λ

(
zM
)
·Bλ

(
zM
)
·W−λ r

M (3.56)

= X(z)
z−(M−1)

M

M−1∑
λ=0

A
[Kλ]
λ

(
zM
)
·Bλ

(
zM
)

︸ ︷︷ ︸
= Tlin(z)

+

M−1∑
r=1

X
(
zW r

M

) z−(M−1)

M

M−1∑
λ=0

A
[Kλ]
λ

(
zM
)
·Bλ

(
zM
)
·W−λ r

M︸ ︷︷ ︸
= Ur(z)

. (3.57)

The function Tlin(z) represents the linear transfer function of the AS FB introduced in
Eq. (2.9). The peak aliasing distortions of Eq. (2.12) are now determined by the alias
components Ur(z) as follows

Dpeak(Ω) =

√√√√M−1∑
r=1

∣∣Ur(ej Ω)
∣∣2 . (3.58)

Eq. (3.57) reveals that a filter-bank with perfect reconstruction according to Eq. (2.13)
is obtained, if

A
[Kλ]
λ (z) ·Bλ(z)

!
= z−ψ̄ ∀ λ ∈ {0, 1, . . . ,M − 1} . (3.59)

This phase equalization problem is similar to that of Eq. (3.28) and can be approxi-
mately solved with the allpass phase equalizer of Eq. (3.34). Accordingly, the transfer
function of Eq. (3.36) is now given by

Ψap
λ (z) = A

[Kλ]
λ (z) · Pap

λ,Kλ
(z) (3.60a)

=

Kλ∏
m=1

1− (a∗
λ(m) · z)I(λ,m)

zI(λ,m) − (aλ(m))I(λ,m)
; I(λ,m) = 2Jλ(m) (3.60b)

which represents an allpass filter with filter degree

dλ =

Kλ∑
m=1

I(λ,m) ∀ λ ∈ {0, 1, . . . ,M − 1} . (3.61)
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3.2.2.1 Design I

Similar to QMF-bank design I of Sec. 3.1.2.2, near-perfect reconstruction can be accom-
plished by means of the following allpass polyphase filters at the synthesis side

Bλ(z) = Pap
λ,Kλ

(z) · z−(dmax−dλ) with dmax = max
λ
{dλ} (3.62)

where Pap
λ,Kλ

(z) and dλ are given by Eq. (3.34) and Eq. (3.61). Inserting Eq. (3.62) into
Eq. (3.57) yields the linear transfer function

Tlin(z) = z−(1+dmax)M+1 1
M

M−1∑
λ=0

Ψap
λ

(
zM
)
· zMdλ (3.63)

and alias components

Ur(z) = z−(1+dmax)M+1 1
M

M−1∑
λ=0

Ψap
λ

(
zM
)
· zMdλ ·W−λ r

M (3.64)

with Ψap
λ (z) given by Eq. (3.60). The overall signal delay of this filter-bank amounts to

Do = (1 + dmax) ·M − 1 (3.65)

sample instants. For the special case dλ ≡ dmax, the signal reconstruction error can be
reduced at the price of an increased computational complexity, but without increasing
the signal delay Do.

Example 3.4: The design of a DFT Pseudo QMF-bank with M = 8 subbands
is considered whose analysis prototype lowpass filter is shown in Figure 3.12. For the
synthesis filter-bank, the filter degrees dλ of Eq. (3.61) are equal to [2, 4, 4, 8, 8, 16, 16, 0].

The zero value indicates an ‘identity branch’ for λ = M − 1 where A
[KM−1]
M−1 (z) ≡ 1 and

BM−1(z) = z−dmax . The magnitude response of the obtained synthesis prototype filter
is not plotted as it is almost identical to that of Figure 3.12. The linear transfer function
and peak aliasing distortions according to Eq. (3.57) and Eq. (3.58) are analyzed in
Figure 3.14. A lower signal reconstruction error can be achieved by using higher filter
degrees dλ at the price of an increased signal delay Do. An alternative design, which
avoids amplitude and aliasing distortions, is presented in the following.

3.2.2.2 Design II

Inspection of Eq. (3.57) reveals that a complete aliasing cancellation is accomplished,
if the product A[Kλ]

λ (z) · Bλ(z) is identical for all λ ∈ {0, 1, . . . ,M − 1}. This can be
achieved by a synthesis filter-bank whose polyphase filters are given by

Bλ(z) =

λ−1∏
ρ=0

Ψap
ρ (z) · Pap

λ,Kλ
(z)

M−1∏
μ=λ+1

Ψap
μ (z) . (3.66)
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Figure 3.14: Analysis of the reconstruction error for Pseudo QMF-bank design I
with M = 8 channels and analysis prototype filter according to Figure 3.12:
(a) group delay of the linear transfer function
(b) magnitude response of the linear transfer function
(c) peak aliasing distortions.

The resulting linear transfer function

Tlin(z) = z−(M−1) 1
M

M−1∏
λ=0

Ψap
λ

(
zM
)

(3.67)

is an allpass filter such that no amplitude distortions occur. The remaining phase and
group delay distortions, respectively, can be made arbitrarily small in dependence of
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Figure 3.15: Group delay of the overall transfer function for Pseudo QMF-
bank design II with M = 8 channels and analysis prototype filter according
to Figure 3.12.

the tolerable signal delay, which amounts to

Do = M − 1 +M

M−1∑
λ=0

dλ (3.68)

sample instants according to Eq. (3.67) with dλ given by Eq. (3.61).
Example 3.5: As for Example 3.4, a critically subsampled DFT Pseudo QMF-

bank with M = 8 subbands is considered whose analysis prototype filter is shown in
Figure 3.12. The filter degrees dλ of Eq. (3.67) are now equal to [2, 4, 4, 8, 8, 16, 32, 0].
The overall group delay for this design is plotted in Figure 3.15. The Pseudo QMF-bank
design II achieves complete aliasing cancellation and causes no amplitude distortions at
the price of a higher group delay and a higher computational complexity in comparison
to the previous design. The trade-off between signal delay and reconstruction error
(phase distortions) can be easily adjusted by the choice of the filter degrees dλ.

A comparison of the presented Pseudo QMF-bank design with the original approach
of [GK01b] can be found in [LV09e, Hil08]. As for the previous QMF-bank designs, it
turns out that the proposed IIR/IIR Pseudo QMF-bank designs exhibit higher phase
distortions, similar aliasing distortions, but lower magnitude distortions in comparison
to the corresponding IIR/FIR Pseudo QMF-bank designs of [GK01b]. In addition, the
new filter-banks have also a lower algorithmic complexity. These different properties are
reasoned by the fact that the proposed designs are based on allpass phase equalizers
where the original designs of [GK01b, Gal02] are based on FIR phase equalizers. A
detailed analysis of these two phase equalizer designs is performed in the following.

3.3 Phase Equalizer Design

The previous treatment has shown that solving the phase equalization problem as stated
by Eq. (3.28) or Eq. (3.59) is a central issue in the design of allpass-based QMF-banks
and Pseudo QMF-banks, respectively. This is also true for allpass transformed filter-
banks, which are treated in the subsequent chapters. Actually, many design proposals
for allpass-based filter-banks differ basically by the employed phase equalizer design,
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Ψ(z)

Y (z)
!
= z−ψ̄ X(z)

Figure 3.16: General phase equalization problem for allpass-based filter-banks.

which has a major impact on the performance of a filter-bank. This motivates to
elaborate different phase equalizer designs for allpass-based filter-banks in more detail.

3.3.1 Design Problem

The filtering of a signal x(k) by an allpass filter causes no magnitude distortions but
phase distortions, which should be compensated by a subsequent phase equalizer. The
formulation of this problem in the z-domain is depicted in Figure 3.16. The trans-
fer function Ψ(z) of degree D for the cascade of an allpass filter of degree K and a
corresponding phase equalizer of degree N shall be equal to a delay element

Ψ(z) = A[K](z) · PK(z)
!
= z−ψ̄ ; ψ̄ ≥ 0 . (3.69)

The actual transfer function Ψ(z) should approximate the desired transfer function

Ψd(z) = z−ψ̄ . (3.70)

Eq. (3.69) implies that the frequency response of the actual transfer function

Ψ
(
ej Ω
)

=
∣∣Ψ(ej Ω

)∣∣ · e−j ϕΨ(Ω) (3.71)

should have a linear phase response and constant group delay

ϕΨ(Ω)
!
= ψ̄Ω (3.72)

τΨ(Ω) = gdl
{

Ψ
(
ej Ω
)} !

= τ̄ ∀ Ω . (3.73)

Thus, the above stated phase equalization problem can also be seen as group delay
equalization problem.

The performance of a phase equalizer depends on the deviations between actual and
desired transfer function. This difference is captured by the following approximation
errors for magnitude response, phase response and group delay

Δ
∣∣Ψ(ej Ω

)∣∣ =
∣∣Ψ(ej Ω

)∣∣− c̄ (3.74a)

ΔϕΨ(Ω) = ϕΨ(Ω)− ψ̄Ω (3.74b)

ΔτΨ(Ω) = τΨ(Ω)− τ̄ . (3.74c)
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It is important to notice that the nominal group delay τ̄ is not necessarily equal to the
nominal phase factor ψ̄ which, in turn, is not necessarily equal to the degree D of the
transfer function Ψ(z) of Eq. (3.69). If a phase equalizer is designed in such a manner
that the approximation error for a desired phase response is minimal with regard to a
certain error norm, this does in general not ensure that the corresponding group delay
error is also minimal for the same error norm, cf., [Lan93, Chap. 2]. Accordingly, the
values for τ̄ and ψ̄ depend not only on the filter degree D, but also on the considered
error norm (cf., App. D.1).

In case of an allpass chain of length Lac according to Eq. (2.60), the statement of
Eq. (3.69) turns into the equation

Ψ(z) = ALac (z) · PLac
(z)

!
= z−ψ̄ . (3.75)

This design problem is also considered as it plays an important role for the construction
of the later treated allpass transformed filter-banks.

One possible strategy to solve the general phase equalization problem of Eq. (3.69)
is to design a phase equalizer for a single allpass filter of first order by the requirement

Ψs(z) = A(z) · P1(z)︸ ︷︷ ︸
= P(z)

!
= z−ψ̄s . (3.76)

This phase equalizer design can then be extended to allpass filters of higher order in a
straightforward fashion as an allpass filter can always be represented in a cascade form
according to Eq. (2.48).7 For such a cascaded phase equalization, the design problem of
Eq. (3.69) turns into the statement

Ψ(z) =

K∏
m=1

Am(z) · Pm(z)
!
= z

−
∑

K

m=1
ψ̄s(m)

. (3.77)

The proposed allpass phase equalizer design of Eq. (3.30) belongs to this category as
well as the FIR phase equalizer design of [Gal02].

For the special case of an allpass chain, Eq. (3.77) simplifies to

Ψ(z) =
(
A(z) · P(z)

)Lac !
= z−Lacψ̄s . (3.78)

A straightforward solution for the general phase equalization problem of Eq. (3.69) is
obtained by

P ideal
K (z) =

(
A[K](z)

)−1
= Ă[K](z) (3.79)

where Ă[K](z) marks the para-conjugate system function of an allpass filter.8 However,
this ‘ideal’ phase equalizer is either causal and unstable for a region of convergence
given by max{|a(m)|} < |z| or stable and anti-causal for a region of convergence given
by max{|a(m)|} > |z|. More advanced phase equalizer designs, which circumvent this
problem, are elaborated in the following.

7If not mentioned otherwise, only this cascade form is considered for A[K](z) in the

following and the terms allpass coefficient and allpass pole are used interchangeably.
8The used nomenclature for filters is described in App. A.2.
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Figure 3.17: Implementation of a non-causal allpass filter as phase equalizer
with non-overlapping buffering according to [MCB92].

3.3.2 Non-Causal Filtering

One approach to solve the considered phase equalization problem is to seek for a direct
realization of the anti-causal phase equalizer given by Eq. (3.79). The implementation
of non-causal IIR filters is treated already in [Cza82]. A non-causal filter can be realized
by buffering the input samples in order to perform a ‘time-reversed’ filtering. Such a
technique is employed in [Ram88, HR90] to implement an allpass-based Pseudo QMF-
bank with perfect reconstruction which, however, relies on input signals of finite length
such as digital images. The IIR Pseudo QMF-bank designs proposed in [MCB92, CM96]
realize also non-causal allpass filters, but these filter-banks can also process signals of
‘infinite’ length such as speech and audio signals. The allpass-based Pseudo QMF-bank
design of [MCB92] is extended in [CV92, CV93] to account for a more general class of
PR filter-banks and time-varying filter-banks, respectively.

The proposal of [MCB92] achieves a perfect phase equalization so that Eq. (3.69) is
exactly fulfilled. This scheme is illustrated in Figure 3.17. At each simultaneous shift
of the four switches, the initial filter states of the second allpass filter are obtained
from the final filter states of the first allpass filter by means of a ‘flipping’ operation
(exchange matrix) [MCB92]. When all switches are at position I at sample instant k,
the output v(k) of the first allpass filter is fed into buffer 1 of length Lbuf and the
Lbuf values of the previous frame v(k − 1), . . . , v(k − Lbuf + 1) stored in buffer 2 are
read-out in time-reversed order and fed into the second allpass filter. The output of
this second allpass filter v′(k) goes into buffer 3 and the output of the second allpass
filter for the previous frame is read-out from buffer 4 in time-reversed order at the same
time. Afterwards, all switches change to position II to process the next Lbuf values and
so on. The overall signal delay of this scheme is equal to 2Lbuf sample instants.

Applying this approach to the IIR Pseudo QMF-bank of Figure 3.13 treated in
Sec. 3.2.1 yields a filter-bank with perfect reconstruction and a delay of 2M Lbuf + 1
sample instants. A disadvantage of this solution is the memory consumption due to the
buffering and the transmission of the allpass filters states, especially if this filter-bank
is applied for subband coding. However, a more severe drawback (which is not reported
in the corresponding publications) is that even a slight modification of the subband
signals can cause huge signal distortions. For the system of Figure 3.17 with an allpass
of first order (a = 0.5) and buffer length Lbuf = 20, a multiplication of the signal v(k)
with a factor of 1 + 10−13 can lead already to filter instability.
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a QMF-bank with synthesis polyphase filters realized by time-reversed non-
causal filtering with overlap buffering according to [CM96].

The authors propose a modification of their scheme in [CM96], which avoids the
transmission of filter states. The main structural difference to that of Figure 3.17 is
that the buffers 1 and 2 are now of length Lbuf + Lov where Lov marks the number of
samples that adjacent frames overlap. (The buffers 3 and 4 are still of length Lbuf.)
The processing of the additional Lov overlapping samples achieves that the filter states
of the second allpass filter converge to their correct values for the current block [CM96].
In contrast to the previous scheme, the transmission of filter states is avoided and the
system is more robust towards signal modifications in between at the expense of a higher
algorithmic complexity and a higher signal delay, which is now equal to 2Lbuf + Lov + 1
sample instants. This modified scheme for non-causal filtering achieves no perfect phase
equalization, but the equalization error can be made arbitrarily small by increasing the
overlap Lov which, in turn, increases signal delay and algorithmic complexity. Another
drawback of this scheme is that the phase equalizer constitutes a linear periodically
time-varying (LPTV) system. This effect is exemplified for a QMF-bank design ac-
cording to Figure 3.7, which uses this non-causal filtering approach on the synthesis
side with buffer length Lbuf = Lov = 10. (The used allpass coefficients are identical to
those of Eq. (6.2).) Figure 3.18 shows a plot of the bifrequency system function (BSF)
introduced in Sec. 2.4. There are Lbuf + Lov − 1 = 19 alias components on the side di-
agonals instead of one alias component as it occurs in case of a QMF-bank with linear
time-invariant (LTI) synthesis filters and imperfect aliasing cancellation. Hence, the
number of alias components increases with the buffer length. The alias components
become of course even greater, if spectral modifications of the subband signals are per-
formed. This creation of additional alias components (which is not reported in the
corresponding publications) is avoided by the use of LTI phase equalizers, which are
treated in the following.
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3.3.3 Numerical Designs

The stated phase equalization problem can be solved by means of numerical design
methods for allpass filters with prescribed phase response or group delay, respectively.
Numerous publications deal with this issue, e.g., [SS90, Lan92, LL94, NLK94, ITK94,
Lan98, MI03]. An advantage of such general phase equalizer designs is that they can
be applied to very different phase equalization problems. Examples are the phase
equalization of IIR filters, the design of lowpass filters consisting of allpass sub-filters
(as described in Sec. 3.1.1), or the construction of recursive Hilbert transformers, cf.,
[Lan93]. The coefficients of the phase equalizer can be determined by minimizing the
(weighted) error norm between prescribed and achieved phase response for the frequency
range of interest. This is mostly done by employing either the least-squares (LS) norm
(L2-norm), e.g., [NLK94, CL94, LL94] or the Chebyshev norm (L∞-norm), e.g., [Lan92,
ITK94, Lan98]. This leads in both cases to a non-linear optimization problem, which
is mostly solved by iterative schemes. A problem is that not all algorithms converge
to a unique solution and that the design of phase equalizers of high degrees can cause
numerical difficulties. Besides, it is rather cumbersome to incorporate the constraint for
filter stability, cf., [Lan98]. A more comprehensive treatment of such general numerical
phase equalizer designs can be found, e.g., in [Lan93, Lan98]. The focus of this work is
on phase equalizers which are designed more specifically for allpass-based filter-banks.

3.3.4 Closed-Form Designs

In this section, different approaches are presented which address the specific phase
equalization problem stated in Sec. 3.3.1. These designs have the following benefits in
comparison to the above mentioned general numerical designs:

• The filter coefficients are given by analytical closed-form expression such that no
(involved) numerical optimization is needed.

• The design of phase equalizers with high filter degrees poses no numerical prob-
lems.

• The approximation error can be described by simple analytical expressions. This
allows to evaluate the trade-off between the remaining phase (or group delay)
distortions versus signal delay in an easy manner.

• Filter stability is inherently ensured.

• The algorithmic complexity of these equalizers is often lower than for phase
equalizers obtained by a numerical design.

The following treatment is partly based on [LV06d] where this class of phase equalizers
is denoted as parametric phase equalizers.
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3.3.4.1 LS FIR Phase Equalizer

The ‘ideal’ IIR phase equalizer of Eq. (3.79) can be approximated by a causal FIR filter
in a simple fashion. For this, the anti-causal infinite impulse response

pideal
K (k) ◦−−• P ideal

K (z) = Ă[K](z) for Rc =
{
z ∈ C

∣∣max{|a(m)|} > |z|
}
(3.80)

is truncated and shifted by N samples. This leads to an FIR phase equalizer of length
N + 1 whose impulse response is given by

pls
K(k) =

{
pideal

K (k −N) if 0 ≤ k ≤ N

0 otherwise.
(3.81)

An FIR filter obtained by truncating the infinite impulse response of the original IIR
filter provides a least-squares (LS) error approximation, e.g., [KK98]. The L2-norm of
the error between the frequency response of the time-shifted ideal phase equalizer and
its approximation by an arbitrary FIR phase equalizer of degree N according to∥∥ΔPK

(
ej Ω
)∥∥

2
=
∥∥P ideal

K

(
ej Ω
)
· e−j Ω N − P̂K

(
ej Ω
)∥∥

2
(3.82)

becomes minimal for the filter of Eq. (3.81):

P̂K

(
ej Ω
)

= P ls
K

(
ej Ω
)
. (3.83)

Therefore, this phase equalizer is termed as LS FIR phase equalizer in the following.
The phase equalizer degree N can be determined from the infinite impulse response

pideal
K (k) by exploiting the fact that there exists an integer Nε where∣∣pideal

K (−k)
∣∣ ≤ εls for k ≥ Nε ; εls ∈ R+ . (3.84)

For a chosen threshold εls, the phase equalizer degree N is then given by the minimal
value of Nε where this statement holds. The filter degree N controls the inherent trade-
off between a low nominal group delay τ̄ = N and a low algorithmic complexity on the
one hand, and a low amount of magnitude and phase distortions on the other hand.

3.3.4.2 Equiripple FIR Phase Equalizer

A cascaded FIR phase equalizer and its application to the design of different allpass-
based filter-banks is presented in [Gal02]. The transfer function of an allpass filter of
first order and a single FIR phase equalizer of filter length Ns + 1 is given by

1− a∗z

z − a︸ ︷︷ ︸
= A(z)

· (z − a)

Ns−1∑
l=0

zl−Ns · (a∗)l

︸ ︷︷ ︸
= Pfir(z)

= z−Ns − (a∗)Ns

︸ ︷︷ ︸
= Ψfir

s (z)

; Ns ∈ N . (3.85)
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The ‘error term’ (a∗)Ns can be made arbitrarily small by increasing the phase equalizer
degree Ns since |a| < 1. The degree of the transfer function Ψfir

s (z) equals that of the
FIR phase equalizer, i.e., Ds = Ns.

If this approach is used for the phase equalization of an allpass chain of length Lac,
the transfer function of Eq. (3.78) turns into an FIR filter given by

Ψfir(z) =
(
A(z) · Pfir(z)

)Lac
(3.86a)

=
(
z−Ds − (a∗)Ds

)Lac
. (3.86b)

As shown in the following, an equiripple approximation error is achieved in this case,
which reasons the naming as equiripple FIR phase equalizer introduced in [LV06d]. The
analytical expressions for the approximation errors of Eq. (3.74) are only presented here
where details of the derivations are provided by App. B.2.1.

The magnitude response of the actual transfer function of Eq. (3.86) is given by∣∣Ψfir
(
ej Ω
)∣∣ =

(
1− 2αDs cos

(
Ds · (Ω− γ)

)
+ α2Ds

)Lac
2 . (3.87)

The magnitude error of Eq. (3.74a) can be written

Δ
∣∣Ψfir

(
ej Ω
)∣∣ =

∣∣Ψfir
(
ej Ω
)∣∣− c̄

=
∣∣Ψfir

(
ej Ω
)∣∣− 1

2

((
1− αDs

)Lac
+
(
1 + αDs

)Lac

)
. (3.88)

This error function has the extrema

Δ
∣∣Ψfir

(
ej Ωμ

)∣∣ =
(−1)μ

2

((
1− αDs

)Lac −
(
1 + αDs

)Lac

)
(3.89a)

for the extremal frequencies

Ωμ =
μπ

Ds
+ γ ; μ ∈ {0, 1, . . . , 2Ds} . (3.89b)

Hence, this error function possesses alternating extrema of equal magnitude

Δ
∣∣Ψfir

(
ej Ωμ

)∣∣ = −Δ
∣∣Ψfir

(
ej Ωμ+1

)∣∣ ; μ = 0, 1, . . . , 2Ds − 1 (3.90)

within the frequency interval Ω ∈ [γ, 2π + γ]. These 2Ds + 1 extrema at Ωμ constitute
an alternate such that9

max
Ω

{∣∣∣Δ∣∣Ψfir
(
ej Ω
)∣∣ ∣∣∣} =

∣∣∣Δ∣∣Ψfir
(
ej Ωμ

)∣∣ ∣∣∣
=
∥∥∥Δ
∣∣Ψfir

(
ej Ω
)∣∣ ∥∥∥

∞
. (3.91)

The phase response of the actual transfer function is given by

ϕfir
Ψ (Ω) = Lac ·

(
arctan

(
sin(Ds Ω)− αDs sin(Ds γ)
cos(Ds Ω)− αDs cos(Ds γ)

)
+ 2π χ(Ds Ω)

)
(3.92)

9The mathematical background is briefly explained in App. D.1.
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with χ(Ω) being introduced in Eq. (2.54). The phase error of Eq. (3.74b) reads

Δϕfir
Ψ (Ω) = ϕfir

Ψ (Ω)− ψ̄fir Ω (3.93)

= ϕfir
Ψ (Ω)− Lac Ds Ω . (3.94)

It possesses the extrema

Δϕfir
Ψ (Ωμ) = (−1)μ+1Lac arctan

(
αDs sin

(
arccos

(
αDs
))

1− α2Ds

)
(3.95a)

for Ωμ =
1
Ds

(
2π
⌊
μ

2

⌋
− (−1)μ arccos

(
αDs
))

+ γ (3.95b)

where the operation �x� provides the greatest integer which is equal to or smaller than
x. Hence, the phase error function Δϕfir

Ψ (Ω) has 2Ds + 1 alternating extrema

Δϕfir
Ψ (Ωμ) = −Δϕfir

Ψ (Ωμ+1); μ = 0, 1, . . . , 2Ds − 1 (3.96)

within the frequency interval Ω ∈ [Ω0,Ω2Ds
].

The group delay of the actual transfer function is obtained by differentiating the
continuous (unwrapped) phase response of Eq. (3.92)

τfir
Ψ (Ω) = Lac Ds

1− αDs cos(Ds (Ω− γ))
1− 2αDs cos(Ds (Ω− γ)) + α2Ds

. (3.97)

This group delay exhibits an equiripple approximation error for Eq. (3.74c)

Δτfir
Ψ (Ω) = τfir

Ψ (Ω)− τ̄fir (3.98)

= τfir
Ψ (Ω)− LacDs

1− α2Ds
(3.99)

with alternating extrema given by

Δτfir
Ψ (Ωμ) = (−1)μ αDs

1− α2Ds
Lac Ds (3.100a)

Ωμ =
π μ

Ds
+ γ ; μ = 0, 1, . . . , 2Ds . (3.100b)

Thus, the approximation errors for magnitude response, phase response and group delay
between actual and desired transfer function function according to Eq. (3.74) exhibit an
equiripple behavior being characterized by Eq. (D.5) (which is not shown in [Gal02]).
It should be noted that this property is established by analysis of a given filter, but not
by numerically solving a Chebyshev approximation for a set of filters, cf., [Lan93].

3.3.4.3 Equiripple Allpass Phase Equalizer

A drawback of FIR phase equalizers is that they introduce magnitude distortions, which
can be avoided by the use of allpass phase equalizers. A closed-form design for such a
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phase equalizer is introduced by Eq. (3.30). This design approach for a cascaded phase
equalization is originally proposed in [LV06d] for the design of allpass transformed filter-
banks. As shown in the following, an equiripple approximation error for phase response
and group delay is achieved for the phase equalization of allpass chains, which reasons
the naming as equiripple allpass phase equalizer.

The allpass phase equalizer of Eq. (3.30) is considered (skipping the notation of the
sub-indices). The actual transfer function of an allpass filter of first order and the
corresponding allpass phase equalizer is given by

1− a∗z

z − a︸ ︷︷ ︸
= A(z)

J−1∏
l=0

1 + (a∗z)2l

z2l + a2l︸ ︷︷ ︸
= Pap(z)

=
1− (a∗z)Ds

zDs − aDs︸ ︷︷ ︸
= Ψap

s (z)

; Ds = 2J ; J ∈ N0 (3.101)

due to Eq. (3.33). The actual transfer function Ψap
s (z) represents an allpass filter, which

tends to z−Ds for an increasing filter degree Ds since |a| < 1. The degree of the allpass
phase equalizer Ns is related to the degree of the actual transfer function Ds by the
relation

Ds = 2J = Ns + 1 . (3.102)

The restriction to values of 2J can be avoided by expressing the system function of this
allpass phase equalizer in its direct form

Pap(z) =

Ns−1∑
n=0

(a∗)Ns−1−n z−n

Ns−1∑
n=0

an z−n

(3.103)

with Ns ∈ N. The price for this increased flexibility for the allpass filter degree Ns is
that this direct form implementation requires usually more multipliers and adders than
the realization by the cascade form according to Eq. (3.101).

If the design of Eq. (3.101) is used for phase equalization of an allpass chain of length
Lac, the transfer function of Eq. (3.78) is given by

Ψap(z) =
(
A(z) · Pap(z)

)Lac

(3.104a)

=

(
1− (a∗z)Ds

zDs − aDs

)Lac

. (3.104b)

An interesting link between equiripple FIR phase equalizer and allpass phase equal-
izer can be established by decomposing the transfer function of Eq. (3.86) into an allpass
filter given by Eq. (3.104) and a minimum-phase filter according to(

z−Ds − (a∗)Ds
)Lac

︸ ︷︷ ︸
= Ψfir(z)

=

(
1− (a∗z)Ds

zDs − aDs

)Lac

︸ ︷︷ ︸
= Ψap(z)

(
1− aDsz−Ds

)Lac

︸ ︷︷ ︸
= Ψmin(z)

. (3.105)
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This indicates already that the FIR phase equalizer achieves a lower phase and group
delay error than the allpass phase equalizer at the price of magnitude distortions. The
following analysis provides a more precise quantification of this result.

Calculating the phase response and group delay of the actual transfer function of
Eq. (3.104) yields

ϕap
Ψ (Ω) = Lac ·

(
2 arctan

(
sin(Ds Ω)− αDs sin(Ds γ)
cos(Ds Ω)− αDs cos(Ds γ)

)
+ 2π χ(Ω)−Ds Ω

)
(3.106)

τap
Ψ (Ω) = Lac Ds

1− αDs

1− 2αDs cos(Ds (Ω− γ)) + α2 Ds
. (3.107)

As shown in App. B.2.2, the phase error of Eq. (3.74b) for the desired phase response
can be written as follows

Δϕap
Ψ (Ω) = ϕap

Ψ (Ω)− ψ̄ap Ω (3.108)

= ϕap
Ψ (Ω)− Lac Ds Ω (3.109)

= 2 Δϕfir
Ψ (Ω) . (3.110)

Thus, curve progression and extremal frequencies Ωμ of the phase error are the same
as for the equiripple FIR phase equalizer according to Eq. (3.95), but the magnitude of
the error is twice as high.10 A similar relation can be established for the group delay
of Eq. (3.99)

Δτap
Ψ (Ω) = τap

Ψ (Ω)− τ̄ap (3.111)

= τap
Ψ (Ω)− Lac Ds

1 + α2Ds

1− α2Ds
(3.112)

= 2 Δτfir
Ψ (Ω) (3.113)

which is proven in App. B.2.2.
It can be concluded that phase and group delay error of this allpass phase equalizer

provide an equiripple error (which is characterized by Eq. (D.5) ). The error functions
of phase and group delay have the same curve progression and extremal frequencies Ωμ

as those of the corresponding FIR phase equalizer, but the extrema of phase and group
delay error are twice as high as for the FIR phase equalizer. On the other hand, the
analyzed FIR phase equalizer causes an equiripple magnitude error while the allpass
phase equalizer introduces no magnitude distortions. A nice property of the derived
analytical expressions for the approximation errors of Eq. (3.74) is that they allow to
evaluate the maximal magnitude, phase and group delay error in dependence on the
design parameters a, Ds and Lac in a simple fashion. The magnitude of the error
functions is thereby only dependent on the magnitude of the allpass pole α where the
extremal frequencies Ωμ depend only on its phase γ.

10The different values for the extrema are not contradictory to the alternation theorem

(briefly explained in App. D.1), which states the existence of a unique solution, since the

approximation errors for different transfer functions are considered.
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The property of an equiripple error usually gets lost in case of a general cascaded
phase equalization according to Eq. (3.77). The analysis of the approximation errors
for this case is less insightful and hence not treated in more detail.

3.3.4.4 Evaluation & Design Examples

Some characteristic properties of the discussed closed-form designs are evaluated in the
following. As a simple but instructive example, the phase equalization of an allpass
filter of first order with either a real or complex pole is considered.11 A filter degree of
Ns = 7 is used for the equiripple allpass phase equalizer and a filter degree of Ns = 8 is
taken for the equiripple FIR phase equalizer and LS FIR phase equalizer such that all
systems have approximately the same overall signal delay with τ̄ ≈ 8.12 The resulting
error functions according to Eq. (3.74) are plotted in Figure 3.19. For the LS FIR phase
equalizer, the values c̄ = 1, ψ̄ = 7.9964 and τ̄ = 8 are used for the evaluation of
Eq. (3.74). The corresponding values for the equiripple phase equalizers are determined
by the formulas established in Sec. 3.3.4.2 and Sec. 3.3.4.3.

Figure 3.19 shows that the approximation errors for the LS FIR phase equalizer are
of similar magnitude, but more frequency dependent than for the equiripple FIR phase
equalizer.

The previous analysis of the equiripple FIR phase equalizer and equiripple allpass
phase equalizer has revealed that the extremal frequencies Ωμ for the phase error as
well as the group delay error are the same for both phase equalizers and for an allpass
pole a = α ej γ only dependent on the value for γ (but not α). This can be observed
in Figure 3.19 where the extremal frequencies for a = 0.5 and a = 0.5 ej π/8 differ by a
frequency shift of π/8 = 0.125π.

The magnitudes of the alternating extrema are only dependent on the value for α
(but not γ). Therefore, the extrema of the equiripple approximation errors are identical
for both poles. The allpass phase equalizer causes no magnitude distortions, but the
maximal phase and group delay error are (exactly) twice as high as for the corresponding
equiripple FIR phase equalizer.

The algorithmic complexity of the different phase equalizers is finally compiled in
Table 3.2. All phase equalizers are designed for a general allpass filter of K-th order
and have filter degrees which are equal to the number of delay elements. The cascade
form of an allpass filter is taken with its single allpass filters implemented according to
Figure 2.8. A cascaded phase equalization according to Eq. (3.77) is considered where
Ds(m) represents the filter degree of each single phase equalizer.

An advantage of the equiripple allpass phase equalizer in comparison to the other
listed phase equalizers is its comparatively low algorithmic complexity for higher values
of Ds(m), cf., Eq. (3.101). If Ds(m) is not a power of two, the closed-form design of
Eq. (3.103) can be used. The algorithmic complexity of this phase equalizer corresponds
to that of a general allpass phase equalizer obtained, e.g., by a numerical design.

11The phase equalization of an allpass chain according to Eq. (3.75) is discussed in

Sec. 4.2.3 in connection with allpass transformed filter-banks.
12A comparison of the considered closed-form phase equalizer designs with the numerical

allpass phase equalizer design of [LL94] is provided by [LV06d].
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a = 0.5 a = 0.5 ej π/8
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Figure 3.19: Approximation errors of Eq. (3.74) for different closed-form phase
equalizer designs applied to an allpass filter of first order with pole a such that
τ̄ ≈ 8 in each case. The left column shows the plots for a real allpass pole
(a = 0.5) and the right column the plots for a complex pole (a = 0.5 ej π/8).
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Table 3.2: Algorithmic complexity of the least-squares FIR phase equalizer
(LS FIR PE), equiripple FIR phase equalizer (ER FIR PE), equiripple all-
pass phase equalizer (ER AP PE) and general allpass phase equalizer (gen.
AP PE) designed for an allpass of K-th order. The number of delay elements
is equal to the filter degree of each phase equalizer.

multipliers adders delay elements

LS FIR PE N N − 1 N − 1

ER FIR PE
∑

K

m=1
Ds(m)

∑
K

m=1

(
Ds(m) − 1

) ∑
K

m=1

(
Ds(m) − 1

)
ER AP PE 2

∑
K

m=1
log2 Ds(m) 2

∑
K

m=1
log2 Ds(m)

∑
K

m=1

(
Ds(m) − 1

)
gen. AP PE 2

∑
K

m=1
(Ds(m) − 1 2

∑
K

m=1
(Ds(m) − 1)

∑
K

m=1

(
Ds(m) − 1

)
It follows from Table 3.2 that the LS FIR phase equalizer and equiripple FIR phase

equalizer of this example with K = 1 require each 8 multipliers, 7 adders and 7 delay
elements, where the equiripple allpass phase equalizer needs 6 multipliers, 6 adders and 7
delay elements. In contrast, a general allpass phase equalizer of the same degree would
require 14 adders, 14 multipliers and 7 delay elements. The differences between the
phase equalizers become of course even more pronounced in case of a phase equalization
for an allpass filter of higher order (K > 1).

3.4 Conclusions

The design of allpass-based QMF-banks and Pseudo QMF-banks with near-perfect
reconstruction is treated in this chapter. The analysis filters of these critically sub-
sampled AS FBs consist of allpass polyphase filters. This approach facilitates a high
frequency selectivity with a low filter degree. The proposed synthesis filter-banks have
in common that they consist only of allpass polyphase filters, which are designed by
simple analytical expressions. This allows to adjust the trade-off between signal delay
and reconstruction error in a simple and flexible manner.

The presented QMF-bank design I achieves a minimization of amplitude, phase
and aliasing distortions with a low algorithmic complexity. The proposed QMF-bank
design II has a higher algorithmic complexity and signal delay than design I, but achieves
a complete aliasing cancellation and introduces no amplitude distortions. This design
can be seen as a generalization of the classical allpass-based QMF-bank where the
remaining phase distortions are now reduced by a subsequent phase equalizer. An
extension of this second design is discussed, which allows to obtain subband filters with
a more linear phase response at the price of an increased algorithmic complexity.

The main difference to the related IIR/FIR QMF-bank designs of [GK01a, KDL00,
KD02, KB06] is that the proposed IIR/IIR QMF-bank designs cause higher phase
distortions, but they possess a lower algorithmic complexity and cause no or negligible
amplitude distortions. Due to these properties, the devised QMF-bank designs are
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of special interest for speech and audio applications as the human auditory system is
rather insensitive towards phase distortions. One possible application are speech and
audio coding systems, which is elaborated in Chap. 6.

The devised QMF-bank designs I and II can be extended to a critically subsam-
pled M -channel DFT AS FB. The analysis filters of this Pseudo QMF-bank consist
of allpass polyphase filters. One option is to design the synthesis allpass polyphase in
such a manner that amplitude, phase and aliasing distortions are minimized. Alterna-
tively, aliasing and amplitude distortions can be avoided at the expense of an increased
algorithmic complexity and signal delay.

The construction of allpass-based filter-banks relies essentially on solving a phase
equalization problem. Therefore, different phase equalizer designs for allpass-based
filter-banks are elaborated in more detail.

A general problem in the design of allpass-based filter-banks with perfect recon-
struction is that the required synthesis polyphase filters, which can be regarded as
phase equalizers, are anti-causal. One approach to solve this problem is to perform
a ‘time-reversed’ filtering and to transmit initial filter states to the synthesis filter-
bank [MCB92]. It turns out that this PR filter-bank design is very susceptible towards
modifications of the subband signals and, hence, less suitable for practical applications.

The NPR design of [CM96] relies also on a time-reversed filtering, but requires
no transmission of the filter states at the price of an increased signal delay and a
higher algorithmic complexity. However, the investigation of this approach reveals that
it constitutes a linear periodically time-varying (LPTV) system, which creates alias
components whose number grows with the length of the buffers used for the time-
reversed filtering. Hence, the use of this approach for the phase equalization within
allpass-based filter-banks causes additional aliasing distortions in contrast to the use of
linear time-invariant (LTI) phase equalizers.

A main approach to construct LTI phase equalizers is to approximate the ‘ideal’
non-causal phase equalizer by a causal FIR or IIR filter. These phase equalizers can be
designed by closed-form expression, which avoids the difficulties of a general numerical
(allpass) phase equalizer design.

The analysis of the closed-form FIR phase equalizer design of [Gal02] shows that
the phase, group delay and magnitude error function exhibit an equiripple behavior, if
the phase response of an allpass filter of first order or an allpass chain is equalized. In
this case, the proposed closed-form allpass phase equalizer design exhibits an equiripple
behavior for the phase and group delay error as well. The alternating extrema are twice
as high as for the equiripple FIR phase equalizer and located at the same frequency
points, while the equiripple allpass phase equalizer causes no amplitude distortions and
has a lower complexity. This reasons the above mentioned differences of the proposed
IIR/IIR (Pseudo) QMF-bank designs to the corresponding IIR/FIR (Pseudo) QMF-
bank designs of [Gal02].



Chapter 4

Allpass Transformed
Analysis-Synthesis Filter-Banks

T
he allpass transformation is a well-known technique to design a digital filter-
bank with non-uniform time-frequency resolution [OJS71, OJ72, BO74, Var78,

Var80]. This transformation provides a frequency warped filter-bank by substituting
the delay elements of the analysis filters by allpass filters of first order. An advantage
of this approach is that the frequency resolution of the filter-bank is merely adjusted
by the choice for a single allpass pole such that an individual redesign of the analysis
filters is not required.

The allpass transformation allows to design a filter-bank whose frequency bands
provide a very good approximation of the so-called Bark frequency bands, which model
the non-uniform frequency resolution of the human auditory system [SA99]. Non-
uniform filter-banks with such an auditory frequency resolution are of interest for
speech and audio processing and are used, e.g., for (perceptual) speech enhancement
[Eng98, GEH98, dHCG03, Coh01, PPB04, DMFB07]. An advantage of frequency
warped AS FBs is thereby their lower signal delay and lower computational complex-
ity in comparison to a corresponding tree-structured QMF-bank or wavelet packets,
respectively.

The design of allpass transformed AS FBs is comprehensively treated in different
works such as [Kap98, Gal02, dH04]. Despite significant progress, the construction
of such filter-banks is still a challenging problem. As for other non-uniform AS FBs
[HV89, AV99], it is more difficult to achieve an (almost) perfect signal reconstruction in
comparison to uniform filter-banks. The allpass transformation of an FIR analysis filter-
bank results in an IIR analysis filter-bank such that a linear phase response is converted
into a non-linear one. These phase modifications must be (partly) compensated by the
synthesis filter-bank. Another main problem is that the aliasing cancellation does not
function in the same manner as for the underlying uniform AS FB due to the non-
uniform bandwidths of the warped analysis filters. As a consequence, the synthesis
filter-bank design for allpass transformed filter-banks is more demanding than for their
uniform counterparts.

In this chapter, the main design approaches for allpass transformed AS FBs are
reviewed. This analysis reveals some shortcomings of existing approaches, which leads
to the development of several improved and novel designs.

In Sec. 4.1, the concept of the allpass transformation is revisited and compared with
alternative frequency warping techniques to design a non-uniform filter-bank. Based
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on that, the design of allpass transformed AS FBs by means of analytical closed-form
expressions is treated in Sec. 4.2. A benefit of the closed-form designs is their simplicity,
but they are less suitable if specific design constraints should be incorporated. This
issue is tackled by a new numerical design framework presented in Sec. 4.3. A discussion
and summary of the different design approaches is finally provided by Sec. 4.4.

4.1 Frequency Warping by Allpass Transformation

The design of tunable digital filters by means of an allpass transformation is a well-
know method [Con67, Con68, Con70, Sch68, SW70]. In the process, the delay elements
of a lowpass filter are replaced by identical allpass filters of first order. This bilinear
transformation allows to tune stopband and passband frequency of a lowpass filter by
simply varying a single allpass coefficient. An advantage of this frequency warping is
that characteristic properties of the original lowpass filter, such as the number of ripples
in the passband, the number of poles in the stopband, the passband and stopband
attenuation etc., are not altered. Besides this lowpass-to-lowpass transformation, it is
also possible to transform a lowpass filter into a highpass, bandpass, or bandstop filter
by an appropriate choice for the employed allpass filter [SW70, Mit98].

The allpass transformation can also be exploited to perform short-term spectral
analysis with a non-uniform frequency resolution and to construct non-uniform digi-
tal filter-banks [OJS71, OJ72, BO74, Var78, Var80, Dob91]. This design approach for
warped filter-banks is further generalized in [KSV96, Kap98] where the allpass trans-
formation of higher order is introduced.

In the following, the concept of the allpass transformation is reviewed and contrasted
to related techniques to construct a non-uniform filter-bank.

4.1.1 Allpass Transformation of First Order

A common approach to design a frequency warped filter-bank is to replace the delay
elements of the analysis filters by allpass filters of first order

z−1 → A(z) (4.1)

with A(z) given by Eq. (2.52) [OJS71, OJ72]. This transformation provides a conformal
mapping from the unit disk onto another unit disk in the z-plane. Applying this allpass
transformation of first order to the analysis filters of a (uniform) DFT filter-bank given
by

Hi(z) =

L−1∑
l=0

h(l) ·W−i l
M · z−l ; i ∈ {0, 1, . . . ,M − 1} [2.23]

yields the allpass transformed system functions

H̃i(z) =

L−1∑
l=0

h(l) ·W−i l
M ·Al(z) . (4.2)



4.1 Frequency Warping by Allpass Transformation 59

The tilde-notation is used in this work to mark system functions which are altered by
frequency warping (see also App. A.2). Inserting Eq. (2.53) into Eq. (4.2) yields the
following relation between allpass transformed and original analysis filters

H̃i

(
ej Ω
)

=

L−1∑
l=0

h(l) ·W−i l
M · e−j l ϕa(Ω) (4.3)

= Hi

(
ej ϕa(Ω)

)
; i ∈ {0, 1, . . . ,M − 1} . (4.4)

Hence, the allpass transformation causes a frequency warping where a frequency interval
of ΔΩ = 2π is mapped onto an interval of 2π on the warped frequency scale

[0, 2π] → [0, 2π] : Ω �→ ϕa(Ω) . (4.5)

The warping characteristic is thereby controlled by the phase response ϕa(Ω) as given
by Eq. (2.54). The mechanism of this frequency transformation is demonstrated by
Figure 4.1. For a real and positive allpass coefficient1 a > 0, a higher frequency resolu-
tion is achieved for the lower frequency bands and vice versa for the higher frequency
bands. The opposite applies if a < 0. Thus, the frequency resolution can be adjusted by
a single allpass coefficient, also referred to as warping coefficient. Hence, an individual
subband filter design, as needed, e.g., for the construction of non-uniform filter-banks
by means of ‘transition filters’ [Pri95, DZ96, CJ03, DBSN06], is not required.

Besides, allpass transformed filter-banks achieve a non-uniform time and frequency
resolution. In contrast, the realization of a non-uniform filter-bank by means of a simple
subband merging alters the frequency resolution but not the time resolution, i.e., the
frequency resolution is decreased without improving the time resolution.

The allpass transformation allows to design a non-uniform filter-bank whose fre-
quency bands approximate the Bark frequency bands with great accuracy [SA99]. The
frequency resolution of the human auditory system is determined by so-called critical
bands. The mapping between frequency and critical bands can be described by the
critical band rate or Bark scale, respectively. An analytical expression for this relation
is given by [ZF99]

ξbark(f)
Bark

= 13 arctan
(

0.76 f
kHz

)
+ 3.5 arctan

((
f

7.5 kHz

)2
)
. (4.6)

Figure 4.2 illustrates that such a frequency mapping can be well approximated by an
allpass transformation. The relation between the real allpass pole a = α and sampling
frequency fs for such an approximation of the Bark scale is given by [SA99]

abark = 1.0674

√
2
π

arctan
(

0.05683
fs

kHz

)
− 0.1916 . (4.7)

A modification of the Bark frequency scale is given by the equivalent rectangular
bandwidth (ERB) scale [MG96, Moo97]

ξerb(f)
ERB

= 21.4 log10

(
0.00437

f

Hz
+ 1
)
. (4.8)

1The terms allpass pole and allpass coefficient are used interchangeably.
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Figure 4.1: Allpass transformation of first order applied to a DFT analysis
filter-bank with rectangular prototype filter of length L = M = 16.

As shown in [SA99], a good mapping for this scale is achieved by an allpass transfor-
mation of first order with an allpass coefficient determined by

aerb = 0.7446

√
2
π

arctan
(

0.4418
fs

kHz

)
+ 0.03237 . (4.9)

Due to the ability to approximate the Bark or ERB scale with great accuracy, allpass
transformed filter-banks are proposed, amongst others, for noise reduction [GEH98],
subband beamforming [dHGCN02], acoustic echo control [BP99], subband coding based
on auditory modeling [FKK05], or reverberation time estimation [LV11].
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Figure 4.2: Approximation of the Bark frequency scale: The solid line corre-
sponds to the analytical expression of Eq. (4.6). The dashed line marks the
frequency warping for an allpass transformation with a = 0.576 and sampling
frequency of 16 kHz.

4.1.2 Allpass Transformation of Higher Order

The allpass transformation of first order can be extended to allpass filters of higher
order [KSV96, Kap98]. The delay elements are now replaced by allpass filters of higher
order according to

z−l →
(
A[K](z)

)l ·
(
B[K−1](z)

)L−1−l ∀ l ∈ { 0, 1, . . . , L− 1 } (4.10)

where the system functions of the allpass filters are given by

A[K](z) =

K∏
m=1

1− a∗(m) · z
z − a(m)

; a(m) ∈
{
C

∣∣ |a(m)| < 1
}

; max
m
{|a(m)|} < |z|

(4.11)

B[K−1](z) =

K−1∏
m=1

1− b∗(m) · z
z − b(m)

; b(m) ∈
{
C

∣∣ |b(m)| < 1
}

; max
m
{|b(m)|} < |z| .

(4.12)

The frequency responses of these allpass filters are denoted by

A[K]
(
ej Ω
)

= e−j ϕ
[K]
aaa (Ω) (4.13a)

B[K−1]
(
ej Ω
)

= e−j ϕ
[K−1]

bbb
(Ω) . (4.13b)



62 4 Allpass Transformed Analysis-Synthesis Filter-Banks

Applying the allpass transformation of Eq. (4.10) to the DFT analysis filters of
Eq. (2.23) yields

H̃i(z) =
(
B[K−1](z)

)L−1
L−1∑
l=0

h(l) ·
(

A[K](z)

B[K−1](z)

)l

·W−i l
M (4.14)

= Λ(z)

L−1∑
l=0

h(l) ·Θl(z) ·W−i l
M ; i ∈ { 0, 1, . . . ,M − 1 } (4.15)

with Λ(z) =
(
B[K−1](z)

)L−1
and Θ(z) =

A[K](z)

B[K−1](z)
(4.16)

to ease the notation. The common allpass transformation of first order is included as
special case for K = 1 so that Eq. (4.16) is given by

Λ(z) = 1 and Θ(z) =
1− a∗z

z − a . (4.17)

An efficient PPN implementation of the analysis filter-bank is obtained by rewriting
Eq. (4.15) as follows

H̃i(z) = Λ(z)

lM −1∑
m=0

M−1∑
λ=0

h(mM + λ) ·
(
Θ(z)

)m M+λ ·W−iλ
M (4.18)

with lM given by Eq. (2.36). Figure 4.3 illustrates this type 1 PPN implementation of
the DFT analysis filter-bank for lM = 2.

The frequency responses of the uniform analysis filters given by Eq. (2.23) and the
non-uniform analysis filters of Eq. (4.14) are related by

H̃i

(
ej Ω
)

= e−j (L−1) ϕ
[K−1]

bbb
(Ω) Hi

(
ej ϕΘ(Ω)

)
; i ∈ {0, 1, . . . ,M − 1} (4.19a)

ϕΘ(Ω) = ϕ
[K]
aaa (Ω)− ϕ[K−1]

bbb
(Ω) . (4.19b)

The phase difference of Eq. (4.19b) ensures that the property of Eq. (4.5) applies for
the allpass transformation of higher order as well such that

[0, 2π] → [0, 2π] : Ω �→ ϕΘ(Ω) . (4.20)

In contrast, the allpass transformation z−l →
(
A[K](z)

)l
maps the frequency interval

of [0, 2π] onto an interval of ΔΩ = 2πK, which causes an undesirable comb-filter effect
for K > 1, cf., [KSV96].2

Eq. (4.19a) reveals that the warping characteristic is solely determined by the phase
response ϕΘ(Ω) and, thus, the system function Θ(z). However, dependent on the choice
for B[K−1](z), the filter with system function Θ(z) can become either unstable or anti-
causal. Therefore, the additional filter with system function Λ(z) is employed so that
the warped analysis filters of Eq. (4.14) are always stable and causal.

2The exploitation of such an effect for the design of comb-filters is treated in [Sch75].
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Figure 4.3: PPN implementation of a warped DFT analysis filter-bank with
downsampling by R and L = 2M for an allpass transformation of higher
order. The allpass transformation of first order is included as special case
for Λ(z) = 1 and Θ(z) = A(z).

The function of Eq. (4.20) is bijective, if the continuous (unwrapped) phase response
ϕΘ(Ω) is monotonically increasing, which is guaranteed by a positive group delay

∂ ϕΘ(Ω)
∂ Ω

> 0 ∀ Ω . (4.21)

This property is required to ensure a unique frequency mapping such that a comb-filter
effect is avoided. The choice

B[K−1](z) = z−(K−1) (4.22)

is of special interest as it reduces the implementation cost for the filter-bank and sim-
plifies the design procedure. This choice is considered for the design examples in this
work (while the derived designs still apply for the general case). With Eq. (4.22) and
Eq. (2.59), the requirement of Eq. (4.21) can now be written

K∑
m=1

1− α2(m)

1− 2α(m) cos
(
Ω− γ(m)

)
+ α2(m)

> K − 1 ∀ Ω . (4.23)
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The effect of an allpass transformation of higher order is demonstrated in Figure 4.4.
It is easily verified (and visible) that the phase response ϕΘ(Ω) fulfills Eq. (4.20) and
Eq. (4.21). The bandwidths of the non-uniform analysis filters decrease first and in-
crease afterwards within the interval Ω ∈ [0, π] since the phase response ϕΘ(Ω) has
an inflection point within this region, which cannot be achieved by an allpass trans-
formation of first order (see Figure 4.1). Thus, the allpass transformation of higher
order can achieve a more flexible adjustment of the frequency resolution in contrast to
the more common allpass transformation of first order at the expense of an increased
computational complexity and delay.
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4.1.3 Alternative Frequency Warping Techniques

Besides the allpass transformation, there are some other frequency warping techniques
to design a non-uniform filter-bank, which have different pros and cons. In the following,
the main alternatives are briefly discussed to point out their specific differences in
comparison to the considered allpass transformed filter-banks.

4.1.3.1 Warped DFT

The warped discrete Fourier transform (WDFT) can be used to obtain a frequency
warped filter-bank, e.g., [MM01]. Such filter-banks are proposed, e.g., for perceptual
noise reduction [PPB04, BPP06] or frequency estimation [FMD03, VP06]. The WDFT
is a special case of a non-uniform DFT. It is obtained from the DFT by the substitution

e−j 2 π
M

i → A

(
ej 2 π

M
i
)

(4.24)

such that the WDFT of a sequence x(k) is given by

X
(wdft)
i (k) =

M−1∑
k=0

x(k) ·
(
e−j 2 π

M
i − a∗

1− a e−j 2 π
M

i

)k

for i ∈ { 0, 1, . . . ,M − 1 } . (4.25)

Hence, the frequency points of the WDFT are non-uniformly spaced on the unit circle
according to the phase response of the employed allpass filter. The (uniform) DFT can
be seen as special case obtained for a = 0. In [MM01], the WDFT based on allpass filters
of first and second order is presented as well as an algorithm for its efficient calculation.
However, the computational burden to calculate the WDFT is still significantly higher
than for the DFT for which the efficient FFT can be applied.

A WDFT filter-bank evolves by replacing the DFT and IDFT of the AS FB according
to Figure 2.4 by the WDFT and its inverse [MM01]. A benefit of this approach is that
it alters the frequency resolution of the filter-bank without increasing its signal delay.
The resulting analysis filters have the system functions

H
(wdft)
i (z) =

L−1∑
l=0

h(l) ·Al
(
e−j 2 π

M
i
)
· z−l for i ∈ {0, 1, . . . ,M − 1} . (4.26)

Thus, the analysis filters of a WDFT filter-bank are obtained from Eq. (2.23) by the
substitution of Eq. (4.24). In contrast, the analysis filters of an allpass transformed
filter-bank are obtained by the substitution of Eq. (4.1). Hence, the center frequencies
of the analysis filters of a WDFT filter-bank are shifted as for allpass transformed fil-
ters, but their bandwidths remain the same. This effect is illustrated in Figure 4.5. In
comparison to an allpass transformed filter-bank as shown in Figure 4.1, the analysis
filters of the WDFT filter-bank with a = −0.5 show a strong overlap of their pass-
bands at lower frequencies where ‘gaps’ occur at higher frequencies, which results in a
diminished spectral selectivity and complicates the signal reconstruction. This effect is
reflected by an ill-conditioned WDFT matrix whose condition number can easily exceed
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Figure 4.5: Magnitude responses of the analysis filters of a WDFT filter-bank
with M = 16 channels and rectangular prototype filter of length L = M for
different allpass coefficients: (a) a = 0, (b) a = −0.5, (c) a = 0.5.

1012 for values of about |a| > 0.3 and M > 50 [FMSD02].3 An approach to calculate
approximately the inverse of an ill-conditioned WDFT matrix is to employ a singu-
lar value decomposition and to either reduce or set to zero the smallest singular values
[FMSD02, PPB04]. This regularization, however, introduces some distortions to the re-
constructed signal. The numerical difficulties for the computation of the inverse WDFT
(matrix) become even more pronounced with regard to a practical implementation with
limited arithmetic precision as, for example, on a (fixed-point) DSP.

3The DFT matrix has a condition number of one so that the calculation of its inverse

matrix (IDFT matrix) causes no problems.
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4.1.3.2 Non-Recursive Frequency Warping

The allpass transformation of a linear-phase filter leads not only to shifted passband and
stopband frequencies, but also to a non-linear phase response according to Eq. (4.5).
Such phase distortions, whose compensation is a central issue in the design of allpass
transformed filter-banks, can be avoided by using a non-recursive frequency warping
technique [OMM76, CR76, AR79, Var80].4 An FIR lowpass filter with linear phase
response is considered whose frequency response can be written [OMM76]

Hlin

(
ej Ω
)

= e−j Nlin Ω

Nlin∑
l=0

hlin(l) · (cos Ω)l . (4.27)

The substitution

cos Ω →
Kc∑

ν=0

hc(ν) · (cos Ω)ν (4.28)

yields a linear-phase FIR filter whose cutoff frequency is determined by the choice for
the coefficients hc(ν), cf., [OMM76, CR76]. This frequency transformation increases the
length of the original impulse response of 2Nlin + 1 samples to 2Kc Nlin + 1 samples.
The frequency warping of Eq. (4.28) can also be applied to bandpass filters [AR79].

The use of this non-recursive frequency warping for the design of a non-uniform
analysis filter-bank requires that the conditions of Eq. (4.20) and Eq. (4.21) are fulfilled,
i.e., a frequency interval of 2π is mapped bijectively onto a warped frequency interval
of 2π to avoid a comb-filter effect.5 The investigations in [Ber92] reveal that such a
behavior can be achieved by the transformation of Eq. (4.28) for Kc ≥ 7 which, however,
would cause an unacceptable increase of filter length and signal delay, respectively. The
later treatment shows that the realization of an allpass transformed filter-bank with
an almost linear phase response requires a much lower filter degree and signal delay,
respectively. Besides, the additional aliasing distortions due to the non-uniform analysis
filters also need to be compensated by some means as for allpass transformed filter-
banks. Therefore, this non-recursive frequency warping is apparently more attractive
for the design of filters than for non-uniform AS FBs.

Besides frequency warped filter-banks, it is common to realize a non-uniform filter-
bank with ERB or Bark-scaled frequency partitioning by means of gammatone filter-
banks or tree-structured filter-banks. The characteristic differences of these filter-banks
in comparison to allpass transformed filter-banks are discussed in App. C.2.

Henceforth, allpass transformed filter-banks are only considered and the terms all-
pass transformation and frequency warping are therefore used interchangeably.

4There exists no common term for this kind of frequency warping in literature. It is

referred to as non-recursive frequency warping in this work as an FIR filter is converted

into an FIR filter. In contrast, the allpass transformation is considered to be a recursive

frequency warping technique since it converts an FIR filter into an IIR filter.
5Such a unique mapping is not necessarily required for the design of a single lowpass or

bandpass filter, if the ‘ambiguities’ occur in the stopband.
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Figure 4.6: PPN implementation of an allpass transformed DFT AS FB for a
prototype filter of length L = 2M with a warped synthesis filter-bank and a
single phase equalizer.

4.2 Closed-Form Filter-Bank Designs

Different approaches to design the synthesis filters for an allpass-transformed analysis
filter-bank by means of analytical closed-form expressions are now treated.

4.2.1 Warped Synthesis Filter-Bank

A common approach to design an allpass transformed (DFT) AS FB is to replace the
delay elements of the analysis filters and synthesis filters by allpass filters of first order
and to process the output signal by a phase equalizer [Eng98, GEH98, PP03a, LV06d].
Figure 4.6 shows the PPN implementation of such a DFT filter-bank.6 The uniform

6The term closed-form design does not exclude a numerical prototype filter design for

the underlying uniform filter-bank.
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DFT filter-bank of Figure 2.4 can be seen as a special case since the delay element z−1

is a trivial allpass filter.
Due to the allpass transformation, the input-output relation of the uniform AS FB

according to Eq. (2.9) turns into

̂̃
X(z) = X(z)

1
R

M−1∑
i=0

H̃i(z) · G̃i(z)︸ ︷︷ ︸
= T̃lin(z)

+
1
R

R−1∑
r=1

X
(
zW r

R

)M−1∑
i=0

H̃i

(
zW r

R

)
· G̃i(z)︸ ︷︷ ︸

= D̃alias(z)

.

(4.29)

The system functions of the warped analysis filters are given by Eq. (4.2). Accord-
ingly, applying the allpass transformation of Eq. (4.1) to the uniform synthesis filters
of Eq. (2.27) yields the (frequency) warped synthesis filters

G̃i(z) =

L−1∑
l=0

g(l) ·Al(z) ·W−i(l+1)
M ∀ i ∈ {0, 1, . . . ,M − 1} . (4.30)

In general, this allpass transformed AS FB does not achieve perfect reconstruction,
even if the underlying uniform filter-bank provides perfect reconstruction. One effect
of the frequency warping is that the aliasing cancellation does not work as for the
uniform filter-bank due to the non-uniform bandwidths of the warped subband filters,
cf., [Gal02]. The (additional) aliasing distortions caused by the allpass transformation
can be reduced by longer prototype filters (L�M) having a high stopband attenuation
and by the use of a low subsampling rate (R�M), cf., [Eng98, GEH98]. The overall
transfer function of the allpass transformed AS FB is then approximately equal to its
linear transfer function according to Eq. (4.29). If the linear transfer function of the
underlying uniform filter-bank fulfills Eq. (2.31), it is obvious that the linear transfer
function of the warped filter-bank according to Eq. (4.29) is given by

T̃lin(z) =
(
A(z)

)L−1
. (4.31)

Thus, the allpass transformation causes no linear magnitude distortions but phase dis-
tortions. As indicated in Figure 4.6, these linear phase distortions can be compensated
by processing the output signal ỹ(k) by a phase equalizer designed for an allpass chain
of length Lac = L − 1. A suitable phase equalizer design for this purpose is discussed
later in Sec. 4.2.3.

It is important to notice that the considered filter-bank of Figure 4.6 does not use
different subsampling rates Ri adapted to the non-uniform bandwidths of the warped
analysis filters according to Eq. (2.1). The design of allpass transformed filter-banks
with individual subsampling rates is treated, e.g., in [Gal02, dHCG03, PP03b]. An
advantage of different subsampling rates is that a higher subsampling ratio and better
aliasing cancellation can usually be achieved in total. A severe drawback is that the
downsampling has to be performed after the IDFT and the upsampling before the
DFT as the Noble identities of Figure 2.5 cannot be applied. As a consequence, all
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Figure 4.7: General structure of an FIR synthesis filter-bank for an allpass
transformed analysis filter-bank according to Figure 4.3 with L = 2M .

arithmetic operations of analysis and synthesis filter-bank have to be performed at the
non-decimated input sampling rate, which results in a high computational load.

Another approach is to combine frequency warping with subband merging as pro-
posed in [PPW08]. This offers an enhanced flexibility for the adjustment of the fre-
quency resolution at the price of an increased design complexity and can be exploited
to implement a warped filter-bank efficiently by ‘multiplierless’ allpass filters [PP08].

4.2.2 FIR Synthesis Filter-Banks

The previously discussed filter-bank of Figure 4.6 uses allpass transformed FIR synthesis
filters, which are IIR filters. Instead, it is also possible to use FIR synthesis filters. The
general structure of such a synthesis filter-bank is shown in Figure 4.7. The synthesis
filters are now given by

Ḡi(z) =

L−1∑
l=0

g(l) ·QL−1−l(z) ·W−i(l+1)
M ; i ∈ { 0, 1, . . . ,M − 1 } . (4.32)

The coefficients of the L FIR synthesis sub-filters

Ql(z) =

Lq−1∑
η=0

ql(η) · z−η for l ∈ { 0, 1, . . . , L− 1 } and Lq ≥ L (4.33)

can be determined in different ways.
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One approach is to design these sub-filters as phase equalizers [Gal02, PP03a,
LV07c]. With Eq. (4.2) and Eq. (4.32), the linear transfer function of Eq. (2.9) reads

T lin(z) =
1
R

M−1∑
i=0

H̃i(z) · Ḡi(z) (4.34)

=
1
R

M−1∑
i=0

L−1∑
l=0

L−1∑
m=0

h(l) · g(m) ·W−i(l+m+1)
M ·Al(z) ·QL−1−m(z)

=
M

R

∑
λ∈Z

L−1∑
l=0

h(l) · g(λM − 1− l) ·Al(z) ·QL−λM+l(z) . (4.35)

The sub-filters are designed as phase equalizers with the requirement

Al(z) ·Ql(z)
!
= z−Do ∀ l ∈ { 0, 1, . . . , L− 1 } . (4.36)

Thus

T lin(z) = z−Do , (4.37)

if the conditions of Eq. (4.36) and Eq. (2.32) are met.
A synthesis filter-bank with a cascaded phase equalization as discussed in Sec. 3.3.4.2

is proposed in [GK00, GK02, Gal02]. Single FIR phase equalizers according to Eq. (3.85)
are concatenated such that the FIR sub-filters of Eq. (4.33) are given by

Ql(z) =
(
Pfir(z)

)l · z−(L−1−l) Ns for l ∈ { 0, 1, . . . , L− 1 } . (4.38)

The sub-filter length amounts to Lq = Ns (L−1)+1 and the synthesis filters of Eq. (4.32)
have now the system functions

Ḡi(z) =

L−1∑
l=0

g(l) ·
(
Pfir(z)

)L−1−l · z−l Ns ·W−i(l+1)
M (4.39)

with i ∈ { 0, 1, . . . ,M − 1 }. The efficient implementation of this synthesis filter-bank is
shown in Figure 4.8. The single FIR phase equalizers with filter degree Ns are designed
by the requirement of Eq. (4.36), which now reads

Al(z) ·
(
Pfir(z)

)l · z−(L−1−l) Ns
!
= z−(L−1) Ns for l ∈ {0, 1, . . . , L− 1} . (4.40)

The delay elements are needed to compensate the different delays of allpass chain and
phase equalizers as shown in Figure 4.8. The linear transfer function is given by

T lin(z) = z−(L−1) Ns , (4.41)

if the prototype filters fulfill Eq. (2.32) and the phase equalizers Eq. (4.40). The filter-
bank has hence an overall signal delay of Do = (L− 1)Ns sample instants. In practice,
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Figure 4.8: FIR synthesis filter-bank with cascaded phase equalization according
to [Gal02] for a prototype filter of length L = 2M and analysis filter-bank
given by Figure 4.6.

a linear transfer function according to Eq. (4.41) can only be achieved approximately
where the deviations are controlled by the filter degree Ns.

In [PP03a], it is shown that the synthesis filter-banks of Figure 4.8 and Figure 4.6 are
equivalent but have a different complexity, if cascaded phase equalizers are used which
fulfill Eq. (4.40) exactly. According to Eq. (4.30), the synthesis filters of an allpass
transformed synthesis filter-bank with a cascaded phase equalizer at its output have
the system functions

�

Gi (z) = G̃i(z) ·
(
Pfir(z)

)L−1
(4.42)

=

L−1∑
l=0

g(l) ·Al(z) ·
(
Pfir(z)

)L−1 ·W−i(l+1)
M . (4.43)

If Eq. (4.40) is fulfilled,

Al(z) ·
(
Pfir(z)

)L−1
= Al(z) ·

(
Pfir(z)

)l ·
(
Pfir(z)

)L−1−l

= z−l Ns ·
(
Pfir(z)

)L−1−l
(4.44)

such that Eq. (4.43) becomes equal to Eq. (4.39) in this case.
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In [LV07c], it is proposed to employ the LS FIR phase equalizer of Sec. 3.3.4.1 for
the sub-filters of Eq. (4.33)

Ql(z) = P ls
l (z) ∀ l ∈ { 0, 1, . . . , L− 1 } (4.45)

such that the synthesis filter of Eq. (4.32) are given by

Ḡi(z) =

L−1∑
l=0

g(l) · P ls
L−1−l(z) ·W−i(l+1)

M ; i ∈ { 0, 1, . . . ,M − 1 } . (4.46)

The LS FIR phase equalizers have all the same filter degree N = Lq − 1 and they are
designed by the condition of Eq. (4.36), which now reads

Al(z) · P ls
l (z)

!
= z−N ∀ l ∈ { 0, 1, . . . , L− 1 } . (4.47)

If this requirement is (exactly) fulfilled, the linear transfer function is given by Eq. (4.37)
with Do = N (presuming that Eq. (2.32) is met). The ‘ideal’ phase equalizer to fulfill
Eq. (4.47) is given by

P ideal
l (z) = z−N ·A−l(z) ∀ l ∈ { 0, 1, . . . , L− 1 } . (4.48)

Inserting this ‘ideal’ phase equalizer into Eq. (4.46) yields the magnitude responses

∣∣∣Ḡ(ideal)
i

(
ej Ω
)∣∣∣ =

∣∣∣∣∣e−j Ω N

L−1∑
l=0

g(l) ·
(
A
(
ej Ω
))−(L−1−l)

·W−i(l+1)
M

∣∣∣∣∣
=

∣∣∣∣∣e−j Ω N ·W−i
M · ej (L−1) ϕa(Ω)

L−1∑
l=0

g(l) · e−j l ϕa(Ω) ·W−il
M

∣∣∣∣∣
=

∣∣∣∣∣
L−1∑
l=0

g(l) · e−j l ϕa(Ω) ·W−il
M

∣∣∣∣∣ . (4.49)

If g(l) = h(l), it follows from Eq. (4.49) and Eq. (4.3) that∣∣∣Ḡ(ideal)
i

(
ej Ω
)∣∣∣ =

∣∣H̃i

(
ej Ω
)∣∣ ∀ i ∈ { 0, 1, . . . ,M − 1 } . (4.50)

Thus, the magnitude responses of the synthesis filters are identical to those of the allpass
transformed analysis filters in case of a perfect phase equalization where Eq. (4.47) is
exactly fulfilled. This result can be derived in the same manner for the synthesis filters
of Eq. (4.39). In practice, the equality of Eq. (4.50) can only be achieved approximately
as the ‘ideal’ phase equalizer of Eq. (4.48) is either unstable or non-causal. However,
the derived relation reveals that the magnitude responses of the synthesis filters can
be enhanced by improving the phase equalization. An illustration for this behavior is
given later by Example 4.2 in Sec. 4.2.3.
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Figure 4.9: Impulse responses of allpass chains with allpass coefficient a = 0.4
and different lengths: (a) Lac = 1, (b) Lac = 11, (c) Lac = 31.

The synthesis filter-bank with LS FIR phase equalizers can be implemented in a
similar fashion as the synthesis filter-bank of Figure 4.8. The underlying concept is
based on the rationale that the impulse response of a short allpass chain decreases
more rapidly towards zero than that of a long allpass chain as exemplified by Figure 4.9.
Hence, phase equalizers with different degrees Nl can be used such that Eq. (4.47) turns
into the requirement

Al(z) · P ls
l (z)

!
= z−Nl ∀ l ∈ { 1, 2 . . . , L− 1 } . (4.51)

The different phase equalizer degrees Nl can be determined by means of Eq. (3.84) and
the requirement

ΔNl = Nl −Nl−1 ≥ 0 for l = 2, 3, . . . , L− 1 . (4.52)

This leads to the efficient synthesis filter-bank implementation depicted in Figure 4.10.

Another measure to reduce the complexity of the synthesis filter-bank of Figure 4.7
and it variants (such as the filter-bank of Figure 4.10) is to implement the sub-filters by
an efficient polyphase structure. The Lq FIR sub-filters of Eq. (4.33) can be expressed
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Figure 4.10: Efficient implementation of a synthesis filter-bank with LS FIR
phase equalizers of variable degree Nl for a prototype filter with L = 2M .

in a polyphase representation similar to Eq. (2.35b):

Ql(z) =

Lq−1∑
η=0

ql(η) · z−η ; l ∈ { 0, 1, . . . , L− 1 } [4.33]

=

R−1∑
r=0

lQ−1∑
m=0

ql(mR+ r) · z−(m R+r)

=

R−1∑
r=0

Q
(R)
l, r

(
zR
)
· z−r (4.53)

with the (type 1) polyphase components

Q
(R)
l, r (z) =

lQ−1∑
m=0

ql(mR+ r) · z−m for lQ =
⌈
Lq

R

⌉
. (4.54)

Exploiting the Noble identities of Figure 2.5 allows now to implement each sub-filter
of the synthesis filter-bank by an efficient polyphase network (PPN) as shown in



76 4 Allpass Transformed Analysis-Synthesis Filter-Banks

↑ R Ql(z)

(a)

↑ R

↑ R

↑ R

z−1

z−1

Q
(R)
l, 0 (z)

Q
(R)
l, 1 (z)

Q
(R)
l, R−1(z)

(b)

Figure 4.11: Efficient implementation of upsampling and sub-filtering:
(a) original structure of branch l
(b) efficient implementation by a polyphase network.

Figure 4.11. This polyphase implementation reduces the complexity of the sub-filters
by a factor of R since Lq � R and is facilitated by the fact that the synthesis filter-bank
uses an identical subsampling rate R for each subband as well as FIR sub-filters. For
the following derivations, the synthesis filter-bank of Figure 4.7 is considered for the
sake of simplicity, keeping in mind that the actual implementation can be done by an
efficient PPN implementation, mostly in combination with the filter-bank structure of
Figure 4.10.

Finally, it should be noted that the discussed synthesis filter-bank designs can be
applied in a straightforward manner to an analysis filter-bank designed by an allpass
transformation of higher order according to Sec. 4.1.2 so that this case is not treated in
more detail.

4.2.3 Phase Equalizer Design for Warped Filter-Banks

As for the allpass-based (Pseudo) QMF-banks treated before, the phase equalizer de-
sign exerts a major influence on the performance of a warped filter-bank regarding its
reconstruction error, signal delay and algorithmic complexity. However, there are two
important differences between allpass-based (Pseudo) QMF-banks and allpass trans-
formed AS FBs to be taken into account.

Firstly, a perfect phase equalization yields an allpass-based QMF-bank with perfect
reconstruction which, however, does not apply for allpass transformed AS FBs. This is
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due to the structural difference that allpass filters and phase equalizers of a QMF-bank
or Pseudo QMF-bank are operated in the subsampled time-domain as opposed to allpass
transformed filter-banks (compare, e.g., Figure 3.7 or Figure 3.13 with Figure 4.6).

Secondly, the equalization of mostly long allpass chains is required for a warped AS
FB in contrast to allpass-based QMF-banks. In [LV07c], it is shown that the LS FIR
phase equalizer of Sec. 3.3.4.1 is especially suitable for such purposes. As demonstrated
in the following, this phase equalizer achieves a superior performance in comparison
to cascaded phase equalizers as given by the equiripple phase equalizers treated in
Sec. 3.3.4.2 and Sec. 3.3.4.3.

Example 4.1: The design problem of Eq. (3.75) is considered for an allpass chain
of length Lac = 31 and allpass coefficient a = 0.4 whose impulse response is plotted
in Figure 4.9-c. The phase equalization is performed by the proposed LS FIR phase
equalizer and the equiripple FIR phase equalizer of [Gal02].7 Figure 4.12 shows the
plots of magnitude response and group delay of the transfer function Ψ

(
ej Ω
)

given
by Eq. (3.75) as well as the phase error defined by Eq. (3.74b). The equiripple FIR
phase equalizer of [Gal02] achieves an equiripple error for the magnitude, group delay
and phase error in accordance with the results of Sec. 3.3.4.2. The LS FIR phase
equalizer of Sec. 3.3.4.1 achieves a significantly lower approximation error than the
equiripple FIR phase equalizer for the same filter degree (N = Lac Ns) and signal
delay, respectively. It is also illustrated that the LS FIR phase equalizer can provide
a comparable approximation error as the equiripple FIR phase equalizer, but with a
considerably lower filter degree.

It is not contradictory to the alternation theorem (briefly explained in App. D.1) that
the LS FIR phase equalizer achieves a lower approximation error than the equiripple
FIR phase equalizer for the same filter degree. The equiripple phase equalizer leads to a
transfer function Ψ

(
ej Ω
)

which shows an equiripple approximation error for Eq. (3.74)

with regard to the desired transfer function Ψd

(
ej Ω
)

as proven in Sec. 3.3.4.2. In
contrast, the LS FIR phase equalizer achieves an LS error approximation for the desired
phase equalizer according to Eq. (3.82). Hence, different approximation criteria are
involved.

Example 4.2: The impact of the phase equalizer for the design of a warped DFT
AS FB is now investigated. An allpass transformed analysis filter-bank according to
Figure 4.6 is considered with M = 32 frequency channels and a subsampling rate of
R = 4. An allpass coefficient of a = 0.4 is used for the allpass transformation, which
yields a good approximation of the Bark scale for a sampling frequency of fs = 8 kHz
according to Eq. (4.7). The magnitude responses of the analysis filters are shown in
Figure 4.13 where the prototype filters of analysis and synthesis filter-bank are given
by Eq. (2.33). The FIR synthesis filter-bank of Figure 4.7 is used employing either
equiripple FIR phase equalizers according to Eq. (4.38) or LS FIR phase equalizers
according to Eq. (4.45) for the sub-filters of Eq. (4.33).

The transfer functions and synthesis filters of the two AS FBs are analyzed in
Figure 4.14. The upper subplots show the progression of magnitude response and

7The use of the equiripple allpass phase equalizer of Sec. 3.3.4.3 yields similar results in

this case due to its close relation to the equiripple FIR phase equalizer.
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Figure 4.12: Phase equalization of an allpass chain of length Lac = 31 and all-
pass coefficient a = 0.4 by different FIR phase equalizers (PEs) of degree N :
(a) magnitude response of the transfer function Ψ

(
ej Ω
)

(b) group delay of the transfer function Ψ
(
ej Ω
)

(c) phase error of Eq. (3.74b).

phase error for the overall and linear transfer function of the filter-bank (introduced
in Sec. 2.1 and Sec. 4.2.2). Both filter-banks are designed for the same overall signal
delay Do = N = (L − 1)Ns. It can be observed that the use of the LS FIR phase
equalizer results in a significantly lower amount of amplitude and phase distortions
in comparison to the equiripple FIR phase equalizer. The distortions for the overall
transfer function T0

(
ej Ω
)

are higher than for the linear transfer function T lin

(
ej Ω
)
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Figure 4.13: Magnitude responses of an allpass transformed DFT analysis
filter-bank with parameters L = 2M = 32, R = 4 and a = 0.4.

due to non compensated alias components, which are illustrated by the plots of the
BSF in Figure 4.14-c and Figure 4.14-d. The plots of the BSF show that both designs
achieve a similar aliasing cancellation, but the design with LS FIR phase equalizers
causes much lower linear magnitude distortions as indicated by the constant line on the
main diagonal in Figure 4.14-d.

It is shown in the previous section that the magnitude responses of the synthesis fil-
ters become almost identical to those of the analysis filters, if a good phase equalization
is achieved, cf., Eq. (4.50). This effect is demonstrated by the subplots of Figure 4.14-e
and Figure 4.14-f, which show the magnitude responses of the synthesis filters for the
two filter-bank designs. The low phase equalization error for the LS FIR phase equalizer
results in synthesis filters whose magnitude responses are almost identical to those of the
analysis filters shown in Figure 4.13. In contrast, the high phase error of the equiripple
FIR phase equalizer yields synthesis filters with an insufficient bandpass characteristic.

The comparison of the two synthesis filter-bank designs is performed for the same
overall system delay Do to demonstrate and highlight the strong influence of the phase
equalizer design. It is of course also possible to achieve the same reconstruction error and
bandpass characteristic for the synthesis filters with the equiripple FIR phase equalizer
as with the LS FIR phase equalizer, but this requires a significantly higher filter degree
and signal delay, respectively, in case of the equiripple FIR phase equalizer.

Finally, it should be noticed that the filter-bank structure proposed in [GK00, GK02,
Gal02] differs somewhat from the filter-bank of Figure 4.8. As mentioned before, the
proposals in [GK00, GK02, Gal02] consider different subsampling rates Ri for the sub-
bands. Another difference is that the lifting scheme8 is employed to achieve an im-
proved frequency selectivity for the prototype filters with a constrained signal delay
[GK02, Gal02]. However, these differences are not relevant for this discussion as the
proposed LS FIR phase equalizer can also be applied in this case in a straightforward
fashion and provides the same benefits as pointed out before.

8An example for a filter-bank based on the lifting scheme is provided by Figure 3.5.
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Figure 4.14: Evaluation of a warped DFT AS FB with analysis filter-bank
given by Figure 4.6 and parameters L = 2M = 32, R = 4, a = 0.4. The FIR
synthesis filter-bank of Figure 4.7 is used with two different phase equalizers
having a maximal degree of N = (L− 1)Ns = 93 and delay Do = 93:
(a) magnitude responses of linear and overall transfer function
(b) phase errors of linear and overall transfer function
(c) magnitude of BSF for filter-bank with equiripple FIR phase equalizers
(d) magnitude of BSF for filter-bank with LS FIR phase equalizers
(e) magnitude responses of synthesis filters with equiripple FIR phase equalizers
(f) magnitude responses of synthesis filters with LS FIR phase equalizers.
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Figure 4.15: Allpass transformed DFT AS FB for closed-form PR design.

4.2.4 PR Designs

The filter-bank designs discussed so far achieve near-perfect reconstruction by means
of phase equalization. Closed-form synthesis filter-bank designs to achieve a perfect
signal reconstruction are proposed in [Kap98, Sha00, SM02a, FK03]. These designs
follow actually the same design principle and have the same properties as shown in the
following.

The considered AS FB is depicted in Figure 4.15 for an allpass transformation of
first order. It can be regarded as special case of the analysis filter-bank of Figure 4.6
for L = M and h(l) ≡ 1 and the synthesis filter-bank of Figure 4.7 for L = M , g(l) ≡ 1
and Qi(z) = Qcf

i (z) with l, i ∈ { 0, 1, . . . ,M − 1 }. The use of Eq. (2.3) and Eq. (2.7)
leads to the following representation for the reconstructed input signal in the z-domain

X̂(z) =

R−1∑
r=0

X
(
zW r

R

) 1
R

M−1∑
i=0

Ai
(
zW r

R

)
·Qcf

i (z)︸ ︷︷ ︸
= Sr(z)

. (4.55)

Perfect reconstruction can be achieved if

Sr(z) =

{
z−(R−1) for r = 0

0 for r ∈ { 1, 2, . . . , R − 1 } .
(4.56)

This condition can be fulfilled by the restriction

Qcf
i (z) ≡ 0 for R ≤ i ≤M − 1 (4.57a)
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and if the system functions Qcf
0 (z),. . . ,Qcf

R−1(z) of the remaining sub-filters satisfy the
following set of equations⎡⎢⎢⎢⎢⎢⎣

1 A
(
z
)
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z
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(
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)

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

= AAAalias(z) ∈ C
R×R

·

⎡⎢⎢⎢⎢⎢⎣
Qcf

0 (z)

Qcf
1 (z)
...

Qcf
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⎡⎢⎢⎢⎢⎢⎣
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...

0

⎤⎥⎥⎥⎥⎥⎦ .

(4.57b)

The system functions of the resulting synthesis filters are given by

Ḡcf
i (z) =

M−1∑
l=0

Qcf
M−1−l(z) ·W−i(l+1)

M for i ∈ { 0, 1, . . . ,M − 1 } . (4.58)

Formally, these filters can be seen as a special case of Eq. (4.32) with L = M and g(l) ≡ 1
where the sub-filters are now determined according to Eq. (4.57). The (warped) alias
component matrixAAAalias(z) of Eq. (4.57b) has a Vandermonde structure, which allows to
calculate its inverse by methods closely related to Lagrange’s polynomial interpolation
formula, e.g., [PTVF92, Chap. 2]. The obtained system functions Qcf

i (z) represent FIR
filters of degree 2 (R−1) [FK03]. The overall signal delay of this filter-bank amounts to
Do = R− 1 due to Eq. (4.56). The closed-form PR solutions of [Kap98, Sha00, SM02a]
are actually equivalent to that of [FK03] and hence not treated separately.9

A severe drawback of this closed-form PR design approach is that the synthesis filters
have no distinctive bandpass characteristic, cf., [FK03]. For example, if no subsampling
is performed (R = 1), Eq. (4.57) yields the synthesis sub-filters

Qcf
i (z) =

{
1 for i = 0

0 for i ∈ { 1, 2, . . . ,M − 1 } .
(4.59)

The corresponding synthesis filters of Eq. (4.58) are given by Ḡcf
i (z) ≡ 1 in this case,

which are trivial allpass filters but no bandpass filters. The corresponding filter-bank
provides perfect reconstruction even in a strict sense, i.e., X̂(z) = X(z), but such a
design has of course no practical relevance.

The magnitude responses of Ḡcf
0

(
ej Ω
)

for higher subsampling rates (R > 1) are

plotted in Figure 4.16. It can be observed that the magnitude responses of Ḡcf
0

(
ej Ω
)

9The solutions of [Sha00, SM02a, FK03] are all obtained by inversion of the warped

alias component matrix where the derivation in [Kap98, Chap. 4] is based on a ‘tree

reconstruction network’, which can be converted into the structure of Figure 4.15. In

[Kap98, Sha00, SM02a], an explicit solution for a causal and stable synthesis filter-bank

is only given for critically subsampling (R = M) where the solution of [FK03] considers a

variable subsampling rate R ∈ {1, 2, . . . , M}.
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Figure 4.16: Magnitude response of the synthesis lowpass filter for different
subsampling rates R obtained by a closed-form PR design. The underlying
AS FB is depicted by Figure 4.15. An allpass coefficient of a = 0.4 and
M = 16 channels are considered.

show no lowpass characteristic at all. (Similar observations can also be made for the
other synthesis filters.) The missing bandpass characteristic of the synthesis filters can
cause high signal distortions if spectral modifications of the subband signals, such as
spectral weighting or quantization, are performed.

The synthesis filter-bank design according to Eq. (4.57b) can also be applied in case
of an allpass transformation of higher order. In this case, the inversion of the Vander-
monde matrix AAAalias(z) yields IIR filters for the system functions Qcf

0 (z), . . .Qcf
R−1(z)

which are not necessarily causal and stable [Sha00, SM02a, FK03]. The use of non-
causal filtering techniques to solve this problem, as suggested in [Sha00, SM02a], has
decisive drawbacks as shown in Sec. 3.3.2. This applies also for the design approach of
[Kap98] where a causal and stable synthesis filter-bank is only found for the case of an
allpass transformation of first order.

Another drawback of these closed-form synthesis filter-bank designs is that they do
not provide a solution for an allpass transformed PPN analysis filter-bank where L > M ,
which makes it difficult to employ prototype filters with a high frequency selectivity.
This general limitation is pointed out in [Sha00, Chap. 2] for closed-form designs which
are based on inversion of the alias component matrix such as [SM02a, FK03]. Similar,
the closed-form PR solution of [Kap98] applies also only for analysis prototype filters of
filter length L = M . In contrast to the designs of [Sha00, SM02a, FK03], the analysis
and synthesis prototype filters considered in [Kap98] are related by h(l) = 1/g(l) for
l ∈ {0, 1, . . . , L−1}. However, such a choice is only feasible for (rectangular) prototype
filters of length L = M .

It is important to notice that the derivation of a uniform filter-bank with perfect
reconstruction by inversion of the alias component matrix is well established and does
not cause the above mentioned problems, e.g., [Vai93]. This shows that the applica-
tion of design approaches for uniform filter-banks to the more general case of allpass
transformed filter-banks is not always straightforward and has to be done with care.
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4.3 Numerical Filter-Bank Designs

All the closed-form designs discussed in the previous sections have the advantage that
the synthesis filters are obtained by simple analytical expressions. In addition, a perfect
or at least nearly perfect compensation of (linear) phase distortions can be achieved by
this approach.

A drawback of these closed-form approaches is that they are rather inflexible: The
synthesis filter-bank designs based on phase equalization lack the (explicit) design target
to reduce the aliasing distortions caused by the warped analysis filter-bank. In contrast,
the closed-form designs discussed in Sec. 4.2.4 achieve perfect reconstruction with a
low signal delay, but these solutions apply only for the case L = M and an allpass
transformation of first order. A more severe shortcoming of these closed-form PR
designs is that the obtained synthesis filters have no bandpass characteristic. This is
due to the fact that synthesis filters with a bandpass characteristic are not (and cannot
be) the design target of such an approach.

These drawbacks motivate to design the synthesis filter-bank by means of a numer-
ical approach, which facilitates the incorporation of specific design targets. By this,
the signal reconstruction error or bandpass characteristic of the synthesis filters can be
better controlled. The aim is thereby to achieve an optimal design according to a given
error criterion.

The numerical filter-bank designs presented in the following are all formulated as
a semi-definite program (SDP) or special cases thereof.10 This kind of mathemati-
cal programming11 has gained increasing research interest over the past decades, e.g.,
[VB96, WSV00, BV04, AL07]. Algorithms such as the interior-point method have been
developed, which facilitate an efficient solution of such convex optimization problems in
polynomial time, e.g., [Wri97, Ye97, WSV00]. Due to these advances, convex optimiza-
tion methods have become increasingly popular for various engineering applications,
e.g., [VB96, LA00, LY06, AL07].

After a brief discussion of some known numerical design approaches for allpass
transformed AS FBs, several new synthesis filter-bank designs are introduced, which
pursue different design objectives.

4.3.1 Previous Designs

A common approach to reduce the reconstruction error of an allpass transformed DFT
AS FB according to Figure 4.6 (without phase equalizer) is to design its prototype filters
by numerical optimization, which can be done in a similar manner as for uniform filter-
banks, cf., [dH04].

In [dHGCN02], a dedicated prototype filter design for the analysis and synthesis
filter-bank is proposed. The FIR analysis prototype lowpass filter of length L = M is
designed by two requirements. The first requirement is that the LS error between the
ideal lowpass filter with linear phase response and the actual (warped) lowpass filter

10An overview of these convex optimization problems is provided by App. D.2.
11The term program refers in this work to a (numerical) optimization problem or mathe-

matical program, respectively.
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should be minimized within the passband

Ωp∫
−Ωp

∣∣H̃(ej Ω
)
− e−j Ω τh

∣∣2 d Ω → min . (4.60)

The second requirement is to minimize the so-called inband aliasing

π∫
−π

R−1∑
r=0

r �= R
2

∣∣∣H̃M

2

(
ej Ω

R W r
R

)∣∣∣2 d Ω → min (4.61)

with H̃i

(
ej Ω
)

given by Eq. (4.2). Only the aliasing term in the subband i = M/2 is
considered. This subband causes the highest aliasing distortions as it possesses the
highest bandwidth for a > 0. The aliasing term for r = R/2 is omitted in Eq. (4.61)
since it contains the desired spectral content of subband i = M/2 [dHGCN02]. For a
set of discrete frequencies, the joint minimization according to Eq. (4.60) and Eq. (4.61)
can be expressed in a matrix notation in dependence of the vector hhh which contains the
coefficients of the analysis prototype filter. These coefficients are finally determined by
an over-determined set of linear equations [dHGCN02].

The M coefficients of the synthesis prototype lowpass filter are also determined by
two requirements. The first one is to minimize the LS error between the desired and
actual so-called total response of the filter-bank

π∫
−π

∣∣∣∣∣Tdes

(
ej Ω
)
−

M−1∑
i=0

R−1∑
r=0

H̃i

(
ej Ω W r

R

)
· G̃i

(
ej Ω
)∣∣∣∣∣

2

d Ω → min (4.62)

with G̃i

(
ej Ω
)

given by Eq. (4.30). The second requirement is to reduce the aliasing

π∫
−π

M−1∑
i=0

R−1∑
r=1

∣∣H̃i

(
ej Ω W r

R

)
· G̃i

(
ej Ω
)∣∣2 d Ω → min . (4.63)

This joint minimization can be written in a matrix notation so that the vector with the
coefficients of the synthesis prototype filter ggg is determined by a set of linear equations
[dHGCN02].

A variant of this design approach is proposed in [VN03]. The analysis prototype fil-
ter is designed by minimizing the inband aliasing according to Eq. (4.61) while keeping
the error of Eq. (4.60) below a certain threshold. Similarly, the coefficients of the syn-
thesis prototype filter are determined by minimizing the aliasing according to Eq. (4.63)
while keeping the error for the total response according to Eq. (4.62) below a threshold.
In both cases, the prototype filter coefficients are determined by a quadratically con-
strained quadratic program (QCQP), which is formulated and solved by an equivalent
semi-definite program (SDP) [VN03].
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The design of [WdDC03] considers individual subsampling rates Ri for each sub-
band and prototype filters of length L ≥ M . The analysis prototype filter is obtained
by an LS error minimization of its passband and stopband error (which reduces the
inband aliasing implicitly). The synthesis prototype lowpass filter is obtained by a
joint minimization similar to that of Eq. (4.62) and Eq. (4.63). As in [dHGCN02], the
coefficients of analysis and synthesis prototype filter are finally determined by a set of
linear equations [WdDC03].

An advantage of all these numerical prototype filter designs is that the reconstruc-
tion properties of the filter-bank are improved without a (noteworthy) increase of signal
delay and algorithmic complexity of the original allpass transformed AS FB according
to Figure 4.6. On the other hand, only a very limited reduction of linear distortions
and aliasing distortions can be achieved as the 2L prototype filter coefficients offer only
a very restricted number of ‘degrees of freedoms’. A complete aliasing cancellation or
even a perfect signal reconstruction is not achieved by these design approaches. There-
fore, a novel numerical design framework is devised in the following to tackle these
shortcomings.

4.3.2 New Matrix Representation

The allpass transformed DFT analysis filter-bank of Figure 4.3 and the FIR synthesis
filter-bank of Figure 4.7 are considered. In contrast to Sec. 4.2.2, the coefficients of
the FIR sub-filters according to Eq. (4.33) are now determined by a numerical design
approach. Basis for all the following designs is a matrix representation of the new
overall transfer function introduced in Eq. (2.17). Following Eq. (2.8), the input-output
relation of the considered warped AS FB can now be written

X̂(z) =
1
R

R−1∑
r=0

X
(
zW r

R

) M−1∑
i=0

H̃i

(
zW r

R

)
· Ḡi(z) . (4.64)

The analysis filters are given by Eq. (4.15) and the synthesis filters by Eq. (4.32). Ap-
plying Eq. (2.17) to Eq. (4.64) results in

Tν(z) =
X̂ν(z)
z−ν

=
1
R

R−1∑
r=0

W−r ν
R

M−1∑
i=0

H̃i

(
zW r

R

)
· Ḡi(z) for ν ∈ { 0, 1, . . . , R − 1 } .

(4.65)

For a numerical design approach, a matrix formulation of Tν(z) in dependence of the
unknown Lq L coefficients ql(η) of the L synthesis sub-filters is required. Some manip-
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ulations of Eq. (4.32) lead to the representation

Ḡi(z) =

L−1∑
l=0

g(l) ·W−i (l+1)
M ·QL−1−l(z) [4.32]

=

L−1∑
l=0

g(l) ·W−i (l+1)
M

Lq−1∑
η=0

qL−1−l(η) · z−η

= vvvT
i ·DDDT (z) · ppp for i ∈ { 0, 1, . . . ,M − 1 } (4.66a)

with

vvvi =
[
g(L− 1) ·W−Li

M , g(L− 2) ·W−(L−1)i
M , . . .

. . . , g(1) ·W−2i
M , g(0) ·W−i

M

]T
(4.66b)

DDD(z) = IIIL ⊗ dddLq
(z) (4.66c)

dddLq
(z) =

[
1, z−1, . . . , z−(Lq−1)

]T
(4.66d)

ppp =
[
qqqT

0 , qqq
T
1 , . . . , qqq

T
L−1

]T
(4.66e)

qqql =
[
ql(0), ql(1), . . . , ql(Lq − 1)

]T ∀ l ∈ { 0, 1, . . . , L− 1 } . (4.66f)

The operator ⊗ marks the Kronecker product of two matrices, IIIL an identity-matrix
of size L× L and the superscript T denotes the transpose of a matrix or vector.

As a simple example, the matrix representation of Eq. (4.32) for L = M = 2 and
Lq = 2 is given by

Ḡi(z) =

[
g(1) ·W−2i

2

g(0) ·W−i
2

]T

·
[

1 z−1 0 0

0 0 1 z−1

]
·

⎡⎢⎢⎣
q0(0)

q0(1)

q1(0)

q1(1)

⎤⎥⎥⎦
=

[
g(1) ·W−2i

2

g(0) ·W−i
2

]T

·
[
q0(0) + q0(1) z−1

q1(0) + q1(1) z−1

]

=

1∑
l=0

g(l) ·W−i (l+1)
2

1∑
η=0

q1−l(η) · z−η for i ∈ { 0, 1 } .

With Eq. (4.66), the transfer function of Eq. (4.65) is now formulated by the matrix
notation

Tν(z) =

(
1
R

R−1∑
r=0

W−r ν
R

M−1∑
i=0

H̃i(zW
r
R) · vvvT

i ·DDDT (z)

)
︸ ︷︷ ︸

= ξξξν(z) ∈ C
1×LqL

· ppp; ν ∈ {0, 1, . . . , R − 1}.

(4.67)
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For the special case of a uniform filter-bank where a(m) = 0 ∧ b(m) = 0 ∀ m and
Lq = L, the coefficients of the synthesis sub-filters are given by

ppp =
[

000T
L−1, 1,000

T
L−2, 1,000

T
L−2, 1, . . . ,000

T
L−2, 1,000

T
L−1

]T ∈ R
L2×1 (4.68)

with 000L denoting a column vector with L zeros.

4.3.3 Constrained NPR Design

The introduced matrix representation of the filter-bank is now exploited to develop a
numerical NPR design which aims for a complete aliasing cancellation. The design is
based on the results of Sec. 4.2.2 where it is shown that the magnitude responses of the
synthesis filters strive towards those of the warped analysis filters, if a sufficient phase
equalization is performed, cf., Eq. (4.50). However, an improved phase equalization
does not achieve a (significantly) improved aliasing cancellation as demonstrated by
Example 4.2. Therefore, the LS FIR phase equalizer design of Sec. 4.2.2 is now extended
by the additional requirement for a complete aliasing cancellation. Thus, a linear time-
invariant (LTI) system is demanded, which can be expressed by means of the transfer
function of Eq. (4.65) as follows

Tν(z)
!
= T0(z) ∀ ν ∈ { 1, 2, . . . , R − 1 } . (4.69)

The condition of Eq. (4.69) can be cast into a matrix notation by means of Eq. (4.67)⎡⎢⎢⎢⎣
ξξξ1(z)− ξξξ0(z)
ξξξ2(z)− ξξξ0(z)

...
ξξξR−1(z)− ξξξ0(z)

⎤⎥⎥⎥⎦ ·
︸ ︷︷ ︸

= ΞΞΞΔ(z) ∈ C
R−1×LqL

ppp
!
= 000R−1 . (4.70)

If Eq. (4.69) is fulfilled, Tν(z) = T lin(z) where the linear transfer function of Eq. (4.34)
can be expressed by means of Eq. (4.15) and Eq. (4.32) as follows

T lin(z) =
1
R

M−1∑
i=0

H̃i(z) · Ḡi(z) [4.34]

=
1
R

Λ(z)

M−1∑
i=0

L−1∑
l=0

L−1∑
m=0

h(l) · g(m) ·Θl(z) ·QL−1−m(z) ·W−i (l+m+1)
M

=
M

R
Λ(z)

∑
λ∈Z

L−1∑
l=0

h(l) · g(λM − 1− l) ·Θl(z) ·QL−λ M+l(z) . (4.71)

This linear transfer function of the filter-bank equals

T lin(z) = z−Do , (4.72)
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if the prototype filters comply with Eq. (2.32) and if

Λ(z) ·Θl(z) ·Ql(z)
!
= z−Do ∀ l ∈ { 0, 1, . . . , L− 1 } . (4.73)

This requirement can be expressed by means of the matrices introduced in Eq. (4.66):⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝111T

LLq
⊗

⎡⎢⎢⎢⎣
Λ(z)

Λ(z) ·Θ(z)
...

Λ(z) ·ΘL−1(z)

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠�DDDT (z)

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

= UUU(z) ∈ C
L×Lq L

· ppp !
= z−Do 111L

︸ ︷︷ ︸
= vvv(z)

(4.74)

with � denoting the element-wise multiplication of two matrices of the same dimensions
(Hadamard product) and 111L representing a column vector with L ones. The conditions
of Eq. (4.70) and Eq. (4.74)

ΞΞΞΔ(z) · ppp !
= 000R−1 ∧ UUU(z) · ppp !

= vvv(z) (4.75)

shall be fulfilled for N discrete z-values on the unit circle

z = Wm
N = e−j 2 π

N
m ∀ m ∈ {0, 1, . . . ,N − 1} with N = Lq L . (4.76)

Other choices for N are possible as far as the resulting set of equations is over-
determined.12 Evaluating the matrix UUU(z) and vector vvv(z) of Eq. (4.75) at these points
can be expressed by the (stacking) notation

UUU [N ] =

⎡⎢⎢⎢⎣
UUU(1)

UUU
(
WN

)
...

UUU
(
WN −1

N

)
⎤⎥⎥⎥⎦ ∈ C

LN ×N (4.77)

vvv[N ] =

⎡⎢⎢⎢⎣
111L

W−Do

N 111L

...

W
−Do (N −1)
N 111L

⎤⎥⎥⎥⎦ ∈ C
LN . (4.78)

The matrix ΞΞΞ[N ]
Δ is derived from the matrix ΞΞΞΔ(z) of Eq. (4.75) in the same manner

ΞΞΞ[N ]
Δ =

⎡⎢⎢⎢⎣
ΞΞΞΔ(1)

ΞΞΞΔ

(
WN

)
...

ΞΞΞΔ

(
WN −1

N

)
⎤⎥⎥⎥⎦ ∈ C

(R−1)N ×N . (4.79)

12A high value for N allows to achieve a lower approximation error at the price of an

increased computational burden to solve the optimization problem and vice versa. Taking

an infinite set of z-values into account would lead to a semi-infinite program which, however,

is much harder to solve than a semi-definite program.
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The N = Lq L synthesis sub-filter coefficients ppp to fulfill Eq. (4.75) can now be deter-
mined by means of the following equality constrained least-squares error (CLS) mini-
mization

p̂pp = arg

{
minimize

ppp

∥∥∥UUU [N ] · ppp− vvv[N ]
∥∥∥2

2

}
(4.80a)

subject to ΞΞΞ[N ]
Δ · ppp = 000(R−1) N . (4.80b)

Such an optimization problem is a linearly constrained quadratic program (LCQP) ac-
cording to Eq. (D.11). It can be solved, e.g., by means of the functions lsqlin (used
here) or quadprog of the MATLAB optimization toolbox.13 With this approach, linear
signal distortions are minimized with the constraints for complete aliasing cancellation
and a desired signal delay Do. The problem of Eq. (4.80) is a convex optimization
problem as the objective function of Eq. (4.80a) is convex and the equality constraints
are linear. Thus, the solution of this problem has a global optimum which is unique, if
the objective function is strictly convex on the feasible region.

The synthesis filter-bank design of Eq. (4.80) is originally proposed in [LDV09] and
contains some previous proposals as special cases: The design of [LDV08b] is obtained
for an allpass transformation of first order according to Eq. (4.17) with a real allpass pole
(a = α) and a prototype filter length restricted to L = M . The approach of [LV07c] is
given for an allpass transformation of first order and if Eq. (4.80a) is solved without the
constraint of Eq. (4.80b). In this case, the synthesis sub-filters with system functions
Ql(z) act purely as phase equalizers designed by an LS error criterion as discussed
in Sec. 4.2.2 and Sec. 4.2.3. The coefficients of the sub-filters can then of course be
determined by the closed-form expression of Eq. (3.81) instead of solving Eq. (4.80a)
numerically.

Example 4.3: A warped DFT AS FB with ELT prototype filters according to
Eq. (2.33) is considered. Its design by the LCQP of Eq. (4.80) is analyzed in Figure 4.17
where the magnitude of the BSF is provided by Figure 2.6-b. A comparison of the mag-
nitude responses of the analysis and synthesis filters of Figure 4.17-a and Figure 4.17-b
reveals that their curve progressions are very similar owing to the implicit phase equal-
ization. The plot of the peak aliasing distortions in Figure 4.17-e shows that the design
constraint for perfect aliasing cancellation is fulfilled with a very high numerical accu-
racy. This is also demonstrated by the BSF plotted in Figure 2.6-b, which exhibits no
alias components on its side diagonals. The BSF as well as the analysis of the transfer
function T0(ej Ω) in Figure 4.17-c and Figure 4.17-d demonstrate the NPR property.

The design of Eq. (4.80) aims for a filter-bank with complete aliasing cancellation.
However, such a behavior may not be required by some applications. Instead, it can
be beneficial to tolerate some aliasing distortions in an exchange for a lower amount of
linear distortions. Therefore, a generalization of the CLS design of Eq. (4.80) is now
devised to gain a more flexible control over its signal reconstruction error.

One approach to achieve this goal is to utilize the method of weighting [Gv96]. The

13The 64bit MATLAB version 7.9.0.529 (R2009b) for the operating system Linux has been

used for this work [TM09].
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Figure 4.17: Design of an allpass transformed DFT AS FB according to
Figure 4.3 and Figure 4.7 by the LCQP of Eq. (4.80) with parameters L =
2M = 16, R = M/4 = 2, a(0) = −j0.5, a(1) = j0.5, Lq = 60 and Do = 56:
(a) magnitude responses of the analysis filters
(b) magnitude responses of the synthesis filters
(c) magnitude response of the overall transfer function
(d) phase error of the overall transfer function according to Eq. (2.21)
(e) peak aliasing distortions according to Eq. (2.12).

CLS minimization of Eq. (4.80) can be rewritten as follows

p̂pp = arg

{
minimize

ppp

∥∥∥∥[ UUU [N ]

μ ·ΞΞΞ[N ]
Δ

]
· ppp−

[
vvv[N ]

000(R−1) N

]∥∥∥∥2

2

}
(4.81)

=

[
UUU [N ]

μ ·ΞΞΞ[N ]
Δ

]# [
vvv[N ]

000(R−1) N

]
; μ ∈ R+ (4.82)
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provided that the pseudo-inverse of the matrix (marked by a hash) exists. For μ→ 0,
an unconstrained optimization is performed and the synthesis sub-filters with system
functions Ql(z) become LS FIR phase equalizers according to Eq. (4.45). For μ → ∞,
the optimization problem of Eq. (4.81) becomes equivalent to that of Eq. (4.80).

An advantage of this design approach is its simplicity; Eq. (4.81) constitutes an
unconstrained LS error optimization which can be easily solved. A drawback is that
the aliasing distortions are only controlled implicitly by the choice of the weighting
factor μ. In addition, some precautions are necessary for high values of μ to avoid
numerical problems, cf., [Gv96].

An explicit bound on the aliasing distortions can be imposed by the following re-
formulation of Eq. (4.80)

minimize
ppp

∥∥UUU [N ] · ppp− vvv[N ]
∥∥2

2
(4.83a)

subject to
∥∥ΞΞΞ[N ]

Δ · ppp
∥∥2

2
≤ εa ; 0 ≤ εa (4.83b)

where the indication p̂pp = arg {. . .} is omitted to ease the notation. The equality con-
straint for an LTI system is now relaxed by tolerating a bounded LS error. The choice
εa → ∞ leads to an unconstrained LS error optimization and εa → 0 to the original
problem of Eq. (4.80). In contrast to the method of weighting, these extremal values
for εa pose no specific numerical problems.

As shown in App. B.3, the quadratically constrained quadratic program (QCQP) of
Eq. (4.83) can be expressed in an epigraph form with the epigraph variable ρ ≥ 0, which
can than be converted into the following semi-definite program (SDP) with real linear
matrix inequalities (LMIs)

minimize
pppa

lllT pppa (4.84a)

subject to

[
�{LLL1} � {LLL1}
−�{LLL1} �{LLL1}

]
� 0 (4.84b)[

�{LLL2} � {LLL2}
−�{LLL2} �{LLL2}

]
� 0 (4.84c)

with

pppa =
[
ρ, pppT

]T
(4.84d)

lll =
[

1, 000T
N

]T
(4.84e)

LLL1 =

[
IIIL N UUU [N ] ppp(

UUU [N ] ppp
)H

ρ+
(
vvv[N ]

)H (
UUU [N ] ppp

)
+
(
UUU [N ] ppp

)H
vvv[N ] −

(
vvv[N ]

)H
vvv[N ]

]
(4.84f)

LLL2 =

⎡⎣ III(R−1) N ΞΞΞ[N ]
Δ ppp(

ΞΞΞ[N ]
Δ ppp

)H

εa

⎤⎦ . (4.84g)
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Figure 4.18: Design of an allpass transformed DFT AS FB according to
Figure 4.3 and Figure 4.7 with parameters L = 2M = 16, R = M/4 = 2,
a(0) = −j0.5, a(1) = j0.5 by the QCQP of Eq. (4.83) with a threshold of
εa = 10−8, sub-filter length Lq = 60 and signal delay Do = 56:
(a) magnitude responses of the synthesis filters
(b) peak aliasing distortions
(c) magnitude response of the overall transfer function
(d) phase error of the overall transfer function.

In contrast to the original optimization problem of Eq. (4.83), the mathematical pro-
gram of Eq. (4.84) can now be solved by means of the MATLAB function mincx of the
‘Robust Control Toolbox’ where the LMIs can be specified by using the LMI Lab pack-
age [TM09]. Besides, there are different other software packages to solve SDPs such as
[FKNY04, BY05, Bor06, TTT06] or the CVX toolbox [GB09] which is employed here.

Example 4.4: The effect of the QCQP design stated by Eq. (4.83) is demonstrated
in Figure 4.18. The design parameters are identical to those of Example 4.3 where now
a threshold of εa = 10−8 is applied to the constraint of Eq. (4.83b). As before, the
synthesis bandpass filters have magnitude responses which are very similar to those
of the analysis filters plotted in Figure 4.17-a. The comparison of Figure 4.18 with
Figure 4.17 shows how the relaxation of the LTI constraint provokes higher peak aliasing
distortions, but achieves a lower amount of linear magnitude and phase distortions.
The diminished aliasing cancellation is also demonstrated by Figure 2.6: It shows the
magnitude of the BSF for this design

(
εa = 10−8

)
in Figure 2.6-a and the BSF for
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Example 4.3 (εa = 0) in Figure 2.6-b. It can be seen how the permission of a threshold
εa > 0 leads to a small non-compensated alias component.

The presented designs consider the L2-norm as error norm (LS error), but the use of
other Lp-norms (outlined in App. D.1) is possible as well and poses no specific problems
as the resulting optimization problems are still convex and thus tractable, i.e., solvable
in polynomial time.

4.3.4 Sparse Design

The synthesis filter-banks considered so far are designed with the objective to achieve a
low signal reconstruction error. Another design target, which is also of great practical
importance, is to obtain a synthesis filter-bank with a low algorithmic complexity. This
can be accomplished by a sparse design, which aims for a low number of non-zero filter
coefficients in order to achieve a reduced number of multiplications and summations.
This can be beneficial, e.g., for an ASIC implementation to save circuit components
and power consumption or it can help to reduce the quantization noise and complexity
for an implementation with fixed-point arithmetic due to the diminished number of
summation and multiplication operations.

The design of signal processing systems with the sparseness constraint is done for
various applications, e.g., [Rao98]. One is the design of sparse FIR filters, which is
treated in several publications, e.g., [WM93, WM96, SL97, MPH02]. However, a sparse
synthesis filter-bank design for a warped analysis filter-bank has not been proposed
so far. Using known sparse FIR filter designs for the considered synthesis filter-bank
design is difficult as they are often either relying on a specific FIR filter structure (as,
e.g., linear-phase filters) and/or have a high design complexity. In the following, a
sparse synthesis filter-bank design for a warped analysis filter-bank is developed which
can handle the large number of filter coefficients being involved in a simple manner.

4.3.4.1 Concepts

The design of a synthesis filter-bank according to Figure 4.7 with a low algorithmic
complexity can be accomplished by different concepts.

A straightforward approach is to use for Eq. (4.33) synthesis sub-filters of lower filter
length L′

q < Lq. However, it turns out that a sparse design with higher filter length Lq

but the same number of non-zero filter coefficients clearly outperforms such a design.
This is due to the fact that a sparse design with a higher filter length offers more degrees
of freedom to fulfill a given optimization criterion.14

Another simple method is to set the Nz coefficients of the vector ppp with the smallest
magnitude equal to zero. This approach is referred to as zero-forcing in the following.
A drawback of this technique is that the original optimization constraints may not be
fulfilled anymore.

A brute-force method is to optimize the synthesis filters for all possible sparsity
patterns and to select the best design according to the given design criterion. Here,
the unknown vector ppp contains N = Lq L coefficients. If Nmax

z denotes the maximal

14Such an observation is also known from sparse FIR filter designs, e.g., [WM96, MPH02].
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number of coefficients set to zero, there are

N∑
m=N −N max

z

(N
m

)
≤ 2N ; Nmax

z ≤ N (4.85)

sparsity patterns to be evaluated where the equality holds for Nmax
z = N . Thus, the

problem is NP-complete and the algorithmic complexity increases exponentially with
N . Even the use of effective techniques for the search of the optimal solution such as
the branch-and-bound algorithm [SL97] does not solve this problem, especially as there
is not only a single but L sub-filters of length Lq to be determined (see Figure 4.7).

An approach to alleviate this problem is to exploit a priori knowledge about the
specific impulse response of a filter and to place the zeros accordingly. Such an approach
is proposed in [WM93, WM96] for a sparse Chebyshev design of linear-phase FIR filters.
An improvement of this approach is proposed in [SL97] where a wider class of FIR filters
is considered.

Another concept, which does not require any a priori knowledge, is to employ an
L1-norm regularization, e.g., [BV04]. This technique is employed for the problem at
hand as it can be neatly incorporated into the new design framework. The principle of
this approach should be explained by a simple but instructive example.

An arbitrary, over-determined set of linear equations is considered

CCC · bbb = aaa (4.86)

where the vector bbb is of dimension Nb×1.15 An LS error solution for this set of equations
with the constraint that the vector bbb is sparse is given by

minimize
bbb

∥∥CCC · bbb− aaa∥∥2

2
(4.87a)

subject to ‖bbb‖0 ≤ N ′
b < Nb ; N ′

b, Nb ∈ N . (4.87b)

The zero-norm ‖ppp‖0 returns the cardinality (or size) of a vector, which is the number
of its non-zero components.16 The above optimization problem is non-convex and
finding a global optimum requires to verify all possible sparsity patterns, which causes
an immense computational burden, cf., Eq. (4.85). An approach to circumvent this
problem is to solve the optimization problem of Eq. (4.87) approximately by means of
an L1-norm regularization [BV04]

minimize
bbb

{∥∥CCC · bbb− aaa∥∥2

2
+ γp

∥∥bbb∥∥
1

}
; γp ≥ 0 . (4.88)

The penalty factor γp determines the trade-off between the residual LS error on the one
hand, and the sparseness of the vector bbb on the other hand. The objective function of

15For a determined set of equations, CCC is an invertible square matrix and the residual

vector CCC bbb − aaa a zero-vector.
16The zero-norm is not a norm in a strict sense as it is not positive homogeneous, because

the statement ‖cbbb‖0 = c ‖bbb‖0 is not true for all c > 0 and bbb �= 000.
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Figure 4.19: Histograms for the coefficients of residual vector rrrp determined by
Eq. (4.89) for the L2-norm (a) and L1-norm (b). The matrices CCC ∈ R

102×30

and aaa ∈ R
102 contain uniformly distributed random numbers generated by

the MATLAB function rand. The solid line marks the respective penalty
function (squared magnitude and magnitude of the amplitude).

Eq. (4.88) is the sum of two convex functions (norms) so that Eq. (4.88) constitutes a
convex optimization problem, which is much easier to solve than the original non-convex
optimization problem of Eq. (4.87).

The motivation for using the L1-norm as penalty function can be explained by a
look at the residual (error) vector

rrrp = CCC · b̂bbp − aaa (4.89a)

obtained by the Lp-norm optimization

b̂bbp = arg

{
minimize

bbb

∥∥CCC · bbb− aaa∥∥
p

}
for p ∈ { 1, 2 } . (4.89b)

The amplitude distributions of the residual vector rrrp are plotted in Figure 4.19 for the
two considered norms along with the respective penalty function. The L2-norm puts
very low weight on small residuals and a strong weight on large residuals. In contrast,
the L1-norm penalty puts more weight on small residuals and less weight on large
residuals. Therefore, the L1-norm penalty function tends to produce a sparse solution
for the residual vector rrr1 with a lot of coefficients being equal or close to zero. The
use of other penalty functions, which achieve a better approximation of the zero-norm
than the L1-norm penalty function, has the decisive drawback that they are not convex
(such as the zero-norm itself) [BV04].
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4.3.4.2 Sparse NPR Design by L1-Norm Regularization

The introduced L1-norm regularization is now applied to the QCQP of Eq. (4.83), which
yields the following optimization problem

minimize
ppp

{∥∥∥UUU [N ] · ppp− vvv[N ]
∥∥∥2

2
+ γp

∥∥ppp∥∥
1

}
(4.90a)

subject to
∥∥∥ΞΞΞ[N ]

Δ · ppp
∥∥∥2

2
≤ εa ; εa ≥ 0 . (4.90b)

This program can be easily converted to the ‘standard form’ of a convex program as
listed in App. D.2, which is required for some solvers: For a real vector ppp, Eq. (4.90)
can be written in an epigraph form by means of the variables ρ and ttt as follows

minimize
ppp, ρ, ttt

{
ρ+ γp 111T

N ttt
}

(4.91a)

subject to
∥∥∥ΞΞΞ[N ]

Δ · ppp
∥∥∥2

2
≤ εa (4.91b)∥∥∥UUU [N ] · ppp− vvv[N ]
∥∥∥2

2
≤ ρ (4.91c)

− ttt � ppp � ttt for ppp ∈ R
N ; ttt ∈ R

N
+ ; εa, γp, ρ ≥ 0 . (4.91d)

This is equivalent to the formulation

minimize
pppa

yyyT pppa (4.92a)

subject to
∥∥[OOO(R−1)N ×N +1 ΞΞΞ[N ]

Δ

]
· pppa

∥∥2

2
≤ εa (4.92b)∥∥[OOOLN ×N +1 UUU [N ]

]
· pppa − vvv[N ]

∥∥2

2
≤
[

1
0002N

]T

pppa (4.92c)

0 ≤ fffT
m ·
(
pppa + ttta

)
(4.92d)

0 ≤ fffT
m ·
(
ttta − pppa

)
(4.92e)

with

pppa =

⎡⎣ρttt
ppp

⎤⎦ ; yyy =

[
1

γp 111N

000N

]
; ttta =

[
000N +1

ttt

]
; fffm =

⎡⎣000N +m

1
000N −m

⎤⎦ (4.92f)

ppp ∈ R
N ; ttt ∈ R

N
+ ; εa, γp, ρ ≥ 0; m ∈ { 1, 2, . . . ,N } (4.92g)

where OOOM×N represents a zero-matrix of dimension M × N . The optained optimiza-
tion problem of Eq. (4.92) is a second order cone program (SOCP) without equality
constraints according to Eq. (D.9). Such a problem can be solved by MATLAB using
solvers such as SeDuMi [Stu99] or SDPT3 [TTT06].17

17The employed CVX toolbox [GB09] uses SeDuMi and SDPT3 as core solvers.
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Figure 4.20: Design of an allpass transformed DFT AS FB according to
Figure 4.3 and Figure 4.7 with L = 2M = 16, R = M/4 = 2, a(0) = −j0.5,
a(1) = j0.5 by the QCQP of Eq. (4.90) with Lq = 60, Do = 56, εa = 0 and
two different penalty factors γp. A subsequent zero-forcing to 50% of the
smallest coefficients of p̂pp is performed in both cases:
(a) magnitude of the BSF for γp = 0
(b) magnitude of the BSF for γp = 0.3.

Example 4.5: The design of Example 4.3 is revisited to demonstrate the effect
of the proposed sparse design. The synthesis filter-bank of Figure 4.7 is designed by
the QCQP of Eq. (4.90) with the constraint for complete aliasing cancellation (εa = 0).
This optimization is performed with L1-norm regularization (γp = 0.3) and without
L1-norm regularization (γp = 0), which is here equivalent to Eq. (4.80) since εa = 0.
Afterwards, the Nz = N/2 smallest coefficients of the vector p̂pp are set to zero for both
designs, i.e., a zero-forcing is applied to 50% of the sub-filter coefficients.

The signal reconstruction errors of both designs are analyzed in Figure 4.20 and
Figure 4.21. (The magnitude responses of the synthesis filters are not plotted as they
are almost identical to those of Figure 4.17-b.) Comparing Figure 4.17 with Figure 4.21
shows that the zero-forcing affects mainly the peak aliasing distortions and less the linear
phase and magnitude distortions. A comparison of Figure 4.21-a with Figure 4.21-b
reveals that the sparse design with L1-norm regularization achieves a much better
aliasing compensation than the design without L1-norm regularization.

This effect is also demonstrated by the BSFs plotted in Figure 4.20. It can be seen
that the sparse design achieves actually a complete aliasing cancellation as opposed to
the non-sparse design, which exhibits a small non-compensated alias component on its
side diagonal.

This difference for the aliasing cancellation can be explained by means of Figure 4.22.
It shows the number of coefficients of vector p̂pp whose magnitudes are below a certain
threshold εp. For the design according to Eq. (4.90) with L1-norm regularization, about
50% of the coefficients have a magnitude of less then εp = 10−12. In contrast, the co-
efficients obtained by the design without L1-norm regularization have all a magnitude
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Figure 4.21: Design of an allpass transformed DFT AS FB according to
Figure 4.3 and Figure 4.7 with L = 2M = 16, R = M/4 = 2, a(0) = −j0.5,
a(1) = j0.5 by the QCQP of Eq. (4.90) with Lq = 60, Do = 56, εa = 0 and
two different penalty factors γp. A subsequent zero-forcing to 50% of the
smallest coefficients of p̂pp is performed in both cases:
(a) peak aliasing distortions for γp = 0
(b) peak aliasing distortions for γp = 0.3
(c) magnitude response of the overall transfer function for γp = 0
(d) magnitude response of the overall transfer function for γp = 0.3
(e) phase error of the overall transfer function for γp = 0
(f) phase error of the overall transfer function for γp = 0.3.
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Figure 4.22: Number of coefficients of vector p̂pp whose magnitudes are below
the threshold εp. The vectors are determined by the design of Eq. (4.90) with
εa = 0 and two different penalty factors γp. The other design parameters
are listed in Figure 4.21.

which is above 10−11. Accordingly, the subsequent zero-forcing has a much lower effect
if an L1-norm regularization is applied before as only coefficients with a very small mag-
nitude are set to zero in this case. Therefore, the sparse design fulfills the constraint
for complete aliasing compensation much better than the design without L1-norm reg-
ularization (γp = 0).

Finally, it should be mentioned that repeating the design of Example 4.3 with a sub-
filter length Lq reduced by 50% leads to a synthesis filter-bank with the same number
of non-zero filter coefficients as for the sparse designs of Example 4.5, but a much higher
signal reconstruction error so that this approach is not treated in more detail.

4.3.5 Unconstrained PR Design

A numerical LS error design which strives for an allpass transformed AS FB with perfect
reconstruction is now derived based on [LV10]. The condition for perfect reconstruction
with a delay ofDo sample instants can be expressed by the transfer function of Eq. (4.65)
as follows

Tν(z)
!
= z−Do ∀ ν ∈ {0, 1, . . . , R − 1} . (4.93)

This requirement can be stated by means of Eq. (4.67):⎡⎢⎢⎢⎣
ξξξ0(z)

ξξξ1(z)
...

ξξξR−1(z)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

= ΞΞΞR(z)

· ppp !
= z−Do 111R . (4.94)
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The Lq L coefficients of vector ppp are determined by the requirement that Eq. (4.94)
shall be fulfilled for N = Lq L discrete values on the unit circle according to Eq. (4.76).
With the compact notation

AAA =

⎡⎢⎢⎢⎣
ΞΞΞR(1)

ΞΞΞR(WN )
...

ΞΞΞR

(
WN −1

N

)
⎤⎥⎥⎥⎦ ∈ C

N R×N (4.95)

www =

⎡⎢⎢⎢⎣
111R

W−Do

N 111R

...

W
−(N −1)Do

N 111R

⎤⎥⎥⎥⎦ ∈ C
N R, (4.96)

Eq. (4.94) turns into an R-times over-determined set of N R linear equations

AAA · ppp !
= www . (4.97)

An LS error solution is obtained by

minimize
ppp

∥∥AAA · ppp−www∥∥2

2
. (4.98)

If rank (AAA) = N , the solution of Eq. (4.98) is given by18

p̂pp =
(
AAAH AAA

)−1
AAAH www (4.99a)

= AAA#www . (4.99b)

If the matrix AAA is rank deficient, i.e., rank (AAA) < N , the matrix AAAHAAA becomes singular
so that the pseudo-inverse AAA# of matrix AAA does not exist. In this case, there exist
an LS error solution according to Eq. (4.98) as well which, however, is not unique any
more.

Example 4.6: The warped analysis filter-bank of Figure 4.3 is considered whose
frequency resolution is adjusted by an allpass transformation of second order as shown in
Figure 4.4. The synthesis filter-bank of Figure 4.7 is determined by the unconstrained
PR design of Eq. (4.98). The result is analyzed in Figure 4.23. The synthesis filters
shown in Figure 4.23-a exhibit a distinctive bandpass characteristic and their magnitude
responses exhibit a course similar to that of the analysis filters plotted in Figure 4.4
(which cannot be achieved by the closed-form PR designs discussed in Sec. 4.2.4). The
evaluation of the peak aliasing distortions Dpeak(Ω) according to Eq. (2.12) shows a
negligible amount of aliasing distortions. The plots of magnitude response and phase
error for the overall transfer function T0(ej Ω) show insignificant magnitude and phase
distortions. The BSF for this design is not plotted as it is like that of Figure 2.6-b.

18In practice, the LS error solution of Eq. (4.97) is calculated, e.g., by QR decomposition,

but not a direct calculation of the pseudo-inverse to avoid numerical problems, cf., [Gv96].
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Figure 4.23: Design of an allpass transformed DFT AS FB according to
Figure 4.3 and Figure 4.7 with parameters L = M = 16, R = M/4 = 4,
a(0) = −j0.5, a(1) = j0.5 by the unconstrained PR design of Eq. (4.98) with
sub-filter length Lq = 60 and signal delay Do = 52:
(a) magnitude responses of the synthesis filters
(b) peak aliasing distortions
(c) magnitude response of the overall transfer function
(d) phase error of the overall transfer function.

It should be noted that the proposed numerical PR design strives towards perfect
reconstruction, which can inherently only be achieved with a certain numerical accuracy.
This accuracy depends on the chosen design parameters as well as the algorithm and
software to solve the optimization problem.

4.3.6 Constrained PR Design

The numerical designs developed so far are based on the synthesis filter-bank of
Figure 4.7. The original approach of designing the L synthesis sub-filters as phase
equalizers is successively extended by incorporating additional design constraints for
aliasing cancellation, sparseness etc. The demand for synthesis filters with a bandpass
characteristic is incorporated implicitly so far, but not as an explicit design target.
Therefore, an alternative design approach is now devised, which strives for perfect
reconstruction as the previous one, but with the explicit design constraint for synthesis
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Figure 4.24: FIR synthesis filter-bank for the constrained PR design. The
corresponding analysis filter-bank is given by Figure 4.3.

filters with a pronounced bandpass characteristic. The proposed synthesis filter-bank
is shown in Figure 4.24. It is obtained form the filter-bank of Figure 4.7 for a synthesis
prototype filter with

g(l) = 1 for l ∈ { 0, 1, . . . , Ls } and Ls = M (4.100)

where the considered allpass transformed DFT analysis filter-bank is still given by
Figure 4.3. In contrast to the previous designs, there are not L but only M synthesis
sub-filters with system functions

Q̄l(z) =

Lq−1∑
η=0

ql(η) · z−η ∀ l ∈ { 0, 1 . . . ,M − 1 } . (4.101)

These FIR sub-filters can be implemented by means of an efficient polyphase network
according to Figure 4.11 (which is not shown in Figure 4.24 for the sake of clarity).

Inserting Eq. (4.100) and Eq. (4.101) into Eq. (4.32) yields the following matrix rep-
resentation for the system functions of the new synthesis filters

Fi(z) =

M−1∑
l=0

W
−i (l+1)
M Q̄M−1−l(z) (4.102a)

=

M−1∑
l=0

W
−i (l+1)
M

Lq−1∑
η=0

qM−1−l(η) · z−η

= vvvT
i ·DDD

T
(z) · ppp for i ∈ { 0, 1, . . . ,M − 1 } (4.102b)
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with

vvvi =
[
W−M i

M , W
−(M−1)i
M , . . . ,W−2i

M , W−i
M

]T
(4.102c)

DDD(z) = IIIM ⊗ dddLq
(z) (4.102d)

dddLq
(z) =

[
1, z−1, . . . , z−(Lq−1)

]T
(4.102e)

ppp =
[
qqqT

0 , qqq
T
1 , . . . , qqq

T
M−1

]T
(4.102f)

qqql = [ ql(0), ql(1), . . . , ql(Lq − 1) ]T for l ∈ { 0, 1, . . . ,M − 1 } . (4.102g)

The overall transfer function of Eq. (4.67) is now given by

Tν(z) =

(
1
R

R−1∑
r=0

W−r ν
R

M−1∑
i=0

H̃i

(
zW r

R

)
· vvvT

i ·DDD
T

(z)

)
︸ ︷︷ ︸

= ξξξν(z) ∈ C
1×M

·ppp (4.103a)

ν ∈ { 0, 1, . . . , R − 1 } and M = M Lq . (4.103b)

The design rule for a synthesis filter-bank to achieve perfect reconstruction is obtained
directly from Eq. (4.97):

ĀAA · ppp !
= www . (4.104)

The composition of the matrices ĀAA ∈ C
RM×M and www ∈ C

RM follows from the deriva-
tion of Sec. 4.3.5 where the synthesis filters are now given by Eq. (4.102) such that

ĀAA =

⎡⎢⎢⎢⎣
ΞΞΞR(1)

ΞΞΞR(WM)
...

ΞΞΞR

(
WM−1

M

)
⎤⎥⎥⎥⎦ with ΞΞΞR(z) =

⎡⎢⎢⎢⎣
ξξξ0(z)

ξξξ1(z)
...

ξξξR−1(z)

⎤⎥⎥⎥⎦ (4.105)

w̄ww =

⎡⎢⎢⎢⎣
111R

W−Do

M 111R

...

W
−(M−1)Do

M 111R

⎤⎥⎥⎥⎦ . (4.106)

The demand for synthesis filters with optimized bandpass characteristic is now ex-
plicitly taken into account by the additional design constraint to minimize the stopband
energy of the synthesis filters

ES =

M−1∑
i=0

∫
Ω∈IS(i)

∣∣Fi

(
ej Ω
)∣∣2 d Ω . (4.107)
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The frequency intervals for the stopbands are given by

IS(i) =

⎧⎪⎨⎪⎩
[
Ω(s)

r (i), 2π − Ω(s)
r (i)

]
for i = 0[

0, Ω(s)
l (i)

]
∪
[
Ω(s)

r (i), 2π
]

for i ∈ { 1, 2, . . . ,M − 1 } .
(4.108)

The left and right band edges are determined as follows

Ω(s)
l (i) = ϕ

[−1]
Θ

(
2π
M

i− Ωs

2

)
(4.109)

Ω(s)
r (i) = ϕ

[−1]
Θ

(
2π
M

i+
Ωs

2

)
(4.110)

with Ωs denoting the normalized stopband frequency of the original (non-warped) pro-
totype lowpass filter. The band edges are determined by the inverse function of the
allpass phase response ϕΘ(Ω) of Eq. (4.19b) in order to take the frequency warping of
the subband filters into account. For the common case of an allpass transformation of
first order, the inverse phase response reads, e.g., [Kap98]

ϕ
[−1]
a (Ω) = γ + 2 arctan

(
1− α
1 + α

tan
Ω− γ

2

)
. (4.111)

It is obvious from Eq. (4.102b) that∣∣Fi

(
ej Ω
)∣∣2 = pppH ·DDD∗(

ej Ω
)
· vvv∗

i · vvvT
i ·DDD

T(
ej Ω
)︸ ︷︷ ︸

= BBBi(Ω) ∈ C
M×M

· ppp (4.112)

such that Eq. (4.107) can be expressed by the matrix formulation

ES = pppH ·

⎛⎝M−1∑
i=0

∫
Ω∈IS(i)

BBBi(Ω) d Ω

⎞⎠ · ppp = pppH QQQS ppp . (4.113)

The matrix QQQS can be calculated by numerical integration for a finite set of fre-
quency points. It follows from Eq. (4.112) and Eq. (4.113) that this matrix is real(
QQQS ∈ R

M×M
)

and positive definite.
An additional design target is to minimize the passband error of the synthesis filters

EP =

M−1∑
i=0

∫
Ω∈IP(i)

∣∣F0(1)− Fi

(
ej Ω
)∣∣2 d Ω . (4.114)

The frequency intervals of the passbands are given by

IP(i) =

⎧⎪⎨⎪⎩
[
0, Ω(p)

r (i)
]
∪
[
2π − Ω(p)

r (i), 2π
]

for i = 0[
Ω(p)

l (i), Ω(p)
r (i)

]
for i ∈ { 1, 2, . . . ,M − 1 } .

(4.115)
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The left and right band edges are now given by

Ω(p)
l (i) = ϕ

[−1]
Θ

(
2π
M

i− Ωp

2

)
(4.116)

Ω(p)
r (i) = ϕ

[−1]
Θ

(
2π
M

i+
Ωp

2

)
(4.117)

with Ωp denoting the normalized passband frequency of the original prototype lowpass
filter. The integrand of Eq. (4.114) can be expressed by means of Eq. (4.102) as follows∣∣F0(1)− Fi

(
ej Ω
)∣∣2 =

∣∣∣111T
M ·DDDT

(1) · ppp− vvvT
i ·DDD

T(
ej Ω
)
· ppp
∣∣∣2

=
[(

111T
M − vvvT

i ·DDD
T(
ej Ω
))

ppp

]H [(
111T

M − vvvT
i ·DDD

T(
ej Ω
))

ppp

]
= pppH

(
111T

M − vvvT
i ·DDD

T(
ej Ω
))H (

111T
M − vvvT

i ·DDD
T(
ej Ω
))

︸ ︷︷ ︸
= CCCi

(
ej Ω
)
∈ C

M×M

ppp .

(4.118)

Similar to Eq. (4.113), the passband error is formulated by the matrix representation

EP = pppH ·

⎛⎝M−1∑
i=0

∫
Ω∈IP(i)

CCCi(Ω) d Ω

⎞⎠ · ppp = pppH QQQP ppp . (4.119)

As the matrix QQQS, the matrix QQQP is real and positive definite. It should be noted
that the M contributions for the passband error of Eq. (4.119) as well as the stopband
energy of Eq. (4.113) can be multiplied with individual weighting factors, cf., Eq. (D.1).
Such a weighted LS error minimization can be useful, if the bandpass or stopband
characteristic of individual synthesis filters is of different importance.

The aim to minimize stopband energy and passband error of Eq. (4.107) and
Eq. (4.114) while fulfilling the PR constraint of Eq. (4.104) can now be expressed by an
equality constrained quadratic minimization

minimize
ppp ∈ R

M
pppH RRRη ppp (4.120a)

subject to ĀAA ppp = www (4.120b)

with

RRRη = ηQQQS + (1− η)QQQP for 0 ≤ η ≤ 1 . (4.120c)

This convex optimization problem is a linearly constrained quadratic program (LCQP)
according to Eq. (D.11) since the matrix RRRη is the sum of positive definite matrices and
thus positive definite. The real factor η adjusts the trade-off between a low passband
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Figure 4.25: Design of an allpass transformed DFT AS FB according to
Figure 4.3 and Figure 4.24 with parameters La = 2M = 16, R = M/4 = 2,
a(0) = −j0.5, a(1) = j0.5 by the LCQP of Eq. (4.120) with η = 0.85,
Ωs = 1.1 2 π

M , Ωp = 0.9 2 π
M , Lq = 60 and signal delay Do = 52:

(a) magnitude responses of the synthesis filters
(b) peak aliasing distortions
(c) magnitude response of the overall transfer function
(d) phase error of the overall transfer function.

error and a low stopband energy. The mathematical program of Eq. (4.120) can be
solved, e.g., by using either the function quadprog or lsqlin of the MATLAB opti-
mization toolbox [TM09] where the later mentioned function is employed here. As for
all the previous numerical filter-bank designs, the choice

Do = Lq − 2R (4.121)

for the signal delay turns out to be favorable.
Example 4.7: The warped analysis filter-bank of Example 4.3 is considered again.

The synthesis filter-bank of Figure 4.24 is employed designed by the LCQP of Eq. (4.120)
with a trade-off factor of η = 0.85. The stopband and passband edge are given by Ωs =
1.1 2 π

M and Ωp = 0.9 2 π
M . The obtained DFT AS FB is analyzed in Figure 4.25. The

curves for the peak aliasing distortions as well as magnitude response and phase error of
the overall transfer function reveal that this filter-bank design achieves actually a perfect
signal reconstruction. The magnitude responses of the synthesis filters in Figure 4.25-a
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Figure 4.27: Magnitude responses of the synthesis lowpass filters designed by
the LCQP design of Eq. (4.120) with different trade-off factors η. The other
design parameters are listed in Figure 4.25.

exhibit a pronounced bandpass characteristic. The course of the magnitude responses
is not identical to that of the analysis filters shown in Figure 4.17-a as the bandpass
characteristic of the synthesis filters is now enforced by formulating this requirement as
an explicit design target. In contrast, the previous designs achieve implicitly a bandpass
characteristic where the magnitude responses of analysis and synthesis filters are similar
(see, e.g., Figure 4.17-a and Figure 4.17-b).

Figure 4.26 exemplifies how the constrained PR design achieves an improved stop-
band attenuation for the synthesis filters in comparison to the unconstrained PR design
of the previous section. (The results for the other synthesis filters are similar.)

The choice for the trade-off factor η plays a crucial role as demonstrated by the
two magnitude responses plotted in Figure 4.27. The value of η = 0.85 chosen for this
example results in a stopband energy of ES = 1.13 and a passband error of EP = 6.7119.
Hence, this rather high value for η avoids that the passband error is predominantly
minimized, which would result in a low stopband attenuation. However, taking a value
of η = 1 yields an insufficient passband characteristic as illustrated by Figure 4.27.
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Figure 4.28: Design of an allpass transformed DFT AS FB with analysis filter-
bank given by Figure 4.6 and synthesis filter-bank given by Figure 4.24 with
parameters La = 2M = 32, R = M/4 = 4, a = 0.4 by the LCQP of
Eq. (4.120) with η = 1, Ωs = 1.1 2 π

M , Lq = 72 and signal delay Do = 64:
(a) magnitude responses of the synthesis filters
(b) peak aliasing distortions
(c) magnitude response of the overall transfer function
(d) phase error of the overall transfer function.

The design of a synthesis filter-bank to achieve (almost) perfect reconstruction with
synthesis filters having a pronounced bandpass characteristic is especially difficult in
case of an allpass transformation of higher order and analysis prototype filters of length
La > M . Therefore, the analysis filter-bank of Example 4.3 is considered for the
design examples in this and the previous sections to demonstrate the performance of
the proposed designs. This challenging design problem has also motivated the approach
of Eq. (4.120) with its joint minimization of stopband energy and passband error (see
also Figure 4.27). If the more common allpass transformation of first order is used, it
is also possible to obtain a good bandpass characteristic by minimizing the stopband
energy only as demonstrated by the following example.

Example 4.8: A design example for an allpass transformation of first order is
provided by Figure 4.28. The allpass transformed analysis filter-bank of Figure 4.6 is
now considered where the magnitude responses of the analysis filters are plotted in
Figure 4.13. The synthesis filter-bank of Figure 4.24 is designed by the LCQP design
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of Eq. (4.120) with a trade-off factor of η = 1. Figure 4.28 demonstrates that synthesis
filters with a good passband and pronounced bandpass characteristic are obtained in
this case, even if the passband error is not minimized. The evaluation shows that a
perfect signal reconstruction is actually achieved given the limited numerical accuracy
to implement (and analyze) a filter-bank in practice. The signal distortions caused by
the limited arithmetic precision of a practical implementation, e.g., on a (fixed-point)
DSP, are usually much more dominant.

The constrained PR design presented in this section can be further extended by
performing an L1-norm regularization to seek for a sparse design or by permitting a
bounded LS error for the PR constraint to improve the bandpass characteristic. These
design objectives can be incorporated in a similar manner as for the previous designs.
However, it has to be taken into account that the LCQP of Eq. (4.120) strives towards
the trivial solution (zero-vector), if the PR constraint of Eq. (4.120b) ceases to apply. In
contrast, solving Eq. (4.83) without the constraint of Eq. (4.83b) states a phase equalizer
design and yields a feasible solution, but not a zero-vector.

Finally, it should be noted that the devised designs cannot only be applied to the
considered allpass transformed DFT filter-banks, but also to filter-banks with other
transformation kernels such as the DCT.

4.4 Conclusions

The allpass transformation is a simple and flexible method to convert a uniform filter-
bank into a non-uniform one. This transformation causes a frequency warping where
a frequency interval of 2π is mapped bijectively onto a frequency interval of 2π on the
warped frequency scale. Such a unique mapping is essential for a filter-bank design to
avoid an undesirable comb-filter effect and more difficult to achieve by non-recursive
frequency warping techniques such as [OMM76, CR76, AR79]. Another alternative to
the allpass transformation is to replace the DFT transformation kernel of a filter-bank
by that of a WDFT [MM01]. However, this yields a shift of the center frequencies
where the bandwidths of the subband filters remain the same, which causes ‘spectral
gaps’. Such spectral gaps are avoided by allpass transformed filter-banks, which possess
a non-uniform time and frequency resolution in contrast to a WDFT filter-bank.

Different concepts to design the synthesis filter-bank for an allpass transformed
analysis filter-bank are elaborated in this chapter. They have individual pros and cons
such that they do not exclude but complement each other.

One option is to design the synthesis filter-bank by means of analytical closed-form
expressions. The linear phase distortions due to the allpass transformed analysis filter-
bank can be made arbitrarily small by a phase equalization at the synthesis side. A
closed-form FIR phase equalizer design for this purpose is presented in [GK02, Gal02],
which yields an allpass-transformed AS FB with near-perfect reconstruction. A draw-
back of this design is that it results in a filter-bank with a high signal delay. Therefore,
an alternative synthesis filter-bank with LS FIR phase equalizers is proposed, which
can achieve a similar reconstruction error as the approach of [Gal02], but with a sig-
nificantly lower signal delay and lower complexity. It is proven that the magnitude
responses of the synthesis filters become equal to those of the analysis filters in case of
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a perfect phase equalization. Hence, a good phase equalization ensures inherently syn-
thesis filters with a pronounced bandpass characteristic. In addition, it is shown that
all the proposed FIR synthesis filter-banks can be efficiently implemented by means of
a polyphase network (PPN).

The closed-form designs by means of phase equalization have different benefits in
common: The coefficients of the synthesis filter-bank are determined by simple ana-
lytical expressions whose evaluation poses no numerical difficulties even for a high num-
ber of subbands. In addition, the trade-off between reconstruction error and signal delay
can be controlled in a simple and flexible manner. A drawback of these closed-form de-
signs for the synthesis filter-bank is that the incorporation of further design objectives
as, for example, a complete aliasing cancellation is very difficult. This problem is tack-
led by a new numerical design framework. It is based on a novel matrix representation
for allpass transformed AS FBs from which different designs are deduced.

A generalization of the closed-form synthesis filter-bank design with LS FIR phase
equalizers is devised. The filter coefficients are also determined by the requirement for
minimized phase distortions, but with the additional constraint for complete aliasing
cancellation. The evaluation of this design reveals that this constraint can be fulfilled
with a very high numerical accuracy such that a perfect aliasing cancellation can be
actually achieved. A distinctive advantage of this numerical design method is that
additional design constraints can be easily incorporated. One generalization is to al-
low a limited (least-squares) error for the aliasing distortions in exchange for a lower
amount of linear distortions. Another extension is to aim for a sparse solution. This
approach strives for a low number of non-zero coefficients in order to reduce the com-
putational complexity of the synthesis filter-bank. However, the constraint for a sparse
design leads to a non-convex optimization problem, which is cumbersome to solve. This
problem is circumvented by means of an L1-norm regularization. In contrast to a sim-
ple zero-forcing of the smallest filter coefficients, the devised sparse design can fulfill
the additional constraint for complete aliasing cancellation with a much higher accu-
racy. Besides, the trade-off between sparseness and reconstruction error can be simply
controlled by a single penalty factor.

An unconstrained LS error design which strives for perfect reconstruction is intro-
duced. This design has several advantages in comparison to the closed-form PR designs
of [Kap98, SM02a, FK03]: Firstly, the synthesis filter-bank is inherently causal and sta-
ble, even in case of an allpass transformation of higher order. Secondly, the numerical
design provides also a solution for a PPN filter-bank where the prototype filter degree
exceeds the number of subbands. Finally, the new design provides synthesis filters with
a bandpass characteristic in contrast to the closed-form PR designs.

An advantage of the new unconstrained PR design is its simplicity as the filter
coefficients are merely determined by a set of linear equations. However, this design
does not incorporate explicitly the demand for synthesis filters with a high frequency
selectivity. Therefore, an alternative, constrained PR design is developed. Passband
error and stopband energy of the synthesis filters are minimized with the requirement
for perfect signal reconstruction. It turns out that the PR constraint can be fulfilled
with a very high numerical accuracy. Hence, a perfect signal reconstruction can be
achieved effectively with synthesis filters having a pronounced bandpass characteristic.
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A common property of all the proposed numerical designs is that they are stated
as a semi-definite program (SDP) or special cases thereof. Such convex optimization
problems provide a global optimum and can be solved rather efficiently, e.g., [BV04].

The proposed designs differ substantially from the numerical designs presented in
[dHGCN02, VN03, WdDC03]. These designs aim for a reduction of the signal recon-
struction error by a prototype filter design for an allpass transformed AS FB according
to Figure 4.6 (without phase equalization). In contrast, the proposed designs consider
the synthesis filter-bank of Figure 4.7 and Figure 4.24, respectively. As a result, the
devised numerical designs can achieve a significantly lower signal reconstruction error
than approaches based on a prototype filter design at the expense of a moderately in-
creased computational complexity and signal delay. Thus, these two different numerical
design approaches for allpass transformed filter-banks do not preclude but supplement
each other.

The devised numerical design approaches for allpass-transformed filter-banks pave
the way for further extensions and applications: One possibility is to strive for a ro-
bust design which considers a possible quantization of its filter coefficients, cf., [BV04,
BTN98, GL97]. The incorporation of this design constraint leads here to a tractable
problem as the proposed designs are all based on a convex optimization [ALM10].

Another interesting aspect for further investigations is to account explicitly for the
effects of (time-varying) spectral gain factors within the design process as done, e.g., in
[AGK09] for uniform filter-banks.



Chapter 5

The Filter-Bank Equalizer

T
he signal delay is an important property of a filter-bank and plays a crucial role
for various applications. One example are filter-banks used for subband coding

or noise reduction in cell phones where a low signal delay is needed for a pleasant
communication. Another prominent example are filter-banks employed for signal en-
hancement in digital hearing aids. A low overall processing delay is required to avoid
a disturbing comb filter effect, cf., [AT00, SM02b].1 To prevent this, the algorithmic
signal delay of the employed filter-bank must be considerably lower than the tolerable
overall processing delay, which lies within a range of 5–15 ms.

The difficulty in the design of low delay filter-banks is to balance the trade-off
between the conflicting goals of a high spectral resolution on the one hand, and a low
signal delay on the other hand. Various approaches have been proposed to tackle this
problem.

A low delay analysis-synthesis system for noise reduction is proposed, for example,
in [MM07]. The analysis window can be changed during operation without violating
the PR constraint. The length of the analysis window is thereby adapted to the ‘span
of stationarity’ of the (noisy) speech signal. This approach has a low complexity, but is
only applicable to the uniform DFT filter-bank where the length of the analysis window
equals the number of subbands.

The design of filter-banks with low signal delay becomes even more demanding with
regard to non-uniform filter-banks, cf., [HV89, AV99]. A common approach to design
such a filter-bank is to employ a tree-structured filter-bank which, however, results in
a high signal delay (as explained in App. C.2.2). One approach to reduce the delay
of such a filter-bank is to impose a delay constraint for the design of the underlying
two-channel filter-bank, e.g., [NBS94].

Another approach is to exploit the lifting scheme. This idea is originally proposed for
the construction of ‘second generation wavelets’ [Swe96, DS98] and enables the design
of wavelet as well as QMF-banks with a low delay (as exemplified in Figure 3.5). The
application of the lifting scheme to design (uniform) cosine modulated AS FBs with low
delay is proposed in [KM97, KMS01]. In [GK02, Gal02], the lifting scheme is applied
to allpass transformed AS FBs. The higher aliasing distortions due to the frequency
warping are reduced by improving the stopband attenuation of the subband filters.

1A comb filter effect can occur if the user of a hearing aid is talking such that the

processed speech signal can interfere with the original speech signal, which reaches the

cochlea with minimal delay via bone conduction or through the hearing aid vent. This is

especially problematic for hearing aids with a so-called open-fitting.
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Figure 5.1: Filter-bank summation method (FBSM) with time-varying spectral
gain factors adapted at decimated sample instants κ.

The lifting scheme is used to increase the prototype filter degree while constraining the
signal delay of the filter-bank. However, the adding of further (zero-delay) lifting steps
shows no improvement after some stages. Therefore, only a limited enhancement of
the stopband attenuation and the associated aliasing cancellation can be achieved with
constrained delay.

There are other ways to derive a non-uniform low delay filter-bank from a uniform
filter-bank. One approach, for example, is to combine an appropriate number of cosine
modulated subband filters termed as ‘feasible partitioning’ [LNT97, DMFB07]. Another
method is to use two different uniform filter-banks for the upper and lower frequency
bands which are linked by a ‘transition filter’, e.g., [CJ03, DBSN06]. In contrast to
warped filter-banks, a good approximation of the Bark scale is more difficult to achieve
by this approach. The subband filters of these filter-banks need to have a relatively high
filter degree to achieve a sufficient stopband attenuation in order to avoid noticeable
aliasing distortions.

Many designs for uniform and non-uniform AS FBs allow to impose a constraint
on the signal delay, e.g., [NBS94, KM98, SK00, DBSN06, DMFB07]. However, it is
inherently problematic to achieve simultaneously a high stopband attenuation for the
subband filters as well as a low signal delay. As a consequence, there is always a trade-
off between a low signal delay on the one hand and low aliasing distortions on the other
hand, cf., [NBS94, DMFB07]. This motivates to consider a non-subsampled AS FB for
low delay processing as the aliasing compensation by means of a synthesis filter-bank
ceases to apply.

If a (uniform) DFT AS FB performs no subsampling (R = 1), the signal reconstruc-
tion can be simply performed by summing up the subband signals xi(k) such that no
dedicated synthesis filters are needed, i.e., Gi(z) ≡ 1. This special case of an AS FB is
referred to as filter-bank summation method (FBSM) and depicted in Figure 5.1.

The FBSM can also be derived from the filter-bank interpretation of the short-time
DFT, e.g., [CR83]. Obviously, the FBSM ensures an alias-free signal reconstruction and
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has a much lower signal delay than a corresponding AS FB with subsampling. How-
ever, a severe drawback is its very high computational complexity as no subsampling is
performed. Therefore, the AS FB is considered to be more suitable than the FBSM for
practical applications such as speech enhancement in [Eng98, Chap. 4].2 Moreover, the
computational complexity of the FBSM is significantly increased, if an allpass trans-
formation is applied to achieve a non-uniform frequency resolution. A straightforward
approach to reduce the computational complexity is to implement the FBSM by a PPN
according to Sec. 2.3. However, this does not solve the problem satisfactorily as all
operations (including the FFT) have still to be executed at each sample instant.

In the following, the FBSM is considered to derive a uniform and non-uniform low
delay filter-bank with a much lower algorithmic complexity. The devised system is
denoted as filter-bank equalizer (FBE) and originally presented in [LV05a, Var06]. This
concept is further improved and generalized in [LV07b, LV08a], which form the basis
for the following treatment.

5.1 The Uniform Filter-Bank Equalizer

The FBSM of Figure 5.1 is considered. The real input signal x(k) is split into subband
signals xi(k) by means of M subband filters. In contrast to the AS FB of Figure 2.1,
these subband signals are not downsampled. Therefore, such a filter-bank is more suit-
able for adaptive subband filtering than for subband coding where critically subsampled
AS FBs are preferred. The adaptation of the time-varying spectral gain factors W (i, κ)
can be done by the same algorithms as for the AS FB, e.g., to perform speech enhance-
ment. This adaptation is usually based on the subband signals xi(k) and executed at
intervals of R sample instants. The discrete time index κ is given by3

κ = �k/R� ·R ; R ∈ N . (5.1)

The impulse response hi(k) of the i-th analysis filter is obtained by modulation of a
prototype lowpass filter with impulse response h(k) of length L according to

hi(k) =

{
h(k) · Φ(i, k) for i ∈ { 0, 1, . . . ,M − 1 } ; k ∈ { 0, 1, . . . , L− 1 }
0 otherwise .

(5.2)

For the following treatment, it is beneficial to consider a broader class of modulated
filter-banks besides the DFT filter-bank. The general modulation sequence or transfor-
mation kernel of the filter-bank is denoted by Φ(i, k) and exhibits the periodicity

Φ(i, k +mM) = Φ(i, k) · �(m); m ∈ Z . (5.3)

The sequence �(m) depends on the chosen transform as shown later in Sec. 5.1.1. For
many transforms including the DFT, it is given by �(m) = 1 ∀m ∈ Z.

2For the sake of clarity and simplicity, the term AS FB refers henceforth exclusively to

a filter-bank with subsampling excluding the special case of the FBSM.
3This definition is more suitable for the following treatment than the (more common)

convention k′ = k R according to Eq. (2.2).
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The input-output relation for the FBSM of Figure 5.1 can now be written as follows

y(k) =

M−1∑
i=0

W (i, κ) · xi(k) (5.4)

=

M−1∑
i=0

W (i, κ)

L−1∑
l=0

x(k − l) · hi(l)

=

L−1∑
l=0

x(k − l) · h(l)

M−1∑
i=0

W (i, κ) · Φ(i, l) (5.5)

for the modulated bandpass filters of Eq. (5.2). The second summation is the spectral
transform of the time-varying gain factors W (i, κ), which yields the coefficients

w(l, κ) =

M−1∑
i=0

W (i, κ) · Φ(i, l); l ∈ { 0, 1, . . . , L− 1 } (5.6)

= ST{W (i, κ) } . (5.7)

These L time-domain weighting factors have the periodicity

w(l +mM,κ) = w(l, κ) · �(m) (5.8)

due to Eq. (5.3) and Eq. (5.6). The input-output relation finally reads

y(k) =

L−1∑
l=0

x(k − l) · h(l) · w(l, κ) (5.9)

=

L−1∑
l=0

x(k − l) · hs(l, κ) . (5.10)

The obtained filter-bank structure is a single time-domain filter whose coefficients

hs(l, κ) = h(l) · w(l, κ); l ∈ { 0, 1, . . . , L− 1 } (5.11)

are the product of the finite impulse response of the prototype lowpass filter h(l) and the
time-varying weighting factors w(l, κ) adapted in the short-term spectral-domain.4 The
derived efficient implementation of the FBSM (which resembles a filter-bank used as
equalizer) is termed as filter-bank equalizer (FBE) [Var06, LV05a]. A sketch of this filter-
bank structure is given in Figure 5.2. This scheme has a significantly lower algorithmic
complexity than the equivalent FBSM of Figure 5.1 as mainly only a single time-domain
filter has to be operated at a non-decimated sampling rate. Moreover, a non-uniform
(warped) frequency resolution can be achieved by means of the allpass transformation

4For the sake of clarity, the index l instead of the discrete time index k is used to indicate

that L filter coefficients are considered.
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Figure 5.2: Filter-bank equalizer (FBE) for adaptive subband filtering.

with lower efforts as for an AS FB (with subsampling) as shown later in Sec. 5.2. A
similar approach to that of the warped FBE has been proposed independently in [KA05]
for dynamic-range compression in hearing aids. The concept of expressing a spectral
weighting as time-domain filtering is of course not novel, e.g., [CR83]. For acoustic
echo cancellation and active noise control applications, it can be beneficial to perform
the filtering in the time-domain while the coefficients are adapted in the (uniform)
frequency-domain, e.g., [MT95]. However, the following treatment will show that the
concept of the FBE is a much more comprehensive and versatile approach to perform
adaptive filtering by means of a uniform and non-uniform low delay filter-bank.

5.1.1 Prototype Filter Design

The objective of the prototype lowpass filter design is to achieve perfect reconstruction
according to Eq. (2.13a). The FBE meets this condition if the following two require-
ments are fulfilled [LV05a]: Firstly, the general modulation sequence of Eq. (5.2) must
have the property

M−1∑
i=0

Φ(i, k) =

{
�(m) · C �= 0 for k = k0 +mM

0 for k �= k0 +mM
with k, k0,m ∈ Z . (5.12)

Secondly, a generalized M th band filter with impulse response

h(k) =

⎧⎪⎨⎪⎩
1

�(mc) · C for k = k0 +mc M ; mc, k0 ∈ Z

0 for k = k0 +mM ; m ∈ Z\{mc}
arbitrary for k �= k0 +mM ; m ∈ Z

(5.13)
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is needed as prototype lowpass filter. Such a filter has equidistant zeros at intervals of
M samples and a summation of its modulated versions leads to (cf., [Vai93])

M−1∑
i=0

H
(
zW i

M

)
·W ik0

M =
M

C �(mc)
z−(k0+mc M) . (5.14)

The requirements of Eq. (5.12) and Eq. (5.13) can be easily met to achieve perfect
reconstruction according to Eq. (2.13) with a scaling of cs = 1 and a delay of

Do = k0 +mc M (5.15)

sample instants. A suitable Mth band filter according to Eq. (5.13) is given by

h(k) =
1

C �(mc)

sin
(

π
M (k −Do)

)
π
M (k −Do)

winL(k) (5.16)

with the general window sequence defined by

winL(k) =

{
arbitrary for 0 ≤ k ≤ L− 1

0 otherwise .
(5.17)

A rectangular window achieves an LS error approximation, but other window sequences
are often preferred to influence properties of the filter such as transition bandwidth or
sidelobe attenuation, e.g., [OSB99]. Commonly used window sequences are the Kaiser
window or the parametric window sequence

winL,υ(k) =

{
υ + (υ − 1) cos

(
2 π

L−1 k
)

for 0 ≤ k ≤ L− 1; 0.5 ≤ υ ≤ 1

0 otherwise .
(5.18)

The rectangular window (υ = 1), the Hann window (υ = 0.5) and the Hamming window
(υ = 0.54) are included as special cases [PM96].

The condition of Eq. (5.12) is met by various transformations such as the Walsh and
Hadamard transform (cf., [Bea75]) as well as the generalized discrete Fourier transform
(GDFT). The Walsh and Hadamard transform are employed, among others, for image
processing, cf., [GW77]. The GDFT FBE is of interest for speech and audio processing,
which is treated in Sec. 6.2. Thus, the GDFT is considered primarily in the following
without loss of generality. The transformation kernel of the GDFT reads

ΦGDFT(i, k) = exp
{
−j 2π

M
(i+ i0) (k − k0)

}
k, k0 ∈ Z ; i ∈ { 0, 1, . . . ,M − 1 } ; i0 ∈ { 0, 1/2 } (5.19)

such that Eq. (5.3) applies with �(m) = (−1)2i0 m. The DFT is included as special case
for k0 = i0 = 0. For i0 = 1/2, a GDFT filter-bank with oddly-stacked frequency bands
is obtained, cf., [CR83]. A value of i0 = 0 leads to the evenly-stacked GDFT where the
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Figure 5.3: Schematic sketch of the analysis filters for the GDFT FBE with an
even number of M = 2Nm = 8 subbands:
(a) evenly-stacked GDFT (i0 = 0)
(b) oddly-stacked GDFT (i0 = 1/2).
The subband numbers in case of an IGDFT are enclosed in brackets.

above equations apply with �(m) ≡ 1 and C = M . The analysis filters of these two
GDFT filter-banks are sketched in Figure 5.3. It can be seen that the analysis filters of
the oddly-stacked filter-bank expose a frequency shift of π/M . The use of the inverse
generalized discrete Fourier transform (IGDFT) instead of the GDFT yields merely a
different mapping as indicated by the subband numbers enclosed in brackets. In the
following, the evenly-stacked GDFT is considered as transformation kernel and it is
assumed that Eq. (5.13) applies with mc = 0 if not mentioned otherwise.

5.1.2 Relation between GDFT FBE and GDCT FBE

For applications such as speech enhancement, the time-varying spectral gain factors
W (i, κ) are often calculated by means of a spectral speech estimator, e.g., [EM84,
MCA99, LV05d]. For a DFT-based adaptation, the gain factors have the property

ε ≤W (i, κ) ≤ 1 for W (i, κ) ∈ R and 0 ≤ ε < 1 (5.20)
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and possess the symmetry

W (i, κ) = W (M − i, κ); i ∈ { 0, 1, . . . ,M − 1 } ; M even (5.21)

as the input sequence x(k) is real (see also Figure 5.3-a). The limitation of the gain
factors by a lower, possibly time-varying threshold ε is favorable to avoid unnatural
sounding artifacts such as musical noise, cf., [VM06, Chap. 11]. The (I)DFT of the real
gain factors of Eq. (5.20) yields time-domain weighting factors w(l, κ) corresponding to
a (non-causal) zero-phase filter. A causal filter with linear phase response is obtained
for the considered evenly-stacked GDFT of Eq. (5.19) if k0 = (L− 1)/2 ∈ N so that the
coefficients exhibit the symmetry

w(l, κ) = w(L− 1− l, κ) ∀ l ∈ { 0, 1, . . . , L− 1 } . (5.22)

If the used prototype filter has the same symmetry

h(l) = h(L− 1− l) , (5.23)

the time-varying FIR filter of Eq. (5.11) exhibits the property

hs(l, κ) = hs(L− 1− l, κ) ∀ l ∈ { 0, 1, . . . , L− 1 } (5.24)

which implies a linear phase response. The GDFT of the gain factors W (i, κ) can
be computed by the FFT with a subsequent cyclic shift of the obtained time-domain
weighting factors by k0 samples. For noise reduction, a DFT analysis filter-bank instead
of a GDFT analysis filter-bank can be used for the FBE of Figure 5.2, because the
magnitude of the complex subband signals is usually only needed for the spectral gain
calculation in this case.

For the evenly-stacked GDFT, the weighting factors of Eq. (5.6) are given by

w(l, κ) =

M−1∑
i=0

W (i, κ) · e−j 2 π
M

i(l−k0) ; l ∈ { 0, 1, . . . , L− 1 } . (5.25)

The substitution M = 2Nm and exploiting the symmetry of Eq. (5.21) allows the
following conversion

w(l, κ) =

2Nm−1∑
i=0

W (i, κ) · e−j 2 π
2Nm

i(l−k0)

= W (0, κ) +

Nm−1∑
i=1

W (i, κ) · e−j π

Nm
i(l−k0) +W (Nm, κ) · (−1)l−k0

+

Nm−1∑
i=1

W (2Nm − i, κ) · e−j π
Nm

(2Nm−i)(l−k0)

=

Nm∑
i=0

W (i, κ) · φ(i) · cos
(

π

Nm
i (l − k0)

)
(5.26a)
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with

φ(i) =

{
1 for i ∈ {0, Nm}
2 for i ∈ {1, 2, . . . , Nm − 1} .

(5.26b)

Eq. (5.26) represents an FBE with Nm + 1 channels and the evenly-stacked generalized
discrete cosine transform (GDCT) as modulation sequence

Φ(I)
GDCT(i, k) = φ(i) · cos

(
π

Nm
i (k − k0)

)
; i ∈ { 0, 1, . . . , Nm } ; k, k0 ∈ Z .

(5.27)

For this transformation kernel, the condition of Eq. (5.12) is fulfilled with M = Nm + 1
and C = 2Nm. Except for a normalization factor, the so-called DCT-I is obtained
from Eq. (5.27) for k0 = 0, cf., [RY90]. For the oddly-stacked GDFT FBE (i0 = 1/2),
a similar derivation leads to the oddly-stacked GDCT as shown in App. B.4.

The relation between GDCT FBE and GDFT FBE is derived so far without con-
sidering the specific process of the spectral gain calculation. For noise reduction, the
spectral gain factors are usually calculated as (linear or non-linear) functions of the
squared magnitude of the subband signals (spectral coefficients), cf., [BMC05]. This
can be expressed by the notation

W (i, κ) = f
(
|xi(κ)|2

)
; i ∈ { 0, 1, . . . , Nm } . (5.28)

Only Nm + 1 gain factors need to be calculated due to the symmetry of Eq. (5.21).
The bar indicates that an averaged value (short-term expectation) is mostly taken
inherently. Examples are the calculation of the a priori signal-to-noise ratio (SNR) by
the decision-directed approach [EM84] or the estimation of the noise power spectral
density (PSD) by recursively smoothed periodograms [Mar01]. For the (G)DFT, the
subband signals are complex such that

W (i, κ) = f

(
�{xi(κ)}2 + �{xi(κ)}2

)
. (5.29)

It can be assumed that the real and imaginary part are uncorrelated and that both
have equal variances and equal probability density functions, e.g., [Lot04, BMC05].
Therefore, almost the same gain factors are obtained by considering the real part of the
subband signals only

W (i, κ) ≈ f

(
2�{xi(κ)}2

)
(5.30)

if a sufficient averaging is performed. In this case, the gain factors calculated by complex
DFT values are very similar to those computed by real DCT values and the replacement
of the GDFT of Eq. (5.19) by the GDCT of Eq. (5.27) causes no noticeable differences
for the speech enhanced by the FBE.5

5In [Eng98], a different comparison between DFT AS FB and DCT-II AS FB reveals a

slightly lower noise suppression for the DCT filter-bank.
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Figure 5.4: Implementations of a time-varying FIR filter with filter length L:
(a) direct form
(b) transposed direct form.

5.1.3 Realization for Different Filter Structures

The choice of the filter structure plays an important role for digital filter implementa-
tions with finite precision arithmetic as well as for time-varying filters. Here, only the
direct forms of a filter are considered as they do not require an involved conversion of
the time-varying filter coefficients hs(l, κ) such as the parallel form or the cascade form,
cf., [OSB99].

The realization of an FIR filter by means of the direct form and transposed direct
form is shown in Figure 5.4. The input-output relations for these two filter forms can
be stated as follows

ydf(k) =

L−1∑
l=0

x(k − l) · hs(l, κ) (5.31)

ytdf(k) =

L−1∑
l=0

x(k − l) · hs(l, κ− l) . (5.32)

Obviously, the derived FBE according to Eq. (5.10) uses a time-domain filter in the
direct form as given by Eq. (5.31).

The input-output relation for the transposed direct form is obtained by inserting
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Figure 5.5: Filter-bank summation method (FBSM) corresponding to the filter-
bank equalizer (FBE) with time-domain filter in transposed direct form.

Eq. (5.11) into Eq. (5.32) so that

ytdf(k) =

L−1∑
l=0

x(k − l) · h(l) · w(l, κ− l)

=

L−1∑
l=0

x(k − l) · h(l)

M−1∑
i=0

W (i, κ− l) · Φ(i, l)

=

M−1∑
i=0

L−1∑
l=0

x(k − l) ·W (i, κ− l) · hi(l) (5.33)

due to Eq. (5.6) and Eq. (5.2). The derived relation for the transposed direct form
corresponds to the FBSM shown in Figure 5.5. An important difference to the FBSM
of Figure 5.1 is that the spectral gain factors are now applied before the subband filters.
Therefore, additional delay elements are now needed to account for the signal delay Da

of analysis filter-bank and gain calculation. These delay elements might be omitted for
moderately time-varying (smoothed) gain factors to avoid an additional signal delay.

Switching the coefficients of a digital filter during operation leads to transients,
which can cause ‘filter-ringing’ effects.6 These effects might be perceived by percep-
tually annoying artifacts. The application to noise reduction revealed that the FBE

6The term ‘filter-ringing’ is sometimes used with a slightly different meaning in the

context of speech coding.
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with time-domain filter in transposed direct form reduces these artifacts. This can
be explained by comparing the equivalent FBSMs of Figure 5.1 and Figure 5.5: For
the transposed direct form, the transients caused by the switching gain factors are
smoothed by the following subband filters, which is not the case for the direct form
implementation.

An alternative method to smooth the FIR filter coefficients independently of the
filter form is to perform a kind of ‘cross-fading’ according to

h̄s(l, k) =
(
1− cf (k)

)
· hs(l, κ−R) + cf (k) · hs(l, κ) (5.34a)

cf (k) =
k − κ
R

(5.34b)

with l ∈ { 0, 1, . . . , L−1 } and κ defined by Eq. (5.1). An existing linear-phase property
is maintained. The proposed cross-fading method is very effective to avoid audible
filter-ringing artifacts and especially useful if the filter in direct form is used.

5.1.4 Polyphase Network Implementation

An efficient polyphase network (PPN) implementation of the FBE is now developed,
which eases the utilization of prototype filters with a long or even infinite impulse
response. This can be exploited, e.g., to improve the spectral selectivity of the subband
filters and to reduce the so-called cross-talk between adjacent frequency bands.

The FBE is a time-varying system. It can be described by the z-transform of the
frozen-time impulse response, which yields the so-called frozen-time system function
[LA84]. The direct form time-domain filter of Eq. (5.11) at sample instant κ has the
frozen-time system function

Hs(z, κ) =

L−1∑
l=0

w(l, κ) · h(l) · z−l . (5.35)

This system function7 can be expressed by means of the type 1 polyphase components
of Eq. (2.35b) as follows

Hs(z, κ) =

M−1∑
λ=0

w(λ, κ)

lM −1∑
m=0

h(λ+mM) · z−(λ+mM) · �(m)

=

M−1∑
λ=0

w(λ, κ) ·H(M)
0,λ

(
zM
)
· z−λ if �(m) ≡ 1 (5.36)

with lM defined by Eq. (2.36). The subband signals xi(k) of Eq. (5.4) read

xi(k) =

L−1∑
l=0

x(k − l) · h(l) · Φ(i, l); i ∈ { 0, 1, . . . ,M − 1 } . (5.37)

7For the sake of brevity, the term system function refers either to the frozen-time system

function or the conventional system function dependent on the context.



5.1 The Uniform Filter-Bank Equalizer 125

down-
sampling

spectral gain
calculation

z−1

z−1

x(k)
H

(M)
0,0

(
zM
)

H
(M)
0,1

(
zM
)

H
(M)
0,M−1

(
zM
)

w(0, κ)

w(1, κ)

w(M − 1, κ)

ydf(k)

GDFT GDFT

xi(κ) W (i, κ)

w(l, κ)

Figure 5.6: Polyphase network (PPN) implementation of the GDFT FBE in
direct form.

The z-transform leads to

Xi(z) = X(z)

L−1∑
l=0

h(l) · z−l · Φ(i, l) . (5.38)

Applying Eq. (2.35b) and Eq. (5.3) with �(m) ≡ 1 results in

Xi(z) = X(z)

M−1∑
λ=0

lM −1∑
m=0

h(λ+mM) · z−(λ+m M) · Φ(i, λ)

= X(z)

M−1∑
λ=0

z−λ ·H(M)
0,λ

(
zM
)
· Φ(i, λ) . (5.39)

The derived PPN implementation of the FBE in direct form according to Eq. (5.36) and
Eq. (5.39) is illustrated in Figure 5.6. In contrast to the FBE realization of Figure 5.2,
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time-domain filtering and calculation of the subband signals is partly done by the same
network. The PPN realization for the oddly-stacked GDFT FBE can be derived in
a similar manner, cf., [LV05a]. The same applies for an implementation with type 2
polyphase components.

The transposed direct form of a filter is derived from the direct form representation
by transposition of its signal flow graph [OSB99]: Branch nodes and summations are
interchanged as well as system input and output. All signal directions are reversed. The
obtained PPN implementation of the FBE for the transposed direct form is shown in
Figure 5.7. Delay elements z−Da might be inserted in each branch of the time-domain
filter to account for the execution time to calculate the time-domain weighting fac-
tors. These weighting factors are calculated by a separate network similar to that of
Figure 5.6, but with the difference that the downsampling is performed directly after
the delay elements. A comparison of Figure 5.6 and Figure 5.7 shows that the PPN real-
ization for the transposed direct form requires a slightly higher algorithmic complexity
than the direct form realization, which is discussed in Sec. 5.3 in more detail.

As mentioned before, a PPN decomposition can be performed for FIR filters
[BBC76] as well as for IIR filters [Var79]. One option to design an IIR Mth band filter
is to employ allpass polyphase filters as described in Sec. 3.2.1. Hence, the developed
PPN realization of the FBE enables also a realization of Eq. (5.9) for L being infinite,
i.e., a recursive prototype filter.

5.2 The Allpass Transformed Filter-Bank Equalizer

The application of an allpass transformation of first order to the subband filters of
Eq. (5.2) yields the warped frequency responses

Hi

(
ej ϕa(Ω)

)
=

L−1∑
l=0

h(l) · Φ(i, l) · e−j lϕa(Ω) (5.40)

= H̃i

(
ej Ω
)

; i ∈ { 0, 1, . . . ,M − 1 } . (5.41)

The effect of this frequency warping on the frequency characteristic of the subband
filters is discussed in Sec. 4.1.1. Figure 5.8 provides a block diagram of the obtained
allpass transformed FBE. This warped FBE can be implemented efficiently by the
PPN structures derived in Sec. 5.1.4 with all delay elements being substituted by allpass
filters.

The uniform FBE with perfect reconstruction fulfills Eq. (2.13a) with cs = 1, which
can be expressed in the frequency-domain by the relation

X̂
(
ej Ω
)

= X
(
ej Ω
)
· e−j Do Ω . (5.42)

For the allpass transformed FBE, this relation turns into

̂̃
X
(
ej Ω
)

= X
(
ej Ω
)
· e−j Do ϕa(Ω) . (5.43)
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Figure 5.7: PPN implementation of the GDFT FBE in transposed direct form:
(a) calculation of time-domain weighting factors
(b) time-domain filter.

Hence, the linear phase distortions due to the allpass transformation can be made arbi-
trarily small by a phase equalizer of sufficient degree. This equalizer must be designed
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Figure 5.8: Allpass transformed FBE with phase equalizer.

for an allpass chain of length Lac = Do as discussed in Sec. 3.3. The filtering of the
output signal ỹ(k) by a phase equalizer as depicted Figure 5.8 is similar to the approach
of Figure 4.6 for a warped AS FB. However, a phase equalizer with a lower filter degree
N can be used for the FBE due to its lower signal delay Do in comparison to a corres-
ponding warped AS FB with subsampling. Besides, the described phase compensation
is not affected by time-varying filter coefficients, if the symmetry of Eq. (5.24) holds:
For the warped FBE with direct form filter, the (frozen-time) frequency response reads

H̃s

(
ej Ω, κ

)
=

L−1∑
l=0

hs(l, κ) · e−j l ϕa(Ω) . (5.44)

If the real filter coefficients exhibit the symmetry of Eq. (5.24), it can be shown that
the system function of Eq. (5.44) can be expressed by

H̃s

(
ej Ω, κ

)
= e−j L−1

2
ϕa(Ω)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

L−1

2∑
l=0

2Al,κ(Ω)− hs

(
L−1

2 , κ
)

if L is odd

L
2∑

l=0

2Al,κ(Ω) if L is even

(5.45a)

with

Al,κ(Ω) = hs(l, κ) · cos
( [

L− 1
2

− l
]
ϕa(Ω)

)
. (5.45b)

A similar result can be obtained for a filter with symmetry h(l) =−h(L− 1− l), but
such a prototype filter cannot realize a lowpass filter. The effect of the non-linear phase
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term ϕa(Ω) (L− 1)/2 can be compensated by a phase equalizer designed for an allpass
chain of length Lac = (L−1)/2. The expressions to the right of the curly brace are real
and cause only phase shifts of ±π. Thus, the warped FBE can achieve a time-invariant,
generalized linear phase response despite the time-varying coefficients, if a sufficient
phase compensation is performed.8 A system with a generalized linear phase response
features a constant group delay, if the discontinuities that result from the addition
of phase shifts by ±π due to the real function are neglected [OSB99]. For the filter
in transposed direct form, Eq. (5.45) is approximately fulfilled in case of moderately
time-varying coefficients.

5.3 Comparison between FBE and AS FB

The AS FBs (with subsampling) discussed in the previous chapter and the FBE are
very different methods to realize a uniform and warped filter-bank. Therefore, both
filter-bank types have specific pros and cons and it depends on the intended application
which filter-bank is preferable. A comparison with the uniform and warped AS FB
according to Figure 2.4 and Figure 4.6 shows that the concept of the FBE exhibits the
following benefits:

• The FBE is not affected by aliasing distortions for the reconstructed signal.
Hence, the difficult problem of achieving a sufficient aliasing cancellation, espe-
cially for time-varying spectral gain factors, does not occur. One consequence
is that the FBE does not require a prototype filter with high degree and/or a
low subsampling rate R in order to reduce aliasing distortions. Moreover, the
prototype filter design for the FBE is easier than for the AS FB.

• For the allpass transformed FBE, only the phase modifications due to the fre-
quency warping need to be compensated, but not additional aliasing distortions.
Hence, near-perfect reconstruction can be achieved with lower efforts than for
the warped AS FB.

• The algorithmic signal delay Do of the FBE is significantly lower than for the
corresponding AS FB. The uniform AS FB with linear-phase prototype filters
has a signal delay of Do = L − 1 samples. In contrast, the uniform FBE with
linear-phase prototype filter has a signal delay of Do = (L − 1)/2, which can
be further reduced by a prototype filter with non-linear phase response. As a
consequence, the warped AS FB requires a phase equalizer with a higher filter
degree than the corresponding warped FBE to achieve a similar phase error.

• The warped FBE can achieve an almost linear overall phase characteristic even
for time-varying coefficients, which can be beneficial for multi-channel processing.

However, the time-varying coefficients of the FBE can create filter-ringing artifacts.
These artifacts can be avoided by an appropriate smoothing, but at the price of a

8This can also be shown for complex coefficients with symmetry h(l) = h∗(L − 1 − l),

cf., [LV05a].
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Table 5.1: Algorithmic complexity for different realizations of a PPN DFT
filter-bank with real-valued prototype filter of length L = lM M .

2 real FFTs remaining additional operations
operations due to warping

DFT AS FB

multiplications 2 M
R log2 M

1
R (2L+M) 4L+N − 3

summations 3 M
R log2 M

1
R (L−M) + L− 1 4L+N − 4

delay elements 2M 2L− 2 N

FBE in direct form

multiplications 2 M
R log2 M L+M 2L+N − 1

summations 3 M
R log2 M L− 1 2L+N − 2

delay elements 2M L− 1 N

FBE in transposed direct form

multiplications 2 M
R log2 M L+M + L−1

R 4L+N − 3

summations 3 M
R log2 M L− 1 + 1

R (L−M) 4L+N − 4

delay elements 2M 2L− 2 N

higher computational complexity as shown before. In contrast, artifacts due to time-
varying coefficients are less a concern for AS FBs because of the inherent smoothing
effect of the synthesis filter-bank with upsampling.

An allpass transformed AS FB can achieve a perfect signal reconstruction where the
allpass transformed FBE achieves only near-perfect reconstruction (if no phase equalizer
of high degree can be used).9 Another limitation of the FBE is that it is not suitable
for subband coding applications where AS FBs with (critical) subsampling are needed.

The FBE has a higher algorithmic complexity for some configurations in comparison
to a corresponding AS FB, which is exposed by Table 5.1. It contrasts the algorithmic
complexity of the developed uniform and warped FBE according to Figure 5.2 and
Figure 5.8 to that of a corresponding uniform and warped AS FB according to Figure 2.4
and Figure 4.6. The same values for the prototype filter length L, the DFT size M , the
downsampling rate R and the phase equalizer degree N are considered. The DFT can
be computed in-place by a radix-2 FFT, e.g., [PM96]. The FFT of a real sequence of
size M can be calculated by a complex FFT of size M/2, which requires approximately
half the algorithmic complexity of that of a complex M -point FFT, e.g., [PTVF92].
The GDFT can be computed by the FFT with similar complexity as for the DFT.

9A perfect reconstruction or linear overall phase response can be achieved for the under-

lying allpass transformed FBSM by the PR designs developed in Chap. 4, which comprise

the warped FBSM as special case for R = 1. However, this approach would preclude the

efficient realization of the FBSM by the FBE.
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The last column contains the additional operations and delay elements due to the
allpass transformation. The implementation of an allpass filter according to Figure 2.8
is considered, which requires two real multiplications, two real summations and one
delay element for a real allpass coefficient a = α. An LS FIR phase equalizer with
filter degree N according to Sec. 3.3.4.1 is considered for the phase compensation at the
output. However, it should be noted that allpass transformed filter-banks are usually
operated with a lower number of channels than uniform filter-banks.

As reasoned before, a higher subsampling rate R and a lower phase equalizer de-
gree N can be taken for the warped FBE in comparison to the warped AS FB. There-
fore, the warped FBE possesses a lower algorithmic complexity than the corresponding
warped AS FB for most parameter configurations. Contrariwise, the uniform AS FB
exhibits a lower complexity than the uniform FBE. A concrete example for the design
and algorithmic complexity of these filter-banks is given later in Sec. 6.2.

5.4 Further Measures for Signal Delay Reduction

Even though the FBE causes only about half the algorithmic signal delay of that of the
corresponding AS FB, a further reduced delay might be required for applications with
very demanding system delay constraints. For such cases, a modification of the FBE
concept is now discussed, which allows a further lowering of the signal delay in a simple
and flexible manner.

5.4.1 Concept

One approach to reduce the signal delay of a filter-bank is to reduce the transform
size M to allow for a lower prototype filter degree and to adjust the gain calculation to
the altered time-frequency resolution (smoothing factors etc.), e.g., [GNC01].

For the FBE, a further reduction of the signal delay can also be accomplished by
approximating the original time-domain filter by a filter of lower degree as depicted in
Figure 5.9. In contrast to the FBE of Figure 5.2, an additional module for the filter
approximation is now inserted, which determines Lld < L filter coefficients vl(κ) from
the L original filter coefficients hs(l, κ). This approach offers a greater flexibility for
the choice of the time-domain filter and requires no adjustment of the spectral gain
calculation in comparison to a lowering of the transform size M .

In the following, an FIR and IIR filter approximation for the uniform FBE are
investigated and the results are extended to the more general case of allpass transformed
filters afterwards.

5.4.2 Approximation by a Moving-Average Filter

The time-domain filter of the FBE can be approximated by an FIR filter of length
Lld < L following a technique very similar to FIR filter design by windowing, e.g.,
[PM96]. The impulse response hs(l, κ) of Eq. (5.11) is truncated by a window sequence
of length Lld. This yields the FIR filter coefficients

vl(κ) = ĥs(l, κ) = hs(l + lc, κ) · winLld
(l); l ∈ { 0, 1, . . . , Lld − 1 } (5.46)
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Figure 5.9: Modification of the FBE to achieve a further reduced signal delay.

where the general window sequence is defined by Eq. (5.17). The value for lc determines
the part of the impulse response to be truncated, e.g., to maintain the symmetry of
Eq. (5.24) for linear-phase filters. The truncation by a window results in a smoothed fre-
quency response which is influenced by the choice of the window sequence, cf., [OSB99].

This modified FBE based on an FIR filter approximation is named as moving-
average low delay filter (MA LDF) [LV05c, LV06b]. The term low delay filter (LDF)
refers to the overall system according to Figure 5.9, while the term moving-average (MA)
filter is used to denote the actual time-domain filter. The parameter

Nld = Lld − 1 (5.47)

marks the degree of this filter.

5.4.3 Approximation by an Auto-Regressive Filter

Instead of a (linear-phase) FIR filter, a minimum-phase IIR filter is now considered
for the filter approximation. A filter can always be decomposed into a cascade of
an allpass filter and a minimum-phase filter, e.g., [OSB99]. The group delay of the
minimum-phase filter is lower than or equal to the group delay of the original filter
for all frequencies. The approximation of a mixed-phase filter by a minimum-phase
filter yields a filter with the same magnitude response, but a different phase response.
An altered phase, however, is mostly tolerable for speech and audio processing as the
human ear is relatively insensitive towards phase modifications, cf., [Var85, ZF99].

However, the approximation of a time-varying FIR filter by a general minimum-
phase IIR filter demands a rather high computational complexity for the calculation
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of its filter coefficients. Therefore, an auto-regressive (AR) filter is considered for the
filter approximation due to the lower computational complexity for the calculation of
its coefficients. An AR filter is an allpole filter and, thus, of minimum-phase, but
has no zeros outside the origin. Therefore, an AR filter cannot provide a magnitude
response with zeros. However, this is usually less problematic for speech enhancement
applications where the thresholding of Eq. (5.20) comes mostly into effect.

The (frozen-time) system function of the considered AR filter of degree Nld reads

Ĥs(z, κ) = HAR(z, κ) =
v0(κ)

1−
Nld∑
l=1

vl(κ) · z−l

. (5.48)

The dependence on κ is skipped in the following to ease the notation. The AR filter
coefficients can be determined by the Yule-Walker equations, e.g., [PM96]⎡⎢⎣ ϕh̄h̄(1)

...
ϕh̄h̄(Nld)

⎤⎥⎦ =

⎡⎢⎣ ϕh̄h̄(0) . . . ϕh̄h̄(1−Nld)
...

. . .
...

ϕh̄h̄(Nld − 1) . . . ϕh̄h̄(0)

⎤⎥⎦ ·
⎡⎢⎣ v1

...
vNld

⎤⎥⎦ . (5.49)

The Nld + 1 auto-correlation coefficients ϕh̄h̄(λ) are computed by the rule10

ϕh̄h̄(λ) =

L−1−|λ|∑
l=0

h̄(l) · h̄(l + λ); 0 ≤ |λ| ≤ Nld ; λ ∈ Z (5.50a)

h̄(l) = hs(l) · winL(l); l ∈ { 0, 1, . . . , L− 1 } . (5.50b)

The scaling factor v0 in Eq. (5.48) is given by

v0 =

√√√√ϕh̄h̄(0)−
Nld∑
l=1

vl · ϕh̄h̄(l) (5.51)

and ensures that the AR filter causes the same amplification as the original filter. The
calculation of the auto-correlation coefficients according to Eq. (5.50) guarantees a sym-
metric Toeplitz structure for the auto-correlation matrix of Eq. (5.49). This allows to
solve the Yule-Walker equations efficiently by means of the Levinson-Durbin recursion.
The auto-correlation matrix is positive definite so that the obtained AR filter is of
minimum-phase and thus stable, cf., [PM96].

The devised modification of the FBE is named as auto-regressive low delay filter
(AR LDF) in analogy to the terminology of the previous section [LV05c, LV06b].

5.4.4 Algorithmic Complexity

The algorithmic complexity for the low delay filter concept in terms of arithmetic opera-
tions and memory consumption is listed in Table 5.2. The complexity for the calculation

10An alternative to this auto-correlation method is the use of the covariance method

which, however, results in a more complex procedure to calculate the AR filter coefficients,

cf., [VM06, Chap. 6].
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Table 5.2: Algorithmic complexity for the MA and AR low delay filter with
filter degree Nld.

calculation of hs(l, κ) and MA/AR filtering

multiplications 1
R (2M log2 M + 2L) +Nld + 1

summations 1
R (3M log2 M + L−M) +Nld

delay elements L− 1 + 2M +Nld

calculation of MA filter coefficients vl(κ)

multiplications 1
R (Nld + 1)

summations 0

registers 0

calculation of AR filter coefficients vl(κ)

multiplications 1
R

(
(Nld + 1) (L+ 3) +Nld (Mdiv +Msqrt)

)
summations 1

R

(
(Nld + 1) (L+ 1) +Nld (Adiv +Asqrt)

)
registers 3Nld

of the original filter coefficients hs(l, κ) is discussed in Sec. 5.3 and a rectangular window
is considered for Eq. (5.50b). The variable Mdiv marks the number of multiplications
needed for a division operation and Msqrt represents the number of multiplications
needed for a square-root operation. Accordingly, the variables Adiv and Asqrt denote
the additions needed for a division and square-root operation, respectively. Their values
depend on the numeric procedure and accuracy to execute these arithmetic operations.
In this work, an equivalent of 15 operations is assigned to each of these variables for
the calculation of the algorithmic complexity (see Sec. 6.2.1).

Most of the computational complexity for the AR filter conversion is required to
compute the Nld + 1 auto-correlation coefficients according to Eq. (5.50). A lower
computational complexity can be achieved by calculating Eq. (5.50) by means of the
fast convolution or the Rader algorithm [Rad70] with savings dependent on Nld and L.

The MA filter conversion needs no multiplications, if a rectangular window is used
for Eq. (5.46). However, the AR filter degree is usually significantly lower than the MA
filter degree so that both approaches have a similar overall algorithmic complexity in
practice as exemplified later in Sec. 6.2.1.

5.4.5 Warped Filter Approximation

The discussed filter approximations can also be applied to the allpass transformed FBE
[LV06c]. In the process, the delay elements of the analysis filter-bank and the time-
domain filter are replaced by allpass filters. For the obtained warped MA LDF, a phase
equalizer can be applied as for the warped FBE to obtain an approximately linear phase
response.
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The direct realization of the warped AR filter is not possible since the allpass trans-
formation leads to delay-less feedback loops. Different approaches have been proposed
to solve this problem for an allpass transformation of first order with real allpass co-
efficient (a = α) [Ste80, Här98, Här00]. Here, the algorithm of Steiglitz [Ste80] is
preferred due to its low computational efforts for time-varying filters. The modified
system function of the allpass transformed AR filter without delay-less feedback loops
is given by

H̃AR(z) =
v0 ṽ0

1− ṽ0

(
1− α2

)
z−1

1− α z−1

Nld∑
l=1

ṽl ·
(
A(z)

)l−1

(5.52)

with coefficients ṽl calculated by the recursion

ṽNld
= vNld

(5.53a)

ṽl = vl − α ṽl+1 ; l = Nld − 1, . . . , 2, 1 (5.53b)

ṽ0 =
1

1 + ṽ1 α
. (5.53c)

The derivation of this scheme from Steiglitz is provided by App. B.5. The computation
of the new filter coefficients ṽl(κ) needs only Nld multiplications, Nld summations and
one division at intervals of R sample instants. The warped AR filter according to
Eq. (5.52) requires 3Nld + 2 real multiplications and 3Nld real summations per sample
instant as well as Nld + 1 delay elements.

It is shown in App. B.6 that the minimum-phase property of an AR filter is main-
tained despite an allpass transformation of first order. This is an important property
as it guarantees stability for the warped AR filter. The use of a fixed phase equalizer
as for the warped MA LDF is neither feasible nor required.

The cross-fading approach of Eq. (5.34) cannot be applied to the coefficients of an
IIR filter in its direct form.11 Instead, a second filter with the previous coefficients
is used to achieve a smooth transition by a cross-fading of both output signals. This
approach can be applied to an arbitrary FIR or IIR filter with frozen-time system
function Hg(z, k) as follows

H̄g(z, k) =
(
1− cf (k)

)
·Hg(z, κ−R) + cf (k) ·Hg(z, κ) (5.54a)

cf (k) =
k − κ
R

(5.54b)

with k and κ related by Eq. (5.1). This smoothing technique does not cause an addi-
tional signal delay and preserves a time-invariant phase response.

It is important to notice that the application of the allpass transformation of higher
order is straightforward for the FBE as well as the MA LDF, but not the AR LDF

11A cross-fading might be applied to the reflection coefficients of a Lattice implementa-

tion for an IIR filter where filter stability can be ensured by reflection coefficients with a

magnitude of less than one.
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since the delay-less feedback loops cannot be eliminated in the same manner as for an
allpass transformation of first order.

Another option for an LDF is to approximate the time-domain filter of the uniform
FBE by a warped AR filter. This approach is investigated in [LV07a] in great detail
and should not be discussed here.

5.5 Conclusions

The concept of the filter-bank equalizer (FBE) is presented in this chapter. The FBE
is derived as an efficient implementation of the filter-bank summation method (FBSM)
and performs time-domain filtering with coefficients adapted in the frequency-domain.
Perfect signal reconstruction is achieved for a broad class of transformation kernels with
significantly lower efforts than for a common AS FB with subsampling. It is shown
how the FBE can be efficiently implemented by a polyphase network (PPN) structure.
The explicit consideration of the time-varying coefficients in the derivation reveals the
influence of the filter structure on system delay, computational complexity and signal
quality. It is shown, amongst others, how the transposed direct form implementation
achieves a stronger smoothing effect for time-varying coefficients in comparison to the
direct form implementation of the FBE, which is beneficial to avoid artifacts for the
processed signal (filter-ringing). An advantage of the direct form implementation of the
FBE is that a time-mismatch between the adaptation of the spectral gain factors and
the actual time-domain filtering has not to be compensated as for the transposed direct
form implementation. Possible artifacts due to the switching of the time-domain filter
coefficients can be avoided by an appropriate smoothing (cross-fading).

The presented allpass transformed FBE achieves near-perfect reconstruction with
significantly lower efforts than a corresponding allpass transformed AS FB with subsam-
pling. The uniform FBE has a higher algorithmic complexity than the corresponding
uniform AS FB for most parameter configurations, while the opposite applies for the
allpass transformed FBE in comparison to the allpass transformed AS FB. The uni-
form and warped FBE achieve a significantly lower algorithmic signal delay than the
corresponding AS FBs. A nearly linear phase response can be maintained even for
time-varying coefficients, which can be exploited, e.g., for multi-channel processing.

The concept of the low delay filter (LDF) is an extension of the FBE to achieve a
further reduction of the signal delay and algorithmic complexity in a simple and flexible
manner. In the process, the time-domain filter of the FBE is approximated by either
a moving-average (MA) filter or auto-regressive (AR) filter of lower degree. The use of
the uniform and warped MA filter allows to maintain a time-invariant or even linear
phase response, which can be beneficial, e.g., for binaural speech processing in hearing
aids. The uniform and warped AR filter are minimum-phase systems and can achieve
an algorithmic signal delay of only a few sample instants.

A primary application of the FBE (including the LDF concept) are systems for low
delay speech enhancement, which is discussed in the following chapter.



Chapter 6

Applications

D
ifferent designs of allpass-based filter-banks are presented in the previous chap-
ters. They have rather diverse properties which make them attractive for different

applications. The allpass-based (Pseudo) QMF-banks of Chap. 3 are uniform filter-
banks with critical subsampling and low algorithmic complexity, which is of interest
for subband coding systems. The allpass transformed filter-banks treated in Chap. 4
and Chap. 5 can achieve an auditory frequency resolution, which is beneficial for speech
enhancement systems. This chapter elaborates such applications in more detail to ex-
emplify the properties and benefits of the devised allpass-based IIR filter-banks.

In Sec. 6.1, the use of the IIR/IIR QMF-bank of Sec. 3.1.2 for subband coding
is investigated. Important design and implementation aspects are discussed and the
performance of the devised IIR filter-bank is contrasted to that of a comparable FIR
QMF-bank.

In Sec. 6.2, the use of the filter-bank equalizer (FBE) for adaptive subband filtering
with low signal delay is investigated. It is shown how this filter-bank concept can be
exploited to perform different kinds of speech enhancement such as noise reduction,
speech dereverberation, or speech intelligibility improvement.

6.1 QMF-Bank Design for Speech and Audio Coding

Analysis-synthesis filter-banks with critical subsampling are commonly employed for
speech and audio subband coding, cf., [SPA07, VK95, VHH98]. QMF-banks are of
special interest for such purposes and are proposed already in early publications about
speech subband coding [CWF76, EG77, RF80, Rot83]. A uniform two-channel FIR
QMF-bank is used for the first standardized 7 kHz wideband (WB) audio codec, ITU-T
Rec. G.722 [ITU88].1 In [Pau96], an improvement of this codec is proposed where
a non-uniform two-channel FIR/FIR QMF-bank (with critical subsampling) is used.
Tree-structured QMF-banks including wavelet packets can be used to achieve either an
octave-band or critical-band analysis (as described in App. C.2.2). Such filter-banks
are commonly exploited for perceptual audio coding, e.g., [ST93, PdL99].

More recently, QMF-banks are also used for hierarchical speech and audio coding as,
for example, ITU-T Rec. G.729.1 [ITU06, RKT+07], shortly termed as G.729.1 codec.
This codec generates a layered bit-stream format where each additional layer succes-

1ITU-T is the telecommunication standardization sector of the International Telecom-

munication Union (ITU).
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sively improves the audio fidelity of the decoded signal. Bit rate scalability can thus
be achieved by truncating the hierarchical bit-stream so that bit rate synchronization
of encoder and decoder as well as any transcoding become dispensable. The G.729.1
codec is built ‘on top’ of an embedded so-called legacy codec, the narrowband codec
G.729 CS-ACELP [ITU96], which generates the core layer of the bit-stream. Thus,
interoperability with existing codecs is simply achieved by discarding the bit-streams
added to the core bit-stream layer. Such features are of particular interest for heteroge-
neous, packet-switched networks (e.g., Voice-over-IP) having connections with different
bit rates and/or different terminal equipments. The bandwidths of the decoded speech
and audio signals depend on the bit rate such that this hierarchical codec provides bit
rate as well as bandwidth scalability. To achieve this, a wideband input signal sampled
at 16 kHz is split into subband signals by the encoder using a (uniform) two-channel
analysis QMF-bank. If no bit-stream layers are discarded, the wideband signal is re-
constructed at the decoder by means of a corresponding synthesis QMF-bank.

At present, non-recursive QMF-banks are used predominately for such purposes
(e.g., [ITU88, ITU06]) and only a comparatively low number of publications (or an
ITU-T recommendation) deals with recursive filter-banks for subband coding such as
[RF80, CM96]. Hence, the design and application of IIR filter-banks for subband coding
is a subject that is considered to be “largely unexplored” [SPA07, Chap. 8].

In 2008, a new speech and audio codec has been developed by a consortium of Huawei
(China) and ETRI (South Korea) in collaboration with the Institute of Communication
Systems and Data Processing of RWTH Aachen University. It has been submitted to
ITU-T as candidate proposal for the super-wideband (SWB) and stereo extensions of
ITU-T Rec. G.729.1 and Rec. G.718 [GKL+09]. This hierarchical speech and audio
codec employs the allpass-based IIR QMF-bank design of Sec. 3.1.2.3 instead of a more
common FIR QMF-bank as used, for example, in ITU-T Rec. G.729.1 [ITU06] and
Rec. G.722 [ITU88]. The new filter-bank has helped to achieve a high signal quality with
a low signal delay. In the following, the design and implementation of the proposed IIR
QMF-bank for this application is elaborated in more detail based on [GKL+09, LV09b].

6.1.1 Codec Overview

A signal flow chart of the proposed codec is provided by Figure 6.1 adopted from
[GKL+09] where further details can be found.2 The sampling rate for the input signal
can be 8, 16 and 32 kHz. For a sampling rate of 32 kHz, the input signal is split by
an allpass-based analysis QMF-bank into two critically subsampled signals swb(k) and
s′

swb(k) having a bandwidth of 0–16 kHz and 16–32 kHz, respectively. For the sake of
clarity, this IIR filter-bank, marked by the red shaded boxes in Figure 6.1, is termed as
outer QMF-bank, where the QMF-bank of the core codec, marked by the blue shaded
boxes, is denoted as inner QMF-bank.

The lower subband signal swb(k) of the outer QMF-bank is encoded by the core
codec, marked by the green shaded box, which is almost identical to ITU-T Rec. G.729.1
[ITU06, RKT+07]. This hierarchical speech and audio codec has a scalable bit rate of
8–32 kbit/s and provides a bit-stream with 12 embedded layers where the core layer

2The stereo extension is not considered here.
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Figure 6.1: High level block diagram of the codec proposed in [GKL+09]. Solid
lines mark time-domain signals and dashed lines parameters. For the sake
of clarity, the QMF-banks are depicted in a direct implementation and not
their actual PPN implementation.

is interoperable with the G.729 codec [ITU96]. In a first stage, the wideband signal
swb(k) is spilt into two critically downsampled subband signals with a bandwidth of
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4 kHz by means of an analysis QMF-bank.3 The inner QMF-bank can be optionally
either the FIR/FIR QMF-bank of Rec. G.729.1 or the proposed IIR/IIR QMF-bank
as described later in Sec. 6.1.2. The lower subband of the inner analysis QMF-bank is
pre-processed by an elliptic IIR highpass (HP) filter with a cutoff frequency of 50 Hz
whose output signal slb(k′) is then encoded by a two-stage code excited linear prediction
(CELP) coder, which is compatible to the embedded G.729 codec. The higher subband
signal is multiplied by (−1)k′

to reverse the ‘spectral mirroring’ (cf., [VHH98, Chap. 4])
and filtered by an elliptic lowpass (LP) filter with cutoff frequency of 3 kHz. The
obtained signal shb(k′) is encoded by means of a time-domain bandwidth extension
(TDBWE) [GJV+07]. The decoded signal of the embedded CELP codec is subtracted
form the suitably aligned lowpass signal slb(k′). The obtained difference signal and
the highpass signal shb(k′) are jointly encoded by a so-called time-domain aliasing
cancellation (TDAC) encoder, which uses a modified discrete cosine transform (MDCT).
Some parameters for frame erasure concealment (FEC) are also transmitted.

The operations of the core decoder are dependent on the received bit rate due to the
hierarchical coding concept (see Figure 6.1-b). For bit rates of 8 and 12 kbit/s, only the
CELP decoder is active. After post-processing and filtering by the synthesis QMF-bank,
a narrowband output signal is obtained sampled at 16 kHz. For bit rates of 14 kbit/s
and more, the TDBWE decoder is activated [GJV+07]. The produced highband signal
is multiplied with (−1)k′

to reverse the spectral mirroring at the encoder. The output
signal ŝwb(k) of the inner synthesis QMF-bank is now a wideband signal sampled at
16 kHz. For a bit rate of 16 kbit/s and more, the TDAC further improves the audio
quality. For this, its lowband output signal is added to the decoded CELP signal. The
high frequency bands of the TDBWE signal are replaced by the subband signals of the
TDAC decoder. Alternatively, if no TDAC subbands are received, the synthesis signal
of the TDBWE is scaled according to the spectral envelope of the TDAC. The TDAC
is a transform coder which employs an MDCT with a relatively long window of 40 ms.
Dependent on the signal and the used quantizer, this can cause pre-echo and post-echo
artifacts, which are reduced by dedicated processing units.

The higher subband signal s′
swb(k) of the outer analysis QMF-bank with a band-

width of 16–32 kHz band is encoded by a super-wideband (SWB) encoder. First, the
subband signal is multiplied by (−1)k to reverse the spectral mirroring. A group delay
compensation is performed to account for the signal delay of the inner analysis QMF-
bank. The output signal is then filtered by a lowpass filter with a cutoff frequency of
6 kHz and encoded by a new SWB encoder, which uses the MDCT coefficients of the
core codec.

For bit rates of 36 kbit/s and more, the SWB decoder provides the additional signal
s̄swb(k) with a bandwidth of 8–14 kHz (due to the lowpass filtering at the encoder).
The time-aligned output signals of SWB decoder and core decoder are processed by a
synthesis QMF-bank to obtain the decoded SWB signal sampled at 32 kHz.

The design of the inner and outer QMF-bank has a noticeable effect on the overall
performance of the coder regarding its latency, signal quality and computational load.

3As indicated in Figure 6.1, ITU-T Rec. G.729.1 also defines a mode for a narrowband

input signal sampled at 8 kHz. In this case, the bit rate is 8 kbit/s and the processing by a

QMF-bank is omitted, but this case is not considered here.
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This motivates to elaborate an IIR QMF-bank design as alternative to commonly used
FIR QMF-banks. Special emphasis is given to the inner filter-bank design as it allows
to compare the devised IIR QMF-bank with the FIR QMF-bank of a standardized codec
for which a floating-point and fixed-point reference implementation in C exist.4

6.1.2 Inner QMF-Bank

Primary goals of the QMF-bank design are to achieve a low (inaudible) signal recon-
struction error as well as analysis filters with a high stopband attenuation and low tran-
sition bandwidth. The latter goal is important to achieve a good separation between
the subband signals to avoid a significant cross-talk on the one hand, and to prevent
noticeable aliasing distortions despite subband processing (quantization) on the other
hand. The filter-bank design is thereby subject to the constraint for a (coding) system
with low signal delay.

6.1.2.1 Filter-Bank Design

In ITU-T Rec. G.729.1 [ITU06], an FIR/FIR QMF-bank is used to address the above
mentioned trade-off. It is designed by the approach of Johnston [Joh80], which is briefly
described in App. C.1. This FIR QMF-bank achieves near-perfect reconstruction with
perfect aliasing cancellation and can be efficiently implemented due to the use of linear-
phase subband filters. The prototype lowpass filter has a filter length of L = 64 and is
designed for a stopband frequency of Ωs = 0.586π.5

A drawback of this FIR filter-bank is that a rather high filter degree is needed to
achieve the desired stopband attenuation. In contrast, IIR subband filters can achieve a
comparable frequency selectivity with a much lower filter degree. Their non-linear phase
response is less problematic here as the human auditory system is rather insensitive
towards (moderate) phase distortions. Therefore, the IIR/IIR QMF-bank design II of
Sec. 3.1.2 is considered as an alternative.

In a first step, the allpass sub-filters of the analysis filters according to Eq. (3.16)
have to be determined in order to achieve a frequency selectivity similar to that of the
original FIR analysis filters. A direct approach to calculate the allpass coefficients of
these filters is to minimize the stopband energy of Eq. (3.21). This non-linear optimiza-
tion problem can be solved, e.g., by means of the MATLAB function fmincon [TM09].
However, this approach turns out to be less suitable as the final result depends strongly
on the initial solution if K0,K1 > 1. For allpass degrees K0,K1 ≥ 3, no further im-
provements of the frequency selectivity have been obtained. In contrast, the use of
the equiripple IIR lowpass filter design of [ZY99] shows a superior performance as it
converges to a unique solution even for higher allpass filter degrees. This algorithm has
been executed for different stopband frequencies Ωs to find the most favorable design.

4In principle, the FIR QMF-bank of ITU-T Rec. G.729.1 can also be used for the outer

filter-bank. However, a comparison with the proposed IIR QMF-bank is questionable in this

case as this FIR QMF-bank is not designed for a sampling rate of 32 kHz.
5The design method for the QMF-bank is not specified in [ITU06], but the coefficients

of the prototype lowpass filter used in the C source code are given by the 64D design listed

in [CR83, Chap. 7].
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Figure 6.2: Evaluation of the equiripple IIR lowpass filter design of [ZY99] with
real allpass coefficients and degrees K0 = 3, K1 = 2 for different stopband
frequencies Ωs. The dots mark the chosen design at Ωs = 0.6π:
(a) stopband attenuation
(b) magnitude of the largest allpass pole.

Figure 6.2 shows the obtained results. Figure 6.2-a illustrates the well-known trade-off
between the conflicting goals for a low transition bandwidth and a high stopband at-
tenuation. Furthermore, the absolute values for the allpass poles are also important
here. For the proposed IIR QMF-bank design, a pole close to one requires synthesis
polyphase filters of high degrees to achieve a sufficient phase equalization according to
Sec. 3.1.2. Besides, poles near the unit circle are also problematic w.r.t. a fixed-point
implementation. Figure 6.2-b reveals that a higher stopband frequency Ωs yields a lower
magnitude for the largest allpass pole

αmax = max
m,i

{|αi(m)|} ; m ∈ { 1, 2, . . . ,Ki } ; i ∈ { 0, 1 } . (6.1)

The design marked by the dots has been found most suitable for the intended appli-
cation. The allpass filters of Eq. (3.18) have degrees K0 = 3 and K1 = 2. Their poles
according to Eq. (2.48b) are real (ai(m) = αi(m)) and given by

α0(1) = −0.054237173613906; α1(1) = −0.621126121753022

α0(2) = −0.398827412661577; α1(2) = −0.199719749994964

α0(3) = −0.862931529517508 . (6.2)

Figure 6.3 shows that these equiripple IIR analysis filters achieve a higher stopband
attenuation as well as a lower transition bandwidth in comparison to the FIR analysis
filters of the Johnston design being used for the original G.729.1 codec.

For the synthesis QMF-bank, the design II of Sec. 3.1.2.3 is chosen as non-cancelled
alias components can have a noticeable impact for the considered subband coding sys-
tem. In contrast, the design I of Sec. 3.1.2.2 turned out to be less suitable, despite its
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Figure 6.3: Magnitude responses of different analysis filters: The dashed lines
correspond to the FIR analysis filters of ITU-T Rec. G.729.1 and the solid
lines mark the alternative equiripple IIR analysis filters.

lower signal delay in comparison to design II, as phase equalizers with a rather high
filter degree are needed to achieve a sufficient aliasing cancellation.

For the phase equalizer of Eq. (3.34), the parameters

Ji(m) =

{
4 for i = 0 ∧ m = 3

0 otherwise
(6.3)

are taken. Hence, only the allpass pole α0(3), which is closest to the unit circle, is
considered by the phase equalization, which turned out to be sufficient to avoid audible
phase distortions. It follows from Eq. (3.46), Eq. (3.36) and Eq. (6.3) that the overall
transfer function of the inner QMF-bank is equal to the linear transfer function

T
(inner)
lin (z) = z−1

1−
(
α0(3) · z2

)16

z32 −
(
α0(3)

)16

1∏
i=0

2∏
m=1

1− αi(m) · z2

z2 − αi(m)
. (6.4)

with αi(m) given by Eq. (6.2). The frequency response of the overall transfer func-
tion for the FIR QMF-bank is obtained by Eq. (C.3). Overall magnitude response and
group delay of the two considered QMF-banks are contrasted in Figure 6.4. The overall
transfer function of the IIR QMF-bank is an allpass filter, which results in a constant
magnitude response and a non-linear phase response. In contrast, the overall transfer
function of the FIR QMF-bank has a linear phase response, but a non-constant magni-
tude response. Figure 6.4-b shows that the frequency dependent group delay of the IIR
QMF-bank is significantly lower than the constant group delay of its FIR counterpart.
Informal listening tests with different audio samples have revealed that the frequency
dependent group delay of the IIR filter-bank design causes no audible signal distortions.

6.1.2.2 Fixed-Point Implementation

In practice, digital systems are implemented by arithmetic operations with finite preci-
sion as used, for example, on a (fixed-point) DSP. This leads to round-off effects, which
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Figure 6.4: Analysis of the overall transfer functions of the FIR QMF-bank of
Rec. G.729.1 (dashed lines) and the proposed IIR QMF-bank (solid lines):
(a) magnitude response of the linear transfer function
(b) group delay of the linear transfer function.

can have a significant impact on the performance of a system. Therefore, the investi-
gation of such effects for the devised IIR QMF-bank is an important issue regarding its
applicability.

The proposed IIR QMF-banks consists solely of different allpass polyphase filters. It
is beneficial to implement these allpass filters in a cascade form according to Eq. (2.48).
The single allpass filters of first order in turn can also be implemented differently. In
[LV07a], the effects of fixed-point arithmetic are analyzed for five different allpass filter
implementations using a linear quantization noise model, e.g., [Vai93, Jac96, OSB99].
It models rounding errors as quantization noise added at summation nodes. This noise
is assumed to be wide-sense stationary, uniformly distributed and uncorrelated with the
input signal of the quantizer. The theoretical analysis reveals that the implementation
of Figure 2.8 is of special interest.6 The calculation of its noise gain, which describes
the amplification of the quantization noise by a system [Vai93], yields

Gnoise =
σ2

out

σ2
q

=
1

1− α2
(6.5)

where σ2
q represents the variance of the input (quantization) noise and σ2

out marks the
variance of the output noise. Due to Eq. (6.2), the noise gain for the used allpass
filters of first order lies only between 1 < Gnoise < 4. Besides, the input signal of the
implementation of Figure 2.8 needs not to be scaled in order to reduce overflows by
means of the L2-norm scaling rule [Vai93, LV07a].

6In [LV07a], the fixed-point effects for different allpass filter forms are investigated w.r.t.

allpass transformed systems, but the obtained results apply also to the considered allpass-

based QMF-bank.
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Table 6.1: SQNR for different QMF-banks and audio signals taken from the
EBU-SQAM database.

audio sequence FIR QMF-bank IIR QMF-bank

sinus sweep 84.52 dB 83.10 dB

guitar (Sarasate) 68.09 dB 62.01 dB

female speech 73.90 dB 68.25 dB

In order to investigate effects due to fixed-point arithmetic, the discussed IIR
QMF-bank has been implemented in C using the 16 bit fixed-point operations of
ITU-T [ITU05], which emulate a generic fixed-point DSP.7 The effects of rounding
errors are measured here by the signal-to-quantization-noise ratio (SQNR). It is deter-
mined by the difference between the output signals of the floating-point and fixed-point
implementation, yflo(k) and yfix(k), according to

SQNR =

∑
k

y2
flo(k)∑

k

(
yflo(k)− yfix(k)

)2
. (6.6)

The results for the considered FIR QMF-bank and IIR QMF-bank are compiled in
Table 6.1. The fixed-point implementation of the FIR QMF-bank achieves a slightly
higher SQNR in comparison to the IIR QMF-bank. The SQNR of the IIR QMF-
bank can of course be improved at the price of an increased computational complexity.
However, informal listening tests with different speech and audio signals have revealed
no audible differences between the input and output signals obtained by the fixed-point
implementations of the FIR QMF-bank and IIR QMF-bank (without subband coding).
Besides, the signal distortions due to the non-perfect reconstruction of the QMF-bank
as well as its fixed-point implementation are lower than the distortions due to coding
operations, especially at lower bit rates.

6.1.2.3 Signal Delay & Algorithmic Complexity

Algorithmic signal delay and computational complexity of the FIR QMF-bank and IIR
QMF-bank are contrasted in Table 6.2. The computational complexity of the two filter-
banks is counted in weighted million operations per second (WMOPS) and determined
by the C floating-point implementation submitted to ITU-T.8 It can be observed that
the computational complexity of the IIR QMF-bank is about 28% lower than for the
FIR QMF-bank.

7The submission of a codec implementation in fixed-point was not part of the candidate

proposal for ITU-T [GKL+09].
8The number of WMOPS is used for the evaluation of different speech codecs by ITU-T

and provides a rough measure for the computational complexity of a system if implemented

on a DSP.



146 6 Applications

Table 6.2: Computational complexity measured in weighted million operations
per second (WMOPS) and signal delay for the inner FIR QMF-bank and
IIR QMF-bank (fs = 16 kHz).

FIR QMF-bank IIR QMF-bank

analysis filter-bank 0.6549 WMOPS 0.2846 WMOPS
synthesis filter-bank 0.7035 WMOPS 0.6929 WMOPS

sum 1.3584 WMOPS 0.9775 WMOPS

signal delay D′
o 3.9375 ms 2.4375 ms

The algorithmic signal delay of the filter-banks is measured by the cross-correlation
between input signal x(k) and reconstructed input signal x̂(k) for a unit sample sequence
as input signal

Do = arg
{

max
κ
{corr {x(k − κ), x̂(k)}}

}
. (6.7)

This delay calculation accounts for the frequency dependent group delay of the IIR
QMF-bank. The actual signal delay (in seconds) is then given by

D′
o =

Do

fs
. (6.8)

Table 6.2 reveals that the replacement of the FIR QMF-bank by the IIR QMF-bank
results in a signal delay reduction of about 38%.

6.1.3 Outer QMF-Bank

The design of the outer QMF-bank for the SWB extension is done in a similar manner
as the inner QMF-bank taking into account the higher sampling frequency of 32 kHz
(see also Figure 6.1). The IIR lowpass prototype filter is designed by the algorithm of
[ZY99] for allpass filter decrees K0 = K1 = 3 and a stopband frequency Ωs = 0.57π.
This yields the real allpass poles

α0(1) = −0.358332481220107; α1(1) = −0.905525274279610

α0(2) = −0.049358046260363; α1(2) = −0.181159826230283

α0(3) = −0.727333561657933; α1(3) = −0.546113666698959 . (6.9)

The magnitude responses of the obtained analysis filters are plotted in Figure 6.5. These
IIR filters achieve a stopband attenuation of 90 dB, which is about 3 dB higher as for
the analysis filters of the inner IIR QMF-bank shown in Figure 6.3. For the phase
equalizer of Eq. (3.34), the number of stages are now given by

Ji(m) =

{
4 for i = 1 ∧ m = 1

0 otherwise.
(6.10)
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Figure 6.5: Magnitude responses of the analysis filters of the outer QMF-bank.

Again, only the largest allpass pole α1(1) is considered by the phase equalizer, which
turned out to be sufficient to avoid audible phase or group delay distortions, respectively.

As indicated in Figure 6.1, a group delay compensation is needed to account for the
signal delay of the inner QMF-bank. The frequency response of the FIR QMF-bank
has a linear phase response according to Eq. (C.3). Therefore, a frequency independent
group delay of 3.9375 ms needs to be compensated according to Figure 6.4-b, which can
be accomplished by simple delay elements (shift registers) at encoder and decoder.

For the IIR QMF-bank, a frequency dependent group delay compensation is needed
(see also Figure 6.4). This group delay compensation is derived by splitting the transfer
function of the inner QMF-bank according to Eq. (6.4) into two parts

T
(inner)
lin (z) =

1∏
i=0

2∏
m=1

1− αi(m) · z2

z2 − αi(m)︸ ︷︷ ︸
= CI(z)

· z−1
1−
(
α0(3) · z2

)16

z32 −
(
α0(3)

)16︸ ︷︷ ︸
= CII(z)

. (6.11)

A filter with system function CI(z) is taken for the group delay compensation at the
encoder to account approximately for the group delay of the inner IIR analysis filter-
bank. Accordingly, a filter with system function CII(z) is employed for the group delay
compensation at the decoder.

The overall transfer function of the three-channel QMF-bank with group delay com-
pensation (and without any coding operations) is analyzed in Figure 6.6. The magni-
tude response of the transfer function is a constant, if the IIR QMF-bank is used as
inner filter-bank. If the FIR QMF-bank is used for the core codec, magnitude distor-
tions occur within the region Ω ∈ [0, π/2] in compliance with Figure 6.4-a.

Figure 6.6-b shows that a significantly lower group delay is achieved by using the IIR
QMF-bank instead of the FIR QMF-bank as inner filter-bank. Informal listening tests
have revealed that the frequency dependency of the group delay causes no noticeable
distortions in both cases.

The computational complexity of the outer QMF-bank and the group delay com-
pensation are listed in Table 6.3. The WMOPS are again determined by means of the
C floating-point code submitted to ITU-T. A comparison with Table 6.2 shows that
the complexity of the inner IIR QMF-bank is 0.381 WMOPS lower than for the inner
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Figure 6.6: Analysis of three-channel filter-bank where the inner QMF-bank is
either the FIR QMF-bank of Rec. G.729.1 (dashed lines) or the proposed IIR
QMF-bank (solid lines):
(a) magnitude response of the overall transfer function
(b) group delay of the overall transfer function.

Table 6.3: Computational complexity of outer IIR QMF-bank and group delay
(GD) compensation (fs = 32 kHz).

encoder decoder sum

IIR QMF-bank 0.2846 WMOPS 0.6929 WMOPS 0.9775 WMOPS
GD compensation 0.6085 WMOPS 0.1606 WMOPS 0.7691 WMOPS

FIR QMF-bank. The group delay compensation for the inner IIR QMF-bank causes an
additional complexity of 0.388 WMOPS. For comparison, the complete SWB extension
has a complexity of about 15 WMOPS. The calculation of the signal delay of the outer
QMF-bank by Eq. (6.7) and Eq. (6.8) results a value of only 2.21875 ms.

The overall ITU-T test results for the complete (mono) codec are documented in
[GKL+09]. The proposed codec was the only candidate who passed all requirements
for mono coding as defined in the ‘Terms of Reference’ [ITU08].

6.2 Low Delay Speech Enhancement

The concept of the filter-bank equalizer (FBE) developed in Chap. 5 allows to perform
adaptive subband filtering with a low signal delay. In addition, the allpass transformed
FBE can achieve an approximately Bark-scaled frequency division with a much lower
algorithmic complexity than allpass transformed or tree-structured AS FBs. These ben-
efits bring about that the FBE is of special interest for speech enhancement algorithms
as employed in cell phones, hands-free devices, or digital hearing aids where the overall
signal delay and computational complexity of the filter-bank is of special importance
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[SBS+06, LV07b, LV09a, SLV08]. In the following, the use of the FBE and its LDF ex-
tension for noise reduction, speech dereverberation and near-end listening enhancement
is investigated in more detail.

6.2.1 Noise Reduction

A frequent problem of many communication devices is that the received signal

x(k) = s(k) + u(k) (6.12)

contains the desired speech signal s(k) as well as unwanted noise u(k). The aim of a
noise reduction system is to recover an estimate ŝ(k) of the original speech signal s(k).
Numerous algorithms for noise reduction have been proposed, which are reviewed, e.g.,
in [BMC05, VM06, Loi07]. The well-known overlap-add method, which is a PPN DFT
AS FB as described in Sec. 2.3, is mostly employed for this purpose. However, several
authors have pointed out the benefits of using a non-uniform (Bark-scaled) AS FB for
speech enhancement, e.g., [EG97, GEH98, GLH03, dHCG03, Coh01, PPB04, DMFB07].
One common rationale for these approaches is that a filter-bank with a non-uniform,
approximately Bark-scaled frequency resolution incorporates a perceptual model for
the non-uniform frequency resolution of the human auditory system. Another reason is
that on average most of the energy and harmonics of speech signals are located at the
lower frequencies. However, most proposals are based on AS FBs with subsampling,
which exhibit a rather high signal delay. The following analysis will show that the FBE
is an attractive alternative.

6.2.1.1 System Overview

The use of different filter-banks for noise reduction is now investigated based on [LV08a].
The enhancement of the noisy speech is performed by the DFT AS FB, the GDFT
FBE, the MA LDF and AR LDF. The uniform and allpass transformed version of
these filter-banks are used each.9 A real allpass coefficient of a = 0.4 is taken, which
yields a good approximation of the Bark scale for the considered sampling frequency of
8 kHz according to Eq. (4.7). In all cases, a transform size of M = 64 channels and a
linear-phase FIR prototype filter of length L = 65 are used.10

A square-root Hann window derived from Eq. (5.18) is employed as common pro-
totype filter for the DFT AS FB. The uniform DFT AS FB according to Figure 2.4
with a subsampling rate of R = 32 is used as well as the allpass transformed AS FB of
Figure 4.6 with a subsampling rate of R = 8. The use of a higher subsampling rate R is
possible, but increases the signal delay significantly since subband filters with a higher
stopband attenuation are needed to achieve a sufficient aliasing cancellation. The LS

9The low delay filter of Sec. 5.4 can be seen as a filter-bank system as it is derived from

the filter-bank equalizer or filter-bank summation method, respectively.
10A lower number of frequency channels can be used for warped filter-banks where a value

of M = 256 is often preferred for speech enhancement using the uniform DFT filter-bank

(at 8 kHz sampling frequency). However, such different configurations are not considered to

ease the comparison of the filter-banks.
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FIR phase equalizer of Sec. 3.3.4.1 with a filter degree of N = 141 is applied to the
filter-bank output (see Figure 4.6).

The GDFT FBE is implemented in the transposed direct form according to
Figure 5.7. The MA LDF possesses a filter degree of Nld = 48. The LS FIR phase
equalizer with filter degree N = 80 and N = 56 is applied to the warped FBE and the
warped MA LDF, respectively. The considered AR LDF has a filter degree of Nld = 16.
The cross-fading technique according to Eq. (5.54) is applied to the filter output signals
in order to avoid filter-ringing artifacts. A subsampling rate of R = 64 is taken for the
analysis filter-banks of FBE and LDF.

The spectral gain factors are computed by the super-Gaussian joint maximum a
posteriori (MAP) estimator of [LV05d]. This joint spectral amplitude and phase esti-
mator is derived by the more accurate assumption that the real and imaginary parts
of speech DFT coefficients are rather Laplace distributed (considered here) or Gamma
distributed than Gaussian distributed. The needed a priori SNR is determined by the
decision-directed approach [EM84] with a fixed smoothing parameter of 0.9. The short-
term noise power spectral density (PSD) is estimated by minimum statistics [Mar01].
Speech presence uncertainty is taken into account by applying soft-gains [MCA99].
Independent of the subsampling rate R of the filter-bank, the spectral gain factors are
always adapted at intervals of 64 sample instants and no individual parameter tuning
is performed to ease the comparison.

The used audio signals of 8 kHz sampling frequency are taken from the noisy speech
corpus NOIZEUS presented in [HL06]. A total of 20 sentences spoken by male and
female speakers is used, each disturbed by five different, non-stationary noise sequences
(airport, babble, car, station and street noise) with SNRs between 0 dB and 15 dB.

The quality of the enhanced speech is evaluated by informal listening tests and
instrumental quality measures described in App. E. As time-domain measures, the
segmental signal-to-noise ratio SNRseg and the segmental noise attenuation NAseg are
used. The cepstral distance CD is used as frequency-domain measure. For all instru-
mental measures, a frame size of Mm = 256 is used and 40 cepstral coefficients are
considered for the cepstral distance (CD) measure. The signal delay of the systems is
determined by Eq. (E.2) and the complexity by means of Table 5.1 and Table 5.2.

6.2.1.2 Simulation Results for Uniform Filter-Banks

The instrumental speech quality obtained with the uniform filter-banks is plotted in
Figure 6.7. The FBE achieves the same (or even better) objective speech quality as
the AS FB. Table 6.4 reveals that the FBE possesses a higher complexity, but achieves
a significantly lower delay than the AS FB. The MA and AR LDF achieve a further
reduction of the signal delay and algorithmic complexity. Contrary to the MA LDF, the
enhancement by the AR LDF leads to a significantly decreased objective speech quality
according to Figure 6.7.11 The AR filter approximation causes phase modifications,
which can have a very detrimental effect on the instrumental measures.12 However,

11Here, the terms instrumental quality and objective quality are used interchangeably.
12Such an effect can also be observed for warped filter-banks with an imperfect phase

compensation.
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Figure 6.7: Objective speech quality obtained by the uniform FBE (Figure 5.2),
the uniform MA and AR LDF (Figure 5.9) and the uniform DFT AS FB
(Figure 2.4) with M = L− 1 = 64 channels:
(a) segmental SNR
(b) segmental noise attenuation
(c) cepstral distance.

informal listening tests have revealed barely audible differences for the perceived sub-
jective speech quality. Therefore, a perceptual evaluation of the speech quality (PESQ)
according to [ITU01] has been conducted in addition. This PESQ measure ranges from
−0.5 (bad quality) to 4.5 (excellent quality). The PESQ measure is mainly used for
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Table 6.4: Measured signal delay and average algorithmic complexity per sample
for the uniform filter-banks (M = L− 1 = 64).

uniform signal delay summations multiplications delay
filter-bank [samples] (real) (real) elements

AS FB 64 101 31 256
FBE 32 83 142 256

MA LDF 24 67 64 240
AR LDF 0-2 75 74 272
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Figure 6.8: Perceptual evaluation of the speech quality for the enhanced
speech ŝ(k) achieved with the uniform filter-banks.

the assessment of speech codecs, but also employed as perceptual quality measure for
speech enhancement systems, e.g., [BMC05]. The measured PESQ values in Figure 6.8
show that the four uniform filter-banks achieve all an almost identical perceptual speech
quality. The PESQ measure is no all-embracing quantity for the subjective speech qual-
ity, but it complies well with the results of our informal listening tests. Thus, the low
delay filter concept is suitable to achieve a further reduced signal delay in a flexible and
simple manner with negligible loss for the perceived subjective speech quality.

6.2.1.3 Simulation Results for Warped Filter-Banks

The curves for the objective speech quality obtained by means of the different allpass
transformed filter-banks are shown in Figure 6.9. The measured PESQ values are not
plotted again since they are as close together as in Figure 6.8 but all about 0.25 PESQ
units higher. Thus, the warped filter-banks achieve an improved instrumental speech
quality in comparison to the corresponding uniform filter-banks. These results comply
with our informal listening tests where the speech enhanced by the warped filter-banks
was rated to be superior.

The measured signal delay and algorithmic complexity of the used allpass trans-
formed filter-banks are listed in Table 6.5. A comparison with Table 6.4 shows the
increase of signal delay and algorithmic complexity due to the allpass transformation,
if the same values for M and L are taken (which is usually not the case). The warped
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Figure 6.9: Objective speech quality obtained by the warped FBE (Figure 5.8),
the warped MA and AR LDF (Sec. 5.4.5) and the warped DFT AS FB
(Figure 4.6) with M = L− 1 = 64 channels and warping coefficient a = 0.4:
(a) segmental SNR
(b) segmental noise attenuation
(c) cepstral distance.

FBE causes a significantly lower delay and possesses a lower complexity than the corres-
ponding warped AS FB, but achieves the same objective and subjective speech quality.

As for the uniform filter-banks, a further reduction of the signal delay and algorith-
mic complexity can be achieved by the low delay filter approximation with no noticeable
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Table 6.5: Measured signal delay and average algorithmic complexity per sample
for the allpass transformed filter-banks (M = L− 1 = 64).

warped signal delay summations multiplications delay
filter-bank [samples] (real) (real) elements

AS FB 141 605 518 397
FBE 80 418 478 336

MA LDF 56 347 335 296
AR LDF 0-2 268 268 274

loss for the subjective speech quality. The AR LDF is a minimum-phase system and
causes a very low signal delay of only a few sample instants.

6.2.2 Speech Dereverberation

The FBE can also be used for joint noise reduction and speech dereverberation with
low delay, which is proposed originally in [LV08e, LV09d]. In the following, the general
concept of this approach is only outlined where a more detailed description can be found
in [LV09a] and the references cited within.

In practice, the speech recorded by a device is often a superposition of reverberant
speech zr(k) and additive (background) noise u(k) according to

x(k) = zr(k) + u(k)

=

Lr−1∑
l=0

s(k − l) · hr(l, k) + u(k) (6.13)

with hr(l, k) representing the time-varying room impulse response of (possibly infinite)
length Lr between source and receiver. The reverberant speech zr(k), in turn, can be
decomposed into its early and late reverberant part

zr(k) =

Le−1∑
l=0

s(k − l) · hr(l, k)︸ ︷︷ ︸
= ze(k)

+

Lr−1∑
l=Le

s(k − l) · hr(l, k)︸ ︷︷ ︸
= zl(k)

. (6.14)

The early reverberant speech ze(k) – and not the speech signal s(k) – is here taken as
target signal. This allows to suppress the late reverberant speech zl(k) and additive
noise u(k) by modelling them as uncorrelated noise processes and to apply well-known
speech enhancement techniques such as Wiener filtering or spectral subtraction. This
concept has been introduced by Lebart et al. [LBD01] and further improved by Habets
[Hab07]. The spectral gain factors can be calculated by means of the a posteriori
signal-to-interference ratio (SIR)

ζpost(i, κ) =
|Zr(i, κ)|2

σ2
zl

(i, κ) + σ2
u(i, κ)

∀ i ∈ { 0, 1, . . . ,M − 1 } (6.15)
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or the a priori SIR

ζprio(i, κ) =
|Ze(i, κ)|2

σ2
zl

(i, κ) + σ2
u(i, κ)

(6.16)

with Zr(i, κ) marking the spectral coefficients of the reverberant speech at sample in-
stant κ. The spectral coefficients of the early reverberant speech Ze(i, κ) are unknown,
but the a priori SIR can be estimated by the decision-directed approach of [EM85].
The spectral variance of the noise σ2

u(i, κ) can be estimated, e.g., by minimum statistics
[Mar01]. The spectral variance of the late reverberant speech σ2

zl
(i, κ) can be deter-

mined by a model-based approach, which is derived by a statistical model of the room
impulse response [LBD01, Hab07]. This model-based approach requires a blind estima-
tion of the reverberation time, which can be performed by the algorithm developed in
[LV08d, LYJV10].

The a posteriori SIR of Eq. (6.15) and a priori SIR of Eq. (6.16) reduce to the a
posteriori SNR and a priori SNR, if the spectral variance of the late reverberant speech
is (assumed to be) zero, i.e., σ2

zl
(i, κ) ≡ 0. Thus, the algorithm can be seen as a kind

of ‘generalized’ noise reduction. Accordingly, the benefits of using the FBE instead of
a common DFT AS FB for the adaptive filtering are essentially the same as for the
noise reduction system treated before. Therefore, the application of the FBE for this
purpose should not be treated in more detail at this point.

Finally, it should be noted that speech enhancement algorithms for cell phones or
digital hearing aids are often implemented on a DSP with fixed-point arithmetic. As
for the previously treated IIR QMF-bank designs for speech and audio coding, the
investigation of rounding errors due to fixed-point arithmetic is an important issue
regarding the applicability of the (recursive) FBE. A comprehensive investigation of
these aspects is conducted in [LV04b, LV07a] where it is shown that these rounding
effects can be handled by an appropriate design and implementation of the system.

6.2.3 Near-End Listening Enhancement

The use of a cell phone often takes place in noisy environments, which can significantly
impair the conversation. One common problem is that a noisy speech signal is often
recorded by the microphone and transmitted to the far-end speaker. A way to enhance
the noisy signal before speech coding and transmission is to employ a noise reduction
system as treated before. Another problem is that the near-end speaker might perceive
a mixture of the far-end speech signal and acoustical background noise. This can lead to
a reduced speech intelligibility and increased listening efforts, respectively. This problem
can be tackled by means of near-end listening enhancement as proposed in [SV06]. In
the following, it is shown that the use of the filter-bank equalizer is especially suitable
for this purpose based on [SLV08] where this idea is originally presented.

6.2.3.1 Concept

This principle of near-end listening enhancement is illustrated in Figure 6.10 where the
involved A/D and D/A conversion is not considered for the sake of simplicity. The
near-end speaker listens to a superposition of a processed far-end speech signal s̄(k)
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Figure 6.10: Principle of near-end listening enhancement.

emitted by the loudspeaker and near-end background noise u(k). The aim of near-
end listening enhancement is thereby to modify the original speech signal s(k) of the
far-end speaker in such a manner that the near-end speaker experiences an improved
speech intelligibility. This is accomplished by adaptive subband filtering based on an
estimation of the background noise û(k).

The original proposal for near-end listening enhancement employs the overlap-add
method [SV06]. The replacement by the warped FBE, as proposed in [SLV08], is mo-
tivated by several reasons: The aim of near-end listening enhancement is to improve
the speech intelligibility, which can be measured by the speech intelligibility index (SII)
[ANS97]. The calculation of the SII is done within critical frequency bands, which cor-
respond to those of the Bark scale. This motivates the use of an allpass transformed
filter-bank due to is ability to mimic the Bark scale with high accuracy, cf., Sec. 4.1.1.
An advantage of the allpass transformed FBE in comparison to an allpass transformed
AS FB with subsampling is thereby its lower signal delay and computational complexity
as shown in Sec. 5.2. The warped AR LDF of Sec. 5.4.5 can further reduce the algo-
rithmic signal delay to only a few samples. This ability to achieve a low signal delay is
a further motivation for using the FBE or its LDF extension. A promising application
of near-end listening enhancement by means of the FBE are cell phones where a low
signal delay is essential, cf., [SBS+06].

The use of the warped FBE for near-end listening enhancement is sketched in
Figure 6.11. In contrast to the FBE shown in Figure 5.8, a second analysis filter-bank
is now needed for the noise estimation as indicated by Figure 6.10. The DFT instead
of the GDFT is used for the analysis filter-bank as only magnitude spectra are needed
for the spectral gain calculation described in the following.

6.2.3.2 Spectral Gain Calculation

According to [SV06], the time-varying gain factors W (i, κ) are chosen in a way that the
ratio of the short-term PSD of the amplified speech Φs̄s̄(i, κ) and the short-term PSD
of the noise signal Φuu(i, κ) should be greater than or equal to a target SNR ζo:

Φs̄s̄(i, κ)
Φuu(i, κ)

≥ ζo (6.17)
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Figure 6.11: Near-end listening enhancement by means of the warped FBE.

with, e.g., ζo =̂ 15 dB. In order to assure that the speech signal is not attenuated in a
noise-free environment, the gain factors should not be lower than one

W ′(i, κ) = max

{√
ζo

Φuu(i, κ)
Φss(i, κ)

, 1

}
. (6.18)

The spectral coefficients of the speech are weighted according to the spectral charac-
teristics (PSD) of the noise signal. This approach, however, ‘over-amplifies’ spectral
speech components with low energy since it tries to raise anything over the noise level
by the same amount ζo independent of the original signal strength. This effect can be
reduced by limiting the gain factors W ′(i, κ) to a maximum gain factor Wmax with,
e.g., Wmax =̂ 30 dB. Hence, the spectral gain factors are finally given by

W (i, κ) = min

{
max

{√
ζo

Φuu(i, κ)
Φss(i, κ)

, 1

}
,Wmax

}
. (6.19)

The short-term PSDs Φss(i, κ) and Φuu(i, κ) are estimated by recursive averaging13

Φ̂ss(i, κ) = βs · Φ̂ss(i, κ−R) + (1− βs) · |S(i, κ)|2 ; 0 < βs < 1 (6.20a)

Φ̂uu(i, κ) = βu · Φ̂uu(i, κ−R) + (1− βu) · |U(i, κ)|2 ; 0 < βu < 1 . (6.20b)

The choice of the time constants βs and βu is crucial for the performance of the al-
gorithm. If they are too small, the amplified speech follows the noise too quickly and
tends to lose its amplitude structure. If they are close to one, the system does not react
to changing speech and noise signals. As discussed in [SV06], the values βs = 0.996
and βu = 0.96 turn out to be a good choice for a downsampling rate of R = 80 and a
prototype lowpass filter with 160 non-zero coefficients and 96 zeros for zero-padding.

13In a double-talk situation, the noise PSD can usually not be calculated by Eq. (6.20b)

and needs to be estimated, e.g., by minimum statistics [Mar01], but this case is not consid-

ered in the later simulations where Eq. (6.20) is used.
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However, the used warped filter-bank with Bark-scaled bandwidths features a non-
uniform time and frequency resolution. For a positive allpass coefficient a, the subband
filters at higher frequencies have higher bandwidths (lower frequency resolution) and a
shorter impulse response (higher time resolution), and vice versa for lower frequencies.
This effect should be considered for the determination of the time constants βs and βu

introduced in Eq. (6.20). For a shorter impulse response, the time constants βs and
βu should become greater in order to average over approximately the same number of
samples. Therefore, the time constants are interpolated between the reference case and
a maximum value of one depending on the warped bandwidth ΔΩ̃i of each subband

β′
s(i) = 1− (1− βs)

ΔΩref

ΔΩ̃i

(6.21)

and the same applies for βu. The overlap-add method considered in [SV06] uses 160
samples per DFT frame. Therefore, a ‘reference bandwidth’ of ΔΩref = 2π

160 is taken for
Eq. (6.21).14 The individual bandwidth of each Bark-scaled subband can be approxi-
mated by the distance of the center frequencies of the warped subbands as follows

ΔΩ̃i = ϕa(Ωi)− ϕa(Ωi−1) with Ωi = 2 π
M i ; i ∈ { 0, 1, . . . ,M − 1 } (6.22)

where the phase response of the allpass filter is given by Eq. (2.54). The devised method
is of course a heuristic approach which, however, provides good results in practice.

6.2.3.3 Simulation Results

The performance of the proposed algorithms has been evaluated in terms of the SII
[ANS97]. The SII is supposed to be correlated with the intelligibility of speech under a
variety of adverse listening conditions. It is basically computed by adding the speech-to-
noise ratio in each contributing frequency band weighted according to its contribution
to speech intelligibility. According to [ANS97], good communication systems have an
SII of 0.75 or above, while poor communication systems have an SII below 0.45. The
SII has been calculated with the so-called critical band procedure. In order to calculate
the speech and noise spectrum level of each sound file, the spectrum level is averaged for
half-overlapping Hann-windowed frames of 20 ms length. An average speech spectrum
level of the whole speech database has been achieved by this, which is comparable to
the standard speech spectrum level for normal vocal effort as specified in [ANS97]. For
this evaluation, the SII has been calculated for every speech file of the TIMIT database,
in total 5.4 hours, disturbed by ‘factory 1’ noise from the NOISEX-92 database for a
sampling rate of 8 kHz.

The mean values of the SIIs without processing and after processing with the pro-
posed enhancement system, i.e., a warped FBE and warped AR LDF with M = 64
subbands and allpass coefficient a = 0.4, are depicted in Figure 6.12 for different
SNRs. For comparison, the mean SII after processing with a uniform DFT AS FB
with M = 256 subbands as proposed in [SV06] is also plotted. As a second refer-
ence, each half-overlapping speech frame of 160 samples length is amplified with one

14The DFT filter-bank considered in [SV06] has a uniform bandwidth of ΔΩ = 2π
256 .
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Figure 6.12: Mean SII after frequency independent and frequency depen-
dent subband processing using a uniform DFT AS FB (Figure 2.4) with
M = 256 subbands (L = M), a warped FBE (Figure 5.8) with M = 64 sub-
bands (N = 159) and a warped AR LDF (Sec. 5.4.5) with filter degree
Nld = 11. The right plot magnifies the highlighted area of the left plot.

frequency independent factor such that the output power of each speech frame is the
same as after processing with the uniform DFT AS FB (overlap-add method).

It can be seen that the warped FBE with M = 64 subbands achieves a similar
performance in terms of the SII as the uniform AS FB withM = 256 subbands. Informal
listening tests, however, have shown a preference for the warped FBE in comparison
to the uniform AS FB. The frequency dependent amplification, in turn, results in a
better speech intelligibility than the frequency independent amplification, which is also
confirmed by informal listening tests.

The mean SII after processing with the warped AR filter approximation and M = 64
subbands (dashed line) is compared to the above mentioned algorithms. It can be
observed that the AR LDF achieves almost the same performance as the warped FBE
with 64 subbands and slightly outperforms the uniform AS FB with 256 subbands.

The processing with the overlap-add method has an algorithmic signal delay of 159
samples. Using the warped FBE reduces the algorithmic delay to 95 samples. The
algorithmic signal delay of the AR LDF is determined by Eq. (6.7), which resulted
values between 0 and 2 samples. Thus, the use of the warped FBE and AR LDF,
respectively, allows to achieve a low signal delay without a noticeable impact on the
achieved instrumental speech intelligibility.

6.3 Conclusions

The application of the proposed allpass-based filter-banks is discussed for some selected
examples and the achieved performance is compared with that of commonly used FIR
filter-banks.
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The closed-form IIR/IIR QMF-bank design presented in Sec. 3.1.2.3 can achieve a
signal reconstruction without aliasing and amplitude distortions while the remaining
phase distortions can be traded against signal delay in a simple and flexible fashion.
Due to these benefits, this QMF-bank design has been adopted in a candidate proposal
for the super-wideband and stereo extension of ITU-T Rec. G.729.1 and Rec. G.718
[GKL+09, LV09b]. This hierarchical speech and audio codec is developed especially for
heterogeneous communication networks. The encoder generates a layered bit-stream
to provide a coding scheme with bit rate as well as bandwidth scalability. To achieve
this scalability, critically subsampled QMF-banks are employed. They split a wideband
or super-wideband input signal into downsampled subband signals, which are encoded
separately to obtain a layered bit-stream.

The new codec is built on top of a core codec given by ITU-T Rec. G.729.1 [ITU06].
One proposal is to replace the FIR/FIR QMF-bank of this core codec optionally by the
new allpass-based IIR/IIR QMF-bank. The investigation of the fixed-point implemen-
tations for these two filter-banks reveals that the devised IIR QMF-bank reaches almost
the same signal-to-quantization-noise ratio (SQNR) as the FIR QMF-bank of ITU-T
Rec. G.729.1. However, the proposed allpass-based QMF-bank achieves a significantly
lower algorithmic complexity and signal delay than its FIR counterpart without caus-
ing audible signal distortions. Therefore, the new IIR QMF-bank is also used for the
first stage of the codec where a super-wideband signal (fs = 32 kHz) is split into two
subbands. Owing to this filter-bank, the super-wideband extension of the new codec
increases the signal delay of the G.729.1 core codec of 48.9375 ms only by 2.21875 ms.

The concept of the filter-bank equalizer (FBE) presented in Chap. 5 allows to per-
form uniform or non-uniform subband processing with low delay. This effects that this
filter-bank is of special interest for low delay speech enhancement to be used, e.g., in
cell phones, hands-free devices, or (not at least) digital hearing aids. The application of
the FBE for noise reduction and near-end listening enhancement is discussed. The aim
of a noise reduction system is to improve the speech quality by reducing the effects of
additive background noise, while a system for near-end listening enhancement improves
the speech quality in terms of the speech intelligibility index (SII).

The comparison of the FBE with subsampled AS FBs, which are commonly em-
ployed for adaptive subband filtering, reveals the following properties: The uniform or
warped FBE can achieve a similar (or even better) objective and subjective speech qual-
ity, but with a significantly lower signal delay than a corresponding uniform or warped
AS FB with subsampling. The uniform FBE has a higher algorithmic complexity than
the corresponding uniform AS FB (e.g., overlap-add method), while the opposite ap-
plies for the allpass transformed FBE in comparison to the allpass transformed AS FB.
The use of a warped filter-bank allows either to achieve an improved speech quality
in comparison to a uniform filter-bank with the same number of subbands or it can
achieve a similar speech quality with a lower number of subbands.

The low delay filter (LDF) extension of the FBE allows to further decrease its signal
delay in a simple and flexible manner, but without a noticeable effect on the subjective
speech quality. The AR LDF is of special interest for applications with very demanding
signal delay constraints as it can achieve a latency of only a few sample instants.



Chapter 7

Summary

T
his thesis addresses the theory and design of allpass-based analysis-synthesis filter-
banks (AS FBs) and their application to speech and audio processing. The consid-

ered allpass-based QMF-banks and Pseudo QMF-banks are uniform filter-banks with
critical subsampling. Their analysis filter-banks consist of allpass polyphase filters,
which enables a high frequency selectivity with a low filter degree. The second class of
allpass-based filter-banks that is taken into account are allpass-transformed AS FBs.
These filter-banks can achieve a non-uniform frequency resolution which resembles that
of the human auditory system. A common design issue of all treated allpass-based
filter-banks is that the non-linear phase responses of the IIR analysis filters need to
be compensated by an appropriate phase equalization within the synthesis filter-bank.
Based on a careful analysis of existing design methods, various novel design approaches
for allpass-based filter-banks are developed.

Design of IIR QMF-Banks and Pseudo QMF-Banks

Different designs for a critically subsampled two-channel QMF-bank are proposed in this
thesis where analysis and synthesis filter-bank consist of allpass polyphase components.
The allpass polyphase filters of the synthesis filter-bank act as phase equalizers, which
are designed by simple analytical closed-form expressions. A first QMF-bank design
achieves a minimization of amplitude, phase and aliasing distortions with a low signal
delay and low algorithmic complexity. A second design causes no amplitude distortions
and achieves a complete aliasing cancellation at the expense of a higher algorithmic
complexity and signal delay in comparison to the first design. These QMF-bank designs
are extended to a critically subsampled Pseudo QMF-bank, which results in a recursive
M -channel DFT AS FB whose analysis and synthesis filters consist of allpass polyphase
filters.

A benefit of the proposed closed-from designs is that the trade-off between recon-
struction error and signal delay can be adjusted in a simple and flexible manner. In
comparison to the related IIR/FIR QMF-bank designs of [GK00, KD02], the proposed
IIR/IIR QMF-bank designs achieve a lower algorithmic complexity and cause no or
negligible amplitude distortions at the expense of higher phase distortions. Therefore,
the presented designs are especially attractive for speech and audio processing where
phase distortions are less critical.

The proposed allpass-based IIR/IIR QMF-bank design with complete aliasing can-
cellation was part of a candidate proposal of an ITU-T contest for a new super-wideband
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and stereo extension of ITU-T Rec. G.729.1 and G.718 [GKL+09, LV09b]. This hier-
archical speech and audio codec employs the new IIR/IIR QMF-bank to split a super-
wideband signal (fs = 32 kHz) into two subband signals, which are encoded separately
in order to generate a layered bit-stream. The design of the new IIR/IIR QMF-bank
attains that the super-wideband extension increases the signal delay of the G.729.1 core
codec of 48.9375 ms only by 2.21875 ms. One option of the new codec proposal is to
replace the original FIR/FIR QMF-bank of the embedded G.729.1 core codec by the
new IIR/IIR QMF-bank, which reduces its signal delay by about 38% and its compu-
tational complexity (measured in terms of weighted million operations per second) by
about 28%.

Phase Equalizer Design for Allpass-Based Filter-Banks

An essential design issue for allpass-based filter-banks is to equalize the non-linear phase
response of allpass filters. Therefore, different phase equalizer designs for this purpose
are elaborated in more detail.

One approach to perform the phase equalization for allpass-based filter-banks is by
means of non-causal filtering, e.g., [MCB92, CM96]. The approach of [MCB92] can
achieve a perfect phase equalization, but requires the transmission of initial filter states
from the analysis filter-bank to the synthesis filter-bank. The investigation of this
method shows that it is very susceptible towards modifications of the subband signals,
which makes this approach less suitable for practical applications. The transmission of
filter states can be avoided at the expense of an increased signal delay and complexity
by the technique of [CM96], which achieves a nearly perfect phase equalization. The
analysis of this approach reveals that this phase equalizer is a linear periodically time-
varying (LPTV) system. Hence, the use of this technique for filter-banks leads to
additional aliasing distortions, even if no subsampling is performed.

These problems are avoided by FIR or IIR phase equalizers which are linear time-
invariant (LTI) systems. For allpass-based filter-banks, the needed phase equalizers
can be designed by simple closed-form expressions [Gal02, LV06d] instead of a general
and more complex numerical phase equalizer design, e.g., [Lan93, Lan98]. The closed-
form FIR phase equalizer design of [Gal02] is constructed for an allpass filter of first
order where the phase equalization of allpass filters of higher order is achieved by a
cascade of phase equalizers. For the phase equalization of an allpass filter of first
order or an allpass chain, it is proven that this cascaded FIR phase equalizer achieves
an equiripple approximation error for the desired phase response, group delay and
magnitude response. The closed-form allpass phase equalizer design of [LV06d] is a
cascaded phase equalizer as well. The phase and group delay approximation error
exhibits an equiripple behavior with extrema being (exactly) twice as high as for the
FIR phase equalizer of [Gal02], but this allpass phase equalizer causes no amplitude
distortions and has a lower algorithmic complexity.

For the phase equalization of allpass filters of higher order or long allpass chains,
respectively, it turns out that the use of a cascaded (FIR or allpass) phase equalizer
leads to a high signal delay. Therefore, it is proposed to use an alternative phase
equalizer which is obtained by truncating and shifting the anti-causal impulse response
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of an ‘ideal’ phase equalizer (i.e., an inverse allpass filter). The resulting phase equalizer
is a least-squares (LS) error approximation for the ideal phase equalizer. It is shown
that this LS FIR phase equalizer is particularly suited for the construction of allpass
transformed filter-banks.

Allpass Transformed Analysis-Synthesis Filter-Banks

Allpass transformed filter-banks are obtained by replacing the delay elements of the
analysis filter-bank by allpass filters of first or higher order [OJS71, BO74, Var78,
Kap98]. This leads, in contrast to the related warped DFT [MM01], to analysis filters
with non-uniform bandwidths. The non-uniform time-frequency resolution of such a
frequency warped filter-bank is simply adjusted by the common pole of the employed
allpass filters. Allpass transformed AS FBs can achieve a frequency resolution which is
very similar to that of the human auditory system (represented by the Bark frequency
scale). Another benefit of allpass transformed filter-banks is that their signal delay and
complexity is usually lower than for comparable tree-structured filter-banks.

A synthesis filter-bank to achieve near-perfect reconstruction (NPR) can be con-
structed by means of phase equalizers to compensate the non-linear phase responses of
the allpass transformed analysis filters. The design of [GK00, Gal02], which employs
cascaded FIR phase equalizers, is considerably improved by the use of the LS FIR phase
equalizer. The proposed synthesis filter-bank achieves a significantly lower signal re-
construction error with a lower signal delay than the design of [GK00, Gal02]. The
magnitude responses of the synthesis filters are almost equal to those of the analysis fil-
ters if a good phase equalization is performed. For the same signal delay, the improved
design with LS FIR phase equalizers achieves therefore a better bandpass characteristic
for the synthesis filters in comparison to the original design with cascaded FIR phase
equalizers.

An advantage of the presented closed-form NPR designs by means of phase equal-
ization is that the coefficients of the synthesis filter-bank are determined by simple
analytical expressions. Furthermore, these design approaches allow to adjust the trade-
off between reconstruction error and signal delay in an easy manner. However, a general
drawback of such closed-form designs is their inability to incorporate (explicitly) further
design objectives. This problem is tackled by a novel numerical design framework. It is
based on a new matrix representation for the transfer function of an allpass transformed
AS FB from which different FIR synthesis filter-bank designs are derived.

A first design approach is a generalization of the closed-form NPR filter-bank design
with LS FIR phase equalizers. The FIR synthesis filters are determined by a linearly
constrained quadratic program (LCQP) where the phase distortions are minimized with
the additional constraint for an LTI system. The obtained synthesis filter-bank is
capable to achieve a complete aliasing cancellation.

This design is extended in a second step to involve further design objectives. One
generalization is to permit a constrained (LS) error for the aliasing distortions in an
exchange for a lower amount of linear signal distortions.

Another extension is a sparse design where the number of non-zero filter coefficients
is minimized in order to achieve a reduced number of multiplications and summations.
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A sparse design can be beneficial, e.g., for an ASIC implementation to save circuit
components and power consumption or it can help to reduce the quantization noise and
complexity for an implementation with fixed-point arithmetic due to the reduced num-
ber of multipliers and adders. The constraint for sparseness leads to a rather involved
non-convex optimization problem. This difficulty is circumvented by means of an L1-
norm regularization, which results in a fairly simple second order cone program (SOCP)
to determine the synthesis filter coefficients. In contrast to a mere zero-forcing of the
lowest synthesis filter coefficients, the devised sparse design can fulfill the additional
design constraint for complete aliasing cancellation with a much higher numerical ac-
curacy.

A second numerical design approach strives for perfect reconstruction (PR). This
is accomplished by an unconstrained LS error design. An advantage of the developed
unconstrained PR design is that the coefficients of the FIR synthesis filters are merely
determined by a set of linear equations (linear program). However, this design does not
incorporate explicitly the demand for synthesis filters with a high stopband attenuation.
This is addressed by a constrained PR design. Passband error and stopband energy
of the synthesis filters are minimized with the constraint for perfect reconstruction,
which results in a linearly constrained quadratic program (LCQP). This new design
can achieve a prefect signal reconstruction with a high numerical accuracy and provides
at the same time synthesis filters with a pronounced bandpass characteristic.

The introduced numerical PR designs have some distinctive advantages over the
closed-form PR designs of [Kap98, SM02a, FK03]: Firstly, the presented designs pro-
vide (inherently) a stable synthesis filter-bank even in case of an allpass transformation
of higher order. Secondly, these designs apply also for a polyphase network (PPN) im-
plementation of an AS FB where the length of the prototype filter exceeds the number
of channels. This allows to use prototype filters with a higher frequency selectivity.
Finally, the presented designs provide synthesis filters with a distinctive bandpass char-
acteristic.

The introduced numerical designs are all stated as a semi-definite program (SDP) or
special cases thereof. Such convex optimization problems can be efficiently solved and
provide a global optimum, e.g., [VB96, BV04]. In contrast to previous numerical designs
for allpass transformed AS FBs filter-banks [dHGCN02, VN03, WdDC03], the devised
design framework is the first one that can achieve a complete aliasing cancellation or
even a prefect signal reconstruction. In addition, the developed filter-bank designs
consider explicitly the more general case of an allpass transformation of higher order,
which offers more degrees of freedom to adjust the time-frequency resolution of the
filter-bank.

A brief overview of the new designs for allpass transformed DFT AS FBs is provided
by Table 7.1. The designs follow different objectives and it depends on the intended
application which filter-bank design is preferable. All the presented synthesis filter-
banks are based on FIR filters and can be implemented efficiently by a polyphase
network. The new designs are elaborated for allpass transformed DFT filter-banks, but
they can also be applied to other modulated filter-banks such as DCT filter-banks in a
straightforward fashion.
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Table 7.1: Overview of the novel design approaches for allpass transformed
DFT AS FBs developed in Chap. 4.

optimizationdesign section
method

special property

NPR design by closed-form minimized
phase equalization

4.2.2
solution phase distortions

constrained NPR perfect
design

4.3.3 LCQP
aliasing cancellation

generalized constrained controllable
NPR design

4.3.3 SDP
aliasing error

filter-bank withsparse NPR design 4.3.4 SOCP
low complexity

unconstrained PR linear simple
design

4.3.5
program optimization

constrained PR minimized stopband
design

4.3.6 LCQP
and bandpass error

Low Delay Filter-Banks

Many applications require filter-banks with a low signal delay. Examples are speech
enhancement systems in cell phones or digital hearing aids where a low latency is
an essential design constraint. For such applications, the concept of the filter-bank
equalizer (FBE) is developed. This system allows for adaptive filtering with a uniform
and non-uniform frequency resolution as well as a low signal delay. The FBE is derived
as an efficient implementation of the filter-bank summation method (FBSM), which
can be regarded as a special case of an AS FB without subsampling. The FBE can
achieve a perfect signal reconstruction for a broad class of transformation kernels with
lower efforts than for comparable AS FBs with subsampling.

It is shown how the choice of the filter structure influences signal delay, computa-
tional complexity and signal quality of the FBE if used for adaptive subband filtering.
The transposed direct form implementation achieves a stronger smoothing effect for
time-varying coefficients in comparison to the direct form implementation of the FBE,
which is beneficial to avoid artifacts for the processed signal. An advantage of the direct
form implementation of the FBE is that a time-mismatch between the adaptation of
the spectral gain factors and the actual time-domain filtering has not to be compen-
sated by additional delay elements as for the transposed direct form. Possible artifacts
due to the switching of the time-domain filter coefficients can be avoided by smoothing
(cross-fading).

The devised allpass transformed FBE achieves near-perfect reconstruction with
lower efforts than a comparable allpass transformed AS FBs with subsampling. The
(uniform and warped) FBE can be efficiently implemented by means of a polyphase
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network. In general, the uniform FBE has a higher algorithmic complexity than the
corresponding uniform AS FB, while the opposite applies for the allpass transformed
FBE in comparison to the allpass transformed AS FB. The uniform and warped FBE
achieve a significantly lower algorithmic signal delay than a corresponding uniform and
warped AS FB with subsampling. Furthermore, a nearly linear phase response can be
maintained even for time-varying coefficients, which is advantageous, e.g., for multi-
channel processing.

The concept of the low delay filter (LDF) is an extension of the (uniform and warped)
FBE where the time-domain filter of the FBE is approximated by a filter of lower degree.
This allows to reduce the signal delay and algorithmic complexity of the FBE in a simple
and flexible manner: An adjustment of the spectral gain calculation is not required
and this approach provides an increased flexibility for the choice of the time-domain
filter. The approximation by a moving-average (MA) filter and an auto-regressive (AR)
filter is elaborated. The use of the uniform or warped MA filter allows to maintain a
time-invariant phase response where a nearly linear phase can be achieved by a phase
equalization. Such a property can be beneficial, e.g., for binaural speech processing in
hearing aids. The uniform or warped AR filter is a minimum-phase system and can
achieve an algorithmic signal delay of only a few sample instants. This property is of
special interest for systems with very demanding signal delay constraints.

The application of the FBE for speech enhancement by noise reduction, speech
dereverberation and speech intelligibility improvement in noisy environments is inves-
tigated. It is shown that the uniform or warped FBE can achieve a similar (or even
better) objective and subjective speech quality than a comparable AS FB, but with a
significantly lower signal delay. The use of a warped filter-bank allows either to achieve
an improved speech quality in comparison to a uniform filter-bank or to achieve a sim-
ilar speech quality, but with a lower number of subbands. The use of the LDF achieves
a further reduction of signal delay and complexity in a simple fashion with a negligible
effect on the perceived speech quality.

Besides the speech enhancement systems considered in this work, the use of the
FBE and LDF is also attractive for other applications such as acoustic echo cancella-
tion [SSBF08, YIEB10] or pre-echo control [GRV10]. Likewise, allpass-transformed AS
FBs are not only proposed for noise reduction [GEH98], but also for subband beam-
forming [dHGCN02], multiple description coding [SM02a], or speech and audio coding
[FKK05]. The use of the presented, improved filter-bank designs for such applications
is an interesting and promising topic for further works.
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Abbreviations & Notation

A.1 List of Abbreviations

AR auto-regressive
AS analysis-synthesis
ASIC application-specific integrated circuit
BSF bifrequency system function
CD cepstral distance
CELP code excited linear prediction
CLS constrained least-squares error
DCT discrete cosine transform
DFT discrete Fourier transform
DSP digital signal processor
ELT extended lapped transform
ERB equivalent rectangular bandwidth
FB filter-bank
FBE filter-bank equalizer
FBSM filter-bank summation method
FEC frame erasure concealment
FFT fast Fourier transform
FIR finite impulse response
GDCT generalized discrete cosine transform
GDFT generalized discrete Fourier transform
HP highpass (filter)
IDFT inverse discrete Fourier transform
IFFT inverse fast Fourier transform
IGDFT inverse generalized discrete Fourier transform
IIR infinite impulse response
ITU International Telecommunication Union
LCQP linearly constrained quadratic program
LDF low delay filter
LMIs linear matrix inequalities
LP lowpass (filter)
LPTV linear periodically time-varying
LS least-squares
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LTI linear time-invariant
MA moving-average
MAP maximum a posteriori
MDCT modified discrete cosine transform
NPR near-perfect reconstruction
PE phase equalizer
PESQ perceptual evaluation of the speech quality
PPN polyphase network
PR perfect reconstruction
PSD power spectral density
QCQP quadratically constrained quadratic program
QMF quadrature-mirror filter
SDP semi-definite program
SII speech intelligibility index
SIR signal-to-interference ratio
SNR signal-to-noise ratio
SOCP second order cone program
SQNR signal-to-quantization-noise ratio
SWB super-wideband
TDAC time-domain aliasing cancellation
TDBWE time-domain bandwidth extension
WB wideband
WDFT warped discrete Fourier transform
WMOPS weighted million operations per second

A.2 Nomenclature for Filters

An arbitrary filter or system with impulse response f(k) and sample index k ∈ Z is
considered. In general, input and output signal of a filter (as well as a filter-bank)
are denoted by x(k) and y(k), respectively. It is assumed that the filter is stable and
f(k0) �= 0 for some k0 ∈ Z such that

0 <

∞∑
k=−∞

|f(k)| <∞ . (A.1)

The filter is causal, if its impulse response features the property

f(k) = 0 for k < 0 . (A.2)

Otherwise, the filter is non-causal. A non-causal filter is anti-causal, if

f(k) = 0 for k > 0 . (A.3)



A.3 Mathematical Notation & Principal Symbols 169

The rational system function of a filter is given by1

f(k) ◦−−• F (z) =

N1∑
n=0

cn · z−n

1 +
N2∑

m=1

dm · z−m

; cN1
�= 0; dN2

�= 0 . (A.4)

The degree or order of a filter refers to the maximum of N1 and N2. For an FIR filter,
dm = 0 ∀m and the value L1 = N1 + 1 is referred to as filter length. The para-conjugate
of the system function F (z) is marked by a breve

F̆ (z) =

N1∑
n=0

c∗
n · zn

1 +
N2∑

m=1

d∗
m · zm

. (A.5)

The allpass transformation of a filter with system function F (z) is marked by a tilde

F̃ (z) = F
(
z = A−1(z)

)
(A.6)

withA(z) marking the system function of an allpass filter. The tilde notation is also used
to mark the output signal of an allpass transformed system without phase equalization

Ỹ (z) = X(z) · F̃ (z) . (A.7)

The frequency response of a filter is given by

F
(
ej Ω
)

=
∣∣F (ej Ω

)∣∣ · e−j ϕ(Ω) . (A.8)

The magnitude response of a filter is expressed mostly in decibel where∣∣F(ej Ω
)∣∣ / dB = 20 log10

∣∣F(ej Ω
)∣∣ . (A.9)

For the phase response ϕ(Ω), the negative sign in the exponent is excluded, which is
beneficial for our treatment, but differs to some definitions in literature.

A.3 Mathematical Notation & Principal Symbols

The following conventions are used to denote quantities. Bold upper-case letters refer
to matrices, e.g., AAA, bold lower-case letters refer to vectors, e.g., aaa and scalars are not
bold, e.g., a. Furthermore, reconstructed, approximated or estimated sequences and
quantities are labeled with a hat. For example, the reconstructed input signal of a
filter-bank is denoted by x̂(k), the vector obtained by solving an optimization problem
is marked, e.g., by p̂pp and the estimated speech signal provided by a noise reduction

1The system function is here different to the system response introduced in Sec. 2.4.
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system is written as ŝ(k). Time-domain sequence are denoted by lower-case letters
and their respective z-transform or Fourier transform is marked by capital letters, e.g.,
Z {f(k)} = F (z) and F {f(k)} = F

(
ej Ω
)
.

In the following, the used mathematical symbols, operators and principal variables
are listed excluding auxiliary variables.

Mathematical Symbols and Operators

a scalar

a∗ complex conjugate value

aaa vector

AAA matrix

AAAT transpose of a matrix

AAAH conjugate transpose of a matrix

AAA−1 inverse of a square matrix

AAA# pseudo-inverse of a matrix

≈ approximately equal to
!
= shall be equal to

≡ equal for all arguments

=̂ equivalent to

∧ logical AND

∨ logical OR

a > b a greater than b

a ≥ b a greater than or equal to b

a� b a much greater than b

a < b a smaller than b

a ≤ b a smaller than or equal to b

a� b a much smaller than b

aaa � bbb components of aaa are greater than or equal to components of bbb

AAA � 0 matrix is positive semi-definite

AAA  0 matrix is positive definite

rank (AAA) rank of a matrix

AAA�BBB Hadamard product of two matrices

AAA⊗BBB Kronecker product of two matrices

111L column vector with L ones

IIIL identity matrix of dimension L× L
000L column vector with L zeros

OOON×L zero-matrix of dimension N × L
‖aaa‖0 zero-norm (cardinality) of a vector

‖aaa‖2 least-squares norm (L2-norm)

‖aaa‖∞ Chebyshev norm (L∞-norm)
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‖aaa‖p general Lp-norm with p ∈ { 1, 2, . . . ,∞}
|x| absolute value of x

�x� greatest integer which is lower than or equal to x

�x� lowest integer which is greater than or equal to x

sign(x) sign of x

�{x} real part of x

�{x} imaginary part of x

tan(x) tangent function

arctan(x) inverse tangent function (unwrapped)

cos(x) cosine function

arccos(x) inverse cosine function (unwrapped)

sin(x) sine function

log10(x) logarithm with base 10

log2(x) logarithm with base 2 (binary logarithm)

max
x
{f(x)} maximum of f(x) over x

min
x
{f(x)} minimum of f(x) over x

arg {f(x)} argument x of f(x)

corr {x(k), y(k)} cross-correlation of two sequences

gdl {f(Ω)} group delay of f(Ω)

F {x(k)} Fourier transform of x(k)

Z {x(k)} z-transform of x(k)

C(F) no. of elements of set F

n! factorial of a positive integer(
k
n

)
= k!

n! (k−n) binomial coefficient for integer values 0 ≤ n ≤ k

j =
√
−1 imaginary unit

e 2.718281828459045 . . .

π 3.141592653589793 . . .

∈ element of

/∈ not element of

∀ for all (elements)

∪ union of sets

N0 set of all positive integers including zero

N set of all positive integers excluding zero

Z set of all integers

R set of all real numbers

R+ set of all positive real numbers excluding zero

C set of all complex numbers

◦−−• transformation from time-domain to z-domain
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Latin Symbols

a complex allpass pole (K = 1) Eq. (2.52)

a(m) complex allpass pole (K ≥ 1) Eq. (2.48)

ai complex pole of allpass polyphase filter (Ki = 1) Eq. (3.31)

ai(m) complex pole of allpass polyphase filter (Ki ≥ 1) Eq. (3.15)

abark allpass pole for Bark scale approximation Eq. (4.7)

aerb allpass pole for ERB scale approximation Eq. (4.9)

A(z) allpass of first order Eq. (2.52)

A[K](z) allpass of higher order Eq. (2.47)

Ă[K](z) para-conjugate allpass system function Eq. (3.79)

A
[KI ]
I (z) allpass sub-filter I Eq. (3.11)

A
[KII ]
II (z) allpass sub-filter II Eq. (3.11)

A
[Ki]
i (z) allpass polyphase filter (Ki ≥ 1) Eq. (3.14)

Astb(Ωs) stopband attenuation at Ωs Figure 6.2

A0(z) component of lifting scheme Eq. (3.22)

AAA matrix for unconstrained PR design Eq. (4.95)

ĀAA matrix for constrained PR design Eq. (4.104)

AAAalias(z) alias component matrix Eq. (4.57b)

b(m) complex allpass pole (K ≥ 1) Eq. (4.12)

B[K](z) allpass for allpass transformation (K ≥ 1) Eq. (4.12)

B1(z) component of lifting scheme Eq. (3.22)

Bi(z) synthesis polyphase component Eq. (3.24)

cs scaling factor for signal reconstruction Eq. (2.13a)

c̄ nominal magnitude for PE design Eq. (3.74a)

c(m) allpass coefficient for direct form Eq. (2.47)

cf (k) sequence for cross-fading Eq. (5.34)

C constant for FBE design Eq. (5.12)

CD (mean) cepstral distance Eq. (E.6)

di degree of transfer function Ψap
i (z) Eq. (3.37)

dmax maximal value for dλ Eq. (3.62)

dddLq
vector for numerical FB design Eq. (4.66)

D degree of transfer function Ψ(z) Sec. 3.3.1

Ds degree of transfer function Ψs(z) Eq. (3.86b)

Df degree of IIR analysis filter Eq. (3.12)

Do signal delay of AS FB Eq. (2.13a)

D′
o signal delay of AS FB in seconds Eq. (6.8)

Da signal delay of analysis FB (and gain calculation) Figure 5.5

Dtree
o signal delay of tree-structured AS FB Eq. (C.10)

Dqmfb
o signal delay of two-channel QMF-bank Eq. (C.11)
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Dalias(z) aliasing distortions Eq. (2.9)

D̃alias(z) warped aliasing distortions Eq. (4.29)

Dpeak(Ω) peak aliasing distortions Eq. (2.12)

DDD(z) matrix for numerical FB design Eq. (4.66)

DDD(z) matrix for constrained PR design Eq. (4.102)

EP passband error energy Eq. (4.114)

ES stopband energy Eq. (3.21)

Eη objective function of Johnston design Eq. (C.5)

f frequency (in Hz) Eq. (2.5)

fs = 1/Ts sampling frequency Eq. (2.5)

Fi(z) synthesis filter for constrained PR design Eq. (4.102)

F set with all frame indices Eq. (E.4)

Fs set with frame indices for speech activity Eq. (E.3)

g(k) impulse response of synthesis prototype filter Eq. (2.27)

gi(k) impulse response of synthesis filter Sec. 2.1

G(z) synthesis prototype filter Eq. (2.26)

Gi(z) uniform synthesis filter Eq. (2.26)

G′
i(z) IIR synthesis QMF with linearized phase Eq. (3.52)

Ḡ
(M)
0,λ (z) synthesis polyphase filter (type 2) Eq. (2.37)

G̃i(z) warped synthesis filter without PE Eq. (4.30)
�

Gi (z) warped synthesis filter with PE Eq. (4.42)

Ḡi(z) FIR synthesis filter for warped analysis FB Eq. (4.32)

Ḡ
(ideal)
i (z) synthesis filter for ‘ideal’ PE Eq. (4.49)

Gnoise noise gain Eq. (6.5)

h(k) impulse response of analysis prototype filter Eq. (2.23)

hi(k) impulse response of analysis filter Sec. 2.1

h
[Lac]
apc (k) impulse response of allpass chain Figure 4.9

hc(ν) coefficients for non-recursive warping Eq. (4.28)

hlin(l) coefficients of linear-phase filter Eq. (4.27)

hs(k, κ) time-domain filter of FBE Eq. (5.11)

h̄s(l, k) FIR filter coefficients after cross-fading Eq. (5.34)

ĥs(l, κ) filter coefficients of MA low delay filter Eq. (5.46)

hr(l, k) room impulse response Eq. (6.13)

H(z) analysis prototype filter Eq. (2.22)

Hi(z) uniform analysis filter Eq. (2.22)

H ′
i(z) IIR analysis QMF with linearized phase Eq. (3.51)

H
(wdft)
i (z) analysis filter of WDFT FB Eq. (4.26)

H
(gam)
i (z) gammatone analysis filter Figure C.3
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H
(tree)
i (z) analysis filter of tree-structured FB Figure C.5

H̃i(z) warped analysis filter Eq. (4.2)

H
(M)
0,λ (z) analysis polyphase filter (type 1) Eq. (2.35)

Hlin(z) linear-phase filter Eq. (4.27)

HAR(z, κ) AR low delay filter Eq. (5.48)

H̃AR(z, κ) warped AR low delay filter Eq. (5.52)

Hs(z, κ) time-domain filter of FBE Eq. (5.35)

H̃s(z, κ) time-domain filter of warped FBE Eq. (5.44)

Ĥs(z, κ) approximated time-domain filter of FBE Eq. (5.48)

Hg(z, k) general time-varying filter Eq. (5.54)

H̄g(z, k) general time-varying filter after cross-fading Eq. (5.54)

i index for FB subband Sec. 2.1

i0 frequency shift for GDFT or GDCT Eq. (5.19)

i1, i2 frequency indices for discrete BSF Eq. (2.40)

IS(i) stopband interval for subband i Eq. (4.108)

IP(i) passband interval for subband i Eq. (4.115)

J no. of cascaded phase equalizers (K = 1) Eq. (3.101)

Ji no. of cascaded phase equalizers in branch i (K = 1) Eq. (3.30)

Ji(m) no. of cascaded phase equalizers in branch i (K ≥ 1) Eq. (3.34)

Js no. of stages of tree-structured FB Eq. (C.10)

k discrete time index (sample index) Sec. 2.1

k0 discrete time shift Eq. (5.12)

k1, k2 discrete time indices of system response tbi(k2, k1) Sec. 2.4

ki sample index after downsampling by Ri Sec. 2.1

k′ sample index after downsampling by R Eq. (2.2)

K degree of allpass filter Eq. (2.47)

Ki degree of i-th allpass polyphase filter Eq. (3.15)

Kc order of non-recursive frequency warping Eq. (4.28)

l index of FIR filter coefficient Eq. (2.23)

lM integer multiple of transformation size M Eq. (2.36)

L length of FIR prototype filter if Ls = La Eq. (2.28)

La length of FIR analysis prototype filter Eq. (2.23)

Ls length of FIR synthesis prototype filter Eq. (2.27)

Lld length of MA low delay filter Eq. (5.46)

Lac length of allpass chain Eq. (2.60)

Lq length of FIR synthesis sub-filter Eq. (4.33)

Le length of ‘early’ room impulse response Eq. (6.14)

Lr length of room impulse response Eq. (6.13)

m index for allpass coefficients Eq. (2.47)
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mc parameter of Mth band filter Eq. (5.13)

M no. of (FB) subbands (frequency bands) Sec. 2.1

Mm frame length for segmental measures (E.3)

MCD no. of CD values Eq. (E.7)

M no. of sub-filter coefficients for constrained PR design Eq. (4.103)

N degree of PE in general Sec. 3.3.1

Nl degree of PE for allpass chain of length l Eq. (4.51)

Nap
i degree of allpass PE in branch i Eq. (3.35)

Ns degree of PE for single allpass Eq. (3.85)

Nlin delay of linear phase filter Eq. (4.27)

Nld degree of low delay filter Eq. (5.47)

Nbi no. of discrete frequency points for BSF calculation Eq. (2.40)

Nm no. of ‘unique’ frequency bands Eq. (5.26)

NAseg segmental noise attenuation Eq. (E.4)

N no. of sub-filter coefficients if Ls = La Eq. (4.76)

Nz no. of sub-filter coefficients set to zero Sec. 4.3.4

Nmax
z maximal no. of sub-filter coefficients set to zero Eq. (4.85)

pideal
K (k) anti-causal impulse response of ‘ideal’ PE Eq. (3.80)

pls
K(k) impulse response of LS FIR PE Eq. (3.81)

ppp sub-filter coefficients for numerical design Eq. (4.66)

ppp sub-filter coefficients for constrained PR design Eq. (4.104)

p̂pp optimal sub-filter coefficients Eq. (4.80)

pppa augmented vector of ppp Eq. (4.84)

PK(z) PE for allpass of order K Eq. (3.69)

P ap(z) allpass PE in general Eq. (3.48)

P ideal
K (z) ‘ideal’ PE for allpass of order K Eq. (3.79)

P ls
K(z) LS FIR PE for allpass of order K Eq. (3.83)

P(z) = P1(z) PE for allpass of first order Eq. (3.76)

Pm(z) PE for m-th allpass of first order Eq. (3.77)

Pap(z) allpass PE for allpass of first order Eq. (3.101)

Pap
i,1(z) cascaded allpass PE for allpass of first order in branch i Eq. (3.30)

Pap
i,Ki

(z) cascaded allpass PE for allpass of order Ki in branch i Eq. (3.34)

Pfir(z) FIR PE for allpass of first order Eq. (3.85)

ql(η) coefficients of FIR synthesis sub-filter Eq. (4.33)

Ql(z) synthesis sub-filter for l ∈ { 0, 1, . . . , L− 1 } Eq. (4.33)

Q̄i(z) synthesis sub-filter for i ∈ { 0, 1, . . . ,M − 1 } Eq. (4.101)

Qcf
i (z) synthesis sub-filter for closed-form PR design Eq. (4.55)

Q
(R)
l, r (z) polyphase component of synthesis sub-filter Eq. (4.54)

QQQP matrix for passband error of constrained PR design Eq. (4.119)
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QQQS matrix for stopband energy of constrained PR design Eq. (4.113)

r index for alias components Eq. (2.8)

rrrp residual (error) vector for Lp-norm Eq. (4.89)

R common subsampling rate Sec. 2.1

Ri individual subsampling rate Eq. (2.1)

Rc region of convergence Eq. (2.48c)

RRRη ‘sum matrix’ for constrained PR design Eq. (4.120)

s(k) speech signal Eq. (6.12)

ŝ(k) estimated speech signal Sec. 6.2.1

s̆(k) filtered speech signal Eq. (E.1)

slb(k′) low band signal of G.729.1 core codec (fs = 8 kHz) Figure 6.1

shb(k′) high band signal of G.729.1 core codec (fs = 8 kHz) Figure 6.1

swb(k) wideband signal (fs = 16 kHz) Figure 6.1

ŝwb(k) decoded wideband signal (fs = 16 kHz) Figure 6.1

s′
swb(k) signal for SWB extension (fs = 16 kHz) Figure 6.1

sswb(k) signal for SWB extension after lowpass filter (fs = 16 kHz) Figure 6.1

s̄swb(k) decoded signal of SWB extension (fs = 16 kHz) Figure 6.1

s̄(k) amplified speech for near-end listening enhancement Figure 6.10

S(i, κ) spectral speech coefficients Eq. (6.20)

Sr(z) alias components of closed-form PR design Eq. (4.55)

ST{W (i, κ) } spectral transform of gain factors Eq. (5.7)

SNRseg segmental signal-to-noise ratio Eq. (E.3)

SQNR signal-to-quantization-noise ratio Eq. (6.6)

tbi(k2, k1) system response of (multi-rate) system Sec. 2.4

ttt vector for epigraph form Eq. (4.91)

Tbi

(
ej Ω2 , ej Ω1

)
bifrequency system function Eq. (2.39)

Ts sampling instant Sec. 2.1

T ′
s sampling instant after downsampling by R Sec. 2.1

Tsi sampling instant after downsampling by Ri Sec. 2.1

Tlin(z) linear transfer function of uniform AS FB Eq. (2.9)

T̃lin(z) linear transfer function of warped AS FB without PE Eq. (4.29)

T lin(z) linear transfer function of warped AS FB with PE Eq. (4.34)

Talias(z) aliasing transfer function Eq. (3.3)

T
(inner)
lin (z) linear transfer function of inner QMF-bank Eq. (6.4)

Tpc(z) zero-phase half-band filter Eq. (C.9)

Tν(z) overall transfer function of AS FB Eq. (2.17)

Tdes(z) desired total response for prototype filter design Eq. (4.62)

u(k) noise signal Eq. (6.12)

û(k) estimated noise signal Figure 6.10
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ŭ(k) filtered noise signal Eq. (E.1)

U(i, κ) spectral noise coefficients Eq. (6.20)

Ur(z) alias component of Pseudo QMF-bank Eq. (3.57)

UUU [N ] matrix for CLS design Eq. (4.77)

vl(κ) coefficients of low delay filter Eq. (5.46)

ṽl(κ) coefficients of warped low delay filter Eq. (5.52)

vvv[N ] vector for CLS design Eq. (4.78)

winL(k) general window sequence of length L Eq. (5.17)

winL,υ(k) parametric window sequence of length L Eq. (5.18)

w(l, κ) time-domain weighting factors Eq. (5.6)

www vector for numerical FB design Eq. (4.96)

www vector for constrained PR design Eq. (4.104)

W (i, κ) time-varying spectral gain factors Eq. (5.4)

Wmax maximal gain for near-end listening enhancement Eq. (6.19)

WR R-th root of unity e−j 2 π
R Eq. (2.4)

x(k) input signal of filter or FB Figure 2.1

x̂(k) reconstructed input signal of AS FB Eq. (2.13a)

xi(k) subband signal without downsampling Eq. (5.4)

xi(k
′) subband signal with downsampling by R Sec. 2.1

xi(ki) subband signal with downsampling by Ri Figure 2.1

X̂(z) reconstructed input signal of AS FB Eq. (2.8)

X̂ν(z) reconstructed input signal of AS FB for X(z) = z−ν Eq. (2.17)̂̃
X(z) reconstructed input signal of warped AS FB without PE Eq. (4.29)

X
(wdft)
i (k) WDFT coefficients for x(k) Eq. (4.25)

y(k) output signal of filter or AS FB Figure 2.1

yi(k) upsampled subband signal Figure 2.1

ydf(k) output signal of filter in direct form Eq. (5.31)

ytdf(k) output signal of filter in transposed direct form Eq. (5.32)

yfix(k) output signal of fixed-point system Eq. (6.6)

yflo(k) output signal of floating-point system Eq. (6.6)

ze(k) early reverberant speech Eq. (6.14)

zl(k) late reverberant speech Eq. (6.14)

zr(k) reverberant speech Eq. (6.14)

Ze(i, κ) spectral coefficients of early reverberant speech Eq. (6.16)

Greek Symbols

α real allpass pole (K = 1) Eq. (2.52)

α(m) real allpass pole (K ≥ 1) Eq. (2.49)

αmax real allpass pole closest to unity (K ≥ 1) Eq. (6.1)
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βs smoothing factor for speech PSD Eq. (6.20)

βu smoothing factor for noise PSD Eq. (6.20)

β′
s(i) modified smoothing factor for (warped) subband i Eq. (6.21)

γ phase of complex allpass pole a Eq. (2.52)

γ(m) phase of complex allpass pole a(m) Eq. (2.49)

γp penalty factor for numerical design Eq. (4.88)

ε threshold for spectral gain factors Eq. (5.20)

εbi threshold for BSF calculation Eq. (2.45)

εls threshold for LS FIR PE design Eq. (3.84)

εa upper bound for LS aliasing error Eq. (4.83b)

εp threshold for coefficients of p̂pp Figure 4.22

ζo target SNR Eq. (6.17)

ζprio(i, κ) a priori SIR Eq. (6.16)

ζpost(i, κ) a posteriori SIR Eq. (6.15)

η trade-off factor for constrained PR design Eq. (4.120)

κ sample index after downsampling Eq. (5.1)

λ index for polyphase components Eq. (2.35)

μ weighting factor for numerical FB design Eq. (4.81)

ν index for overall transfer function Tν(z) Eq. (2.17)

ξbark(f) relation between frequency and Bark Eq. (4.6)

ξerb(f) relation between frequency and ERB Eq. (4.8)

ξξξν(z) vector of transfer function Tν(z) Eq. (4.67)

ξξξν(z) vector of transfer function for constrained PR design Eq. (4.103)

ρ epigraph variable Eq. (4.84d)

�(m) periodicity of transformation kernel Eq. (5.3)

σ2
q variance of input quantization noise Eq. (6.5)

σ2
out variance of output quantization noise Eq. (6.5)

σ2
zl

(i, κ) short-term PSD of late reverberant speech Eq. (6.16)

σ2
u(i, κ) short-term PSD of noise Eq. (6.16)

τ(Ω) group delay in general Figure 3.11

τlin(Ω) group delay of linear transfer function Tlin

(
ej Ω
)

Eq. (2.11)

τν(Ω) group delay of overall transfer function Tν

(
ej Ω
)

Eq. (2.19)

τa(Ω) group delay of allpass A(z) Eq. (2.55)

τ
[K]
aaa (Ω) group delay of allpass A[K](z) Eq. (2.59)

τ̄ nominal group delay in general Eq. (3.73)

τ̄ap nominal group delay for allpass PE Eq. (3.111)

τ̄fir nominal group delay for FIR PE Eq. (3.98)

τΨ(Ω) group delay of transfer function Ψ
(
ej Ω
)

Eq. (3.73)

τap
Ψ (Ω) group delay of transfer function Ψap

(
ej Ω
)

Eq. (3.107)
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τap
Ψs

(Ω) group delay of transfer function Ψap
s

(
ej Ω
)

Eq. (B.39)

τfir
Ψ (Ω) group delay of transfer function Ψfir

(
ej Ω
)

Eq. (3.97)

τfir
Ψs

(Ω) group delay of transfer function Ψfir
s

(
ej Ω
)

Eq. (B.20)

υ parameter for window function Eq. (5.18)

φ(i) factor of GDCT Eq. (5.26b)

ϕh̄h̄(λ) auto-correlation coefficients Eq. (5.50)

ϕ(Ω) phase response in general Figure 3.3

ϕlin(Ω) phase response of linear transfer function Tlin

(
ej Ω
)

Eq. (2.10)

ϕν(Ω) phase response of overall transfer function Tν

(
ej Ω
)

Eq. (2.18)

ϕ0(Ω) phase response of overall transfer function for ν = 0 Eq. (2.21)

ϕa(Ω) phase response of allpass A(z) Eq. (2.54)

ϕ
[−1]
α (Ω) inverse phase response of allpass A(z) with real pole Eq. (4.111)

ϕ
[K]
aaa (Ω) phase response of allpass A[K](z) Eq. (2.58)

ϕ
[K]

bbb
(Ω) phase response of allpass B[K](z) Eq. (4.13)

ϕΨ(Ω) phase response of transfer function Ψ
(
ej Ω
)

Eq. (3.71)

ϕap
Ψ (Ω) phase response of transfer function Ψap

(
ej Ω
)

Eq. (3.106)

ϕap
Ψs

(Ω) phase response of transfer function Ψap
s

(
ej Ω
)

Eq. (B.38)

ϕfir
Ψ (Ω) phase response of transfer function Ψfir

(
ej Ω
)

Eq. (3.92)

ϕfir
Ψs

(Ω) phase response of transfer function Ψfir
s

(
ej Ω
)

Eq. (B.17)

ϕΘ(Ω) phase response of allpass Θ(z) Eq. (4.19b)

ϕ
[−1]
Θ (Ω) inverse phase response of allpass Θ(z) Eq. (4.109)

χ(Ω) integer to ensure unwrapped phase response Eq. (2.54a)

ψ̄ nominal phase factor in general Eq. (3.28)

ψ̄ap nominal phase factor for allpass PE Eq. (3.108)

ψ̄fir nominal phase factor for FIR PE Eq. (3.93)

ψ̄s nominal phase factor for PE of single allpass Eq. (3.76)

ψ̄s(m) nominal phase factor for PE of m-th single allpass Eq. (3.77)

Θ(z) allpass for allpass transformation (K ≥ 1) Eq. (4.16)

Λ(z) allpass for allpass transformation (K ≥ 1) Eq. (4.16)

ΞΞΞ[N ]
Δ matrix for CLS design Eq. (4.79)

Φss(i, κ) speech PSD Eq. (6.18)

Φ̂ss(i, κ) estimated speech PSD Eq. (6.20a)

Φs̄s̄(i, κ) PSD of amplified speech Eq. (6.17)

Φuu(i, κ) noise PSD Eq. (6.17)

Φ̂uu(i, κ) estimated noise PSD Eq. (6.20b)

Φ(i, k) transformation kernel in general Eq. (5.2)

Φ(I)
GDCT(i, k) transformation kernel for evenly-stacked GDCT Eq. (5.27)

Φ(II)
GDCT(i, k) transformation kernel for oddly-stacked GDCT Eq. (B.73)
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ΦGDFT(i, k) transformation kernel for GDFT Eq. (5.19)

Ψ(z) transfer function of allpass and PE Eq. (3.69)

Ψd(z) desired transfer function of allpass and PE Eq. (3.70)

Ψs(z) transfer function of allpass and PE (K = 1) Eq. (3.76)

Ψfir(z) transfer function of allpass and FIR PE (K ≥ 1) Eq. (3.86)

Ψfir
s (z) transfer function of allpass and FIR PE (K = 1) Eq. (3.85)

Ψap(z) transfer function of allpass and allpass PE (K ≥ 1) Eq. (3.104)

Ψap
s (z) transfer function of allpass and allpass PE (K = 1) Eq. (3.101)

Ψap
i (z) transfer function of allpass and allpass PE in branch i Eq. (3.36)

Ω normalized frequency (shortly termed as frequency) Eq. (2.5)

Ω1, Ω2 frequencies of BSF Eq. (2.39)

Ωs stopband frequency of prototype filter Eq. (3.21)

Ωμ extremal frequencies Eq. (3.89b)

Ω(s)
l (i) left stopband frequency of subband i Eq. (4.109)

Ω(s)
r (i) right stopband frequency of subband i Eq. (4.110)

Ω(p)
l (i) left passband frequency of subband i Eq. (4.116)

Ω(p)
r (i) right passband frequency of subband i Eq. (4.117)

ΔΩ passband width of uniform analysis filter Sec. 2.1

ΔΩi passband widths of i-th analysis filter Sec. 2.1

ΔΩ̃i passband widths of i-th warped analysis filter Eq. (6.22)

ΔτΨ(Ω) group delay error of phase equalization in general Eq. (3.74c)

Δτap
Ψ (Ω) group delay error for allpass PE Eq. (3.111)

Δτfir
Ψ (Ω) group delay error for FIR PE Eq. (3.98)

ΔϕΨ(Ω) phase error of phase equalization in general Eq. (3.74b)

Δϕap
Ψ (Ω) phase error for allpass PE Eq. (3.108)

Δϕfir
Ψ (Ω) phase error for FIR PE Eq. (3.93)

Δϕ0(Ω) phase error of overall transfer function for ν = 0 Eq. (2.21)

Δϕlin(Ω) phase error of linear transfer function Eq. (2.16)

Δ
∣∣Ψ(ej Ω

)∣∣ magnitude error of phase equalization in general Eq. (3.74a)

Δ
∣∣Ψfir

(
ej Ω
)∣∣ magnitude error for FIR PE Eq. (3.88)

Units

dB decibel

Hz Hertz

kHz kiloHertz

kbit/s kilobit per second

ms milliseconds

s seconds



Appendix B

Proofs & Derivations

B.1 Evaluation of the Discrete BSF

The frequency sampled version for the bifrequency system function (BSF) according to
Eq. (2.41) is considered

Tbi

(
e

j 2 π
Nbi

i2 , e
j 2 π

Nbi
i1

)
=

1

N2
bi

Nbi−1∑
k1=0

Nbi−1∑
k2=0

tbi(k2, k1) · ej 2 π
Nbi

(k1 i1−k2 i2)
. [2.41]

It follows from Eq. (2.38) that

tbi(k2, k1) =
1
Nbi

Nbi−1∑
m=0

tbi(k2 +mR, k1 +mR) . (B.1)

This relation and the substitution

k2 = k1 + k ; k1 ∈ {0, 1, . . . , R − 1} ; k ∈ {0, 1, . . . , Nbi − 1} (B.2)

allow the following conversion of Eq. (2.41)

Tbi

(
e

j 2π
Nbi

i2 , e
j 2π

Nbi
i1

)
=

1

RN2
bi

R−1∑
k1=0

Nbi−1∑
k=0

Nbi−1∑
m=0

tbi(k1 + k +mR, k1 +mR)

· ej 2 π
Nbi

(
i1 (k1+m R)−i2 (k1+k+m R)

)
=

1

RN2
bi

R−1∑
k1=0

Nbi−1∑
k=0

tbi(k1 + k, k1) · ej 2 π
Nbi

k1 (i1−i2)

· e−j 2 π
Nbi

k i2

Nbi−1∑
m=0

e
j 2 π

Nbi
mR(i1−i2)

. (B.3)

Since

Nbi−1∑
m=0

e
j 2 π

Nbi
mR(i1−i2)

=

{
Nbi if i1 = i2 + Nbi

R l ∀ l ∈ Z

0 otherwise,
(B.4)
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the discrete BSF is finally given by

Tbi

(
e

j 2π
Nbi

i2 , e
j 2π

Nbi

(
i2+l

Nbi
R

))

=

⎧⎨⎩
1

RNbi

R−1∑
k1=0

Nbi−1∑
k=0

tbi(k1 + k, k1) · ej 2 π
R

k1l · e−j 2 π
Nbi

k i2 if l ∈ Z

0 if l /∈ Z .

[2.42]

It is sufficient to evaluate Eq. (2.42) only for l ∈ {0,±1,±2, . . . ± (R − 1)} due to the
periodicity

ej 2 π
R

k1 l = ej 2 π
R

k1 (l+mR) ∀ m, l ∈ Z . (B.5)

The calculation of the discrete BSF by Eq. (2.42) is much more efficient than by means
of Eq. (2.41) as Nbi � R.

B.2 Equiripple Property of Parametric Phase Equalizers

This section provides details of the derivations in Sec. 3.3.4.2 and Sec. 3.3.4.3. To ease
the treatment, only a cascade of an allpass filter of first order and a phase equalizer

Ψs

(
ej Ω
)

= A
(
ej Ω
)
· P
(
ej Ω
)

(B.6)

is considered as the frequency response in case of an allpass chain of length Lac is simply
given by

Ψ
(
ej Ω
)

=
(

Ψs

(
ej Ω
))Lac

(B.7)

according to Eq. (3.78).

B.2.1 FIR Phase Equalizer

The transfer function of an allpass filter of first order and FIR phase equalizer is con-
sidered according to Eq. (3.85)

Ψfir
s (z) = A(z) · Pfir(z)

= z−Ds − (a∗)Ds . (B.8)

The frequency response for a complex allpass pole a = α ej γ reads

Ψfir
s

(
ej Ω
)

= e−j Ds Ω − αDse−j γDs

= cos(Ds Ω)− αDs cos(Ds γ)− j
(
sin(Ds Ω)− αDs sin(Ds γ)

)
. (B.9)
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The magnitude response can be written∣∣Ψfir
s

(
ej Ω
)∣∣2 = cos2(Ds Ω)− 2αDs cos(Ds Ω) cos(Ds γ) + α2Ds cos2(Ds γ)

+ sin2(Ds Ω)− 2αDs sin(Ds Ω) sin(Ds γ) + α2Ds sin2(Dsγ)

= 1− 2αDs

(
cos(DsΩ) cos(Ds γ) + sin(Ds Ω) sin(Ds γ)

)
+ α2Ds

= 1− 2αDs cos
(
Ds (Ω− γ)

)
+ α2Ds . (B.10)

This leads to Eq. (3.87) by applying Eq. (B.7). It follows from Eq. (B.10) that the
extrema

cfir
max = max

Ω

{∣∣Ψfir
s

(
ej Ω
)∣∣} =

√
1 + 2 |α|Ds + α2Ds = 1 + |α|Ds (B.11)

cfir
min = min

Ω

{∣∣Ψfir
s

(
ej Ω
)∣∣} =

√
1− 2 |α|Ds + α2Ds = 1− |α|Ds (B.12)

are obtained at the extremal frequencies

Ωμ =
μπ

Ds
+ γ for μ ∈ Z . (B.13)

The magnitude error

Δ
∣∣Ψfir

s

(
ej Ω
)∣∣ =

∣∣Ψfir
s

(
ej Ω
)∣∣− 1

2

(
cfir

min + cfir
max

)︸ ︷︷ ︸
= cfir

(B.14)

has the alternating extrema

max
Ω

{
Δ
∣∣Ψfir

s

(
ej Ω
)∣∣} = cfir

max − cfir =
1
2

(
cfir

max − cfir
min

)
(B.15)

min
Ω

{
Δ
∣∣Ψfir

s

(
ej Ω
)∣∣} = cfir

min − cfir = −1
2

(
cfir

max − cfir
min

)
. (B.16)

With these relations, it is straightforward to obtain Eq. (3.88) and Eq. (3.89). The
(unwrapped) phase response of Eq. (B.9) is given by

ϕfir
Ψs

(Ω) = arctan

(
sin(Ds Ω)− αDs sin(Ds γ)
cos(Ds Ω)− αDs cos(Ds γ)

)
+ 2π χ(Ds Ω) . (B.17)

The phase representations of Eq. (2.54) can be exploited to rewrite Eq. (B.17) as follows

ϕfir
Ψs

(Ω) =
1
2

(
ϕaDs

(
Ds Ω

)
+Ds Ω

)
(B.18)

= arctan

(
αDs sin

(
Ds (Ω− γ)

)
1− αDs cos

(
Ds (Ω− γ)

))+Ds Ω + π χ(Ds Ω) . (B.19)
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The representation of Eq. (B.18) allows to determine the group delay by means of
Eq. (2.55) according to

τfir
Ψs

(Ω) =
Ds

2

(
τaDs

(
Ds Ω

)
+ 1
)

(B.20)

=
Ds

2
1− α2Ds

1− 2αDs cos
(
Ds (Ω− γ)

)
+ α2Ds

+
Ds

2

= Ds

1− αDs cos
(
Ds (Ω− γ)

)
1− 2αDs cos

(
Ds (Ω− γ)

)
+ α2Ds

. (B.21)

Eq. (B.19) leads to the phase error

Δϕfir
Ψs

(Ω) = ϕfir
Ψs

(Ω)−Ds Ω (B.22)

= arctan

(
αDs sin

(
Ds (Ω− γ)

)
1− αDs cos

(
Ds (Ω− γ)

))+ π χ(Ds Ω) . (B.23)

The extremal frequencies Ωμ are determined by

∂

∂ Ωμ

(
ϕfir

Ψs
(Ω)−Ds Ω

)
= τfir

Ψs
(Ωμ)−Ds

!
= 0 . (B.24)

Inserting Eq. (B.21) results

Ds

1− αDs cos
(
Ds (Ωμ − γ)

)
1− 2αDs cos

(
Ds (Ωμ − γ)

)
+ α2Ds

−Ds = 0

⇔ 1− αDs cos
(
Ds (Ωμ − γ)

)
= 1− 2αDs cos

(
Ds (Ωμ − γ)

)
+ α2Ds

⇔ cos
(
Ds (Ωμ − γ)

)
= αDs for α �= 0

⇒ Ωμ =
1
Ds

(
2π μ± arccos

(
αDs
))

+ γ for μ ∈ Z . (B.25)

A sufficient condition for an extrema is that the second derivative is unequal to zero
at the extremal frequencies. This proof is straightforward and omitted here and the
following treatments. Inserting the extremal frequencies of Eq. (B.25) into Eq. (B.23)
yields the extrema

Δϕfir
Ψs

(Ωμ) = ± arctan

(
αDs sin

(
arccos

(
αDs
))

1− α2Ds

)
. (B.26)

Finally, the rewriting of Eq. (B.25) and Eq. (B.26) according to Eq. (3.95b) ensures the
order Ωμ < Ωμ+1 < Ωμ+2 . . . for the extremal frequencies.

The extrema for the group delay

Δτfir
Ψs

(Ω) = τfir
Ψs

(Ω)− τfir (B.27)
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are obtained by the partial derivative of Eq. (B.21)

∂ τfir
Ψs

(Ω)

∂ Ω
=
Ds

2 αDs sin
(
Ds (Ω− γ)

)
f2

D(Ω)

(
fD(Ω)− 2

(
1− αDs cos

(
Ds (Ω− γ)

)))
(B.28)

with

fD(Ω) = 1− 2αDs cos
(
Ds (Ω− γ)

)
+ α2Ds . (B.29)

It follows directly that

∂ τfir
Ψs

(Ω)

∂ Ωμ
= 0 if sin

(
Ds (Ωμ − γ)

)
= 0 . (B.30)

This is fulfilled for the extremal frequencies

Ωμ =
μπ

Ds
+ γ for μ ∈ Z (B.31)

while the denominator fulfills the requirement fD(Ωμ) �= 0. Accordingly, the group
delay of Eq. (B.21) has the extremal values

τfir
max = max

Ω

{
τfir

Ψs
(Ω)
}

= Ds
1− |α|Ds

1− 2 |α|Ds + α2Ds
=

Ds

1− |α|Ds
(B.32)

τfir
min = min

Ω

{
τfir

Ψs
(Ω)
}

= Ds
1 + |α|Ds

1 + 2 |α|Ds + α2Ds
=

Ds

1 + |α|Ds
. (B.33)

The relation

τfir =
Ds

2

(
τfir

max + τfir
min

)
=
Ds

2

(
1

1− αDs
+

1
1 + αDs

)
=

Ds

1− α2Ds
(B.34)

yields the following extremal values for Δτfir
Ψs

(Ωμ)

max
Ω

{
Δτfir

Ψs
(Ω)
}

= τfir
max − τfir

=
Ds

1− |α|Ds
− Ds

1− α2Ds
=
|α|DsDs

1− α2Ds
(B.35a)

min
Ω

{
Δτfir

Ψs
(Ω)
}

= τfir
min − τfir

=
Ds

1 + |α|Ds
− Ds

1− α2Ds
=
−|α|DsDs

1− α2Ds
. (B.35b)

Therefore,

Δτfir
Ψs

(Ωμ) = (−1)μ αDsDs

1− α2Ds
(B.36)

which finally leads to Eq. (3.100).
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B.2.2 IIR Phase Equalizer

The transfer function of an allpass filter of first order and an allpass phase equalizer is
considered according to Eq. (3.101)

Ψap
s (z) = A(z) · Pap(z)

=
1− (a∗z)Ds

zDs − aDs
. (B.37)

The transfer function of Eq. (B.37) is an allpass filter of order Ds with a complex pole
at αDs ej Ds γ . Therefore, phase response and group delay are readily obtained from
Eq. (2.54b) and Eq. (2.55)

ϕap
Ψs

(Ω) = 2 arctan

(
sin(Ds Ω)− αDs sin(Ds γ)
cos(Ds Ω)− αDs cos(Ds γ)

)
−Ds Ω + 2π χ(Ds Ω) (B.38)

τap
Ψs

(Ω) = Ds
1− α2Ds

1− 2αDs cos
(
Ds (Ω− γ)

)
+ α2Ds

. (B.39)

The relation of the phase response of Eq. (B.38) to that of Eq. (B.17) is given by

ϕap
Ψs

(Ω) = 2ϕfir
Ψs

(Ω)−Ds Ω (B.40)

such that the phase error can be written

Δϕap
Ψs

(Ω) = ϕap
Ψs

(Ω)−Ds Ω (B.41)

= 2
(
ϕfir

Ψs
(Ω)−Ds Ω

)
= 2 Δϕfir

Ψs
(Ω) . (B.42)

Thus, the allpass phase equalizer yields an equiripple phase error which is twice as
high as for the FIR phase equalizer and has the same extremal frequencies as given by
Eq. (B.25).

The group delay of Eq. (B.39) is related to the group delay of Eq. (B.20) as follows

τap
Ψs

(Ω) = 2 τfir
Ψs

(Ω)−Ds . (B.43)

Thus, the group delay error

Δτap
Ψs

(Ω) = τap
Ψs

(Ω)− τap (B.44)

has the extremal frequencies Ωμ of Eq. (B.31) as the group delay error Δτfir
Ψs

(Ω). The
extremal values of the group delay τap

Ψs
(Ωμ) are given by

τap
max = Ds

1− α2Ds

1− 2 |α|Ds + α2Ds
= Ds

1 + |α|Ds

1− |α|Ds
(B.45)

τap
min = Ds

1− α2Ds

1 + 2 |α|Ds + α2Ds
= Ds

1− |α|Ds

1 + |α|Ds
(B.46)
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such that

τap =
1
2

(τap
min + τap

max) (B.47)

=
Ds

2

(
1 + αDs

)(
1 + αDs

)
+
(
1− αDs

)(
1− αDs

)(
1 + αDs

)(
1− αDs

)
= Ds

1 + α2Ds

1− α2Ds
. (B.48)

The yields the following extrema for the group delay error of Eq. (B.44)

max
Ω

{
Δτap

Ψs
(Ω)
}

= τap
max − τap (B.49)

= Ds

(
1 + |α|Ds

1− |α|Ds
− 1 + α2Ds(

1 + αDs

)(
1− αDs

))

= Ds

(
1 + |α|Ds

)2 −
(
1 + α2Ds

)(
1− αDs

) (
1 + αDs

)
=

2 |α|DsDs

1− α2Ds
(B.50)

and

min
Ω

{
Δτap

Ψs
(Ω)
}

= τap
min − τ

ap (B.51)

= Ds

(
1− |α|Ds

1 + |α|Ds
− 1 + α2Ds(

1 + αDs

)(
1− αDs

))

= Ds

(
1− |α|Ds

)2 −
(
1 + α2Ds

)(
1− αDs

)(
1 + αDs

)
=
−2 |α|DsDs

1− α2Ds
. (B.52)

Thus, the group delay error of Eq. (B.44) has the alternating extrema

Δτap
Ψs

(Ωμ) = (−1)μ 2αDsDs

1− α2Ds
(B.53)

such that

Δτap
Ψs

(Ωμ) = 2 Δτfir
Ψs

(Ωμ) for Ωμ =
μπ

Ds
+ γ ; μ ∈ Z (B.54)

due to Eq. (B.36).



188 B Proofs & Derivations

B.3 Conversion from QCQP to SDP Design

It is shown how the quadratically constrained quadratic program (QCQP) according to
Eq. (4.83)

minimize
ppp

∥∥∥UUU [N ] · ppp− vvv[N ]
∥∥∥2

2
[4.83a]

subject to
∥∥∥ΞΞΞ[N ]

Δ · ppp
∥∥∥2

2
≤ εa ; εa ∈ R+ [4.83b]

is converted to an equivalent semi-definite program (SDP) according to Eq. (4.84). In
a first step, Eq. (4.83) is formulated in an epigraph form1

minimize
ppp, ρ ≥ 0

ρ (B.56a)

subject to
∥∥∥UUU [N ] · ppp− vvv[N ]

∥∥∥2

2
≤ ρ (B.56b)∥∥∥ΞΞΞ[N ]

Δ · ppp
∥∥∥2

2
≤ εa . (B.56c)

The inequality of Eq. (B.56b) can be written as(
UUU [N ] ppp

)H (
UUU [N ] ppp

)
− c(ppp)− ρ ≤ 0 (B.57)

with

c(ppp) =
(
vvv[N ]

)H (
UUU [N ] ppp

)
+
(
UUU [N ] ppp

)H
vvv[N ] −

(
vvv[N ]

)H
vvv[N ] . (B.58)

The Schur complement of a positive semi-definite matrix2[
AAA11 AAA12

AAA21 AAA22

]
� 0 (B.59a)

with respect to its submatrix AAA11 is given by (e.g., [BV04])

SSSc

(
AAA11

)
= AAA22 −AAA21AAA

−1
11 AAA12 � 0 . (B.59b)

Hence, Eq. (B.57) can now be rewritten as follows

ρ+ c(ppp)−
(
UUU [N ] ppp

)H
IIIL N

(
UUU [N ] ppp

)
≥ 0 (B.60a)

⇔ LLL1 =

[
IIIL N UUU [N ] ppp(

UUU [N ] ppp
)H

ρ+ c(ppp)

]
� 0 . (B.60b)

1The epigraph form is briefly explained at the end of Sec. D.2.
2A matrix AAA is positive semi-definite if xxxT AAAxxx ≥ 0 for an arbitrary vector xxx.
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Accordingly, the inequality of Eq. (B.56c) can be written as

εa −
(

ΞΞΞ[N ]
Δ · ppp

)H (
ΞΞΞ[N ]

Δ · ppp
)
≥ 0 (B.61a)

⇔ LLL2 =

⎡⎣ III(R−1) N ΞΞΞ[N ]
Δ · ppp(

ΞΞΞ[N ]
Δ · ppp

)H

εa

⎤⎦ � 0 . (B.61b)

With

UUU [N ] = [uuu1,uuu2, . . . ,uuuN ] (B.62)

ΞΞΞ[N ]
Δ = [ξξξ1, ξξξ2, . . . , ξξξN ] (B.63)

ppp = [ p(1), p(2), . . . , p(N ) ]T (B.64)

the matrices LLL1 and LLL2 can be written as follows

LLL1 =

[
IIIL N 000L N

000T
L N ρ+ c(ppp)

]
+

N∑
n=1

p(n)

[
OOOL N ×L N uuun

uuuH
n 0

]
(B.65)

LLL2 =

[
III(R−1) N 000(R−1) N

000T
(R−1) N εa

]
+

N∑
n=1

p(n)

[
OOO(R−1) N ×(R−1) N ξξξn

ξξξH
n 0

]
(B.66)

with OOOM×N marking a M × N zero matrix. The expressions for LLL1 and LLL2 are each
an affine project of hermitian matrices with respect to ppp as required by Eq. (D.8b).

The complex linear matrix inequalities (LMIs) of Eq. (B.60b) and Eq. (B.60b) can
be converted to real LMIs by exploiting the fact that the field of complex numbers

z = a+ j b ∈ C ∀ a, b ∈ R (B.67)

is isomorphic to the field of real 2× 2 matrices[
a b

−b a

]
∈ R

2×2 . (B.68)

With Eq. (B.60b) and Eq. (B.61b), the epigraph form of Eq. (B.56) can be rewritten as
follows

minimize
pppa

lllT pppa (B.69a)

subject to

[
�{LLL1} �{LLL1}
−�{LLL1} �{LLL1}

]
� 0 (B.69b)

[
�{LLL2} �{LLL2}
−�{LLL2} �{LLL2}

]
� 0 (B.69c)
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with

pppa =
[
ρ, pppT

]T
(B.69d)

lllT =
[

1, 000T
N

]
. (B.69e)

This is an SDP according to Eq. (D.8) with Ku = 2 and without the constraints of
Eq. (D.8c) and Eq. (D.8d). �

B.4 Relation between GDCT and Oddly-Stacked GDFT

In Sec. 5.1.2, a relation between the evenly-stacked GDFT FBE and the GDCT FBE
is established. In the following, it is shown that a similar result is also obtained for the
oddly-stacked GDFT as transformation kernel where Eq. (5.19) applies with i0 = 1/2
(see also Figure 5.3-b). In this case, the spectral gain factors have the symmetry

W (i, κ) = W (M − 1− i, κ); i ∈ { 0, 1, . . . ,M − 1 } ; M even . (B.70)

The calculation of the time-varying time-domain of Eq. (5.6) is now performed by the
oddly-stacked GDFT according to

w(l, κ) =

M−1∑
i=0

W (i, κ) · e−j 2 π

M
(i+1/2) (l−k0) ; l ∈ { 0, 1, . . . , L− 1 } (B.71)

The substitution M = 2Nm and exploiting the symmetry of Eq. (B.70) allows the
following conversion of Eq. (B.71)

w(l, κ) =

Nm−1∑
i=0

W (i, κ) · e−j 2 π

2 Nm
(i+1/2) (l−k0)

+

Nm−1∑
i=0

W (2Nm − 1− i, κ) · e−j 2 π
2 Nm

(2 Nm−1−i+1/2) (l−k0)

=

Nm−1∑
i=0

W (i, κ) ·
(
e

−j π
Nm

(i+1/2) (l−k0) + e
j π

Nm
(i+1/2) (l−k0)

)
= 2

Nm−1∑
i=0

W (i, κ) · cos
(

π

Nm
(i+ 1/2) (l − k0)

)
. (B.72)

Eq. (B.72) corresponds to a FBE with Nm channels and the oddly-stacked generalized
discrete cosine transform (GDCT) as modulation sequence

Φ(II)
GDCT(i, k) = 2 cos

(
π

Nm
(i+ 1/2) (k − k0)

)
; i ∈ { 0, 1, . . . , Nm − 1 } . (B.73)

The condition of Eq. (5.12) is now fulfilled with M = Nm and C = 2Nm.
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B.5 Calculation of Warped AR Filter Coefficients

This section derives the realization of a warped AR filter without delay-less feedback
loops according to Eq. (5.52) and Eq. (5.53). The system function

B(z) = A(z) + α =
z−1 − α

1− α z−1
+ α =

z−1 − α+ α− α2 z−1

1− α z−1
(B.74)

contains no feedback loops can be used to obtain the denominator of Eq. (5.52). This
is accomplished by the equation

1−
Nld∑
l=1

vl ·Al(z)︸ ︷︷ ︸
warped denominator

!
=

1
ṽ0
−
(
A(z) + α

)
︸ ︷︷ ︸

= B(z)

Nld∑
l=1

ṽl ·Al−1(z) (B.75)

=
1
ṽ0
−

Nld∑
l=1

ṽl ·
(
Al(z) + α ·Al−1(z)

)
=

1
ṽ0
−
(
α ṽ1 +

Nld−1∑
l=1

(ṽl + α ṽl+1) ·Al(z) + ṽNld
·ANld (z)

)
.

(B.76)

Comparing the terms with Al(z) on the left hand side with those of the right hand side
yields the following relations

ṽNld
= vNld

(B.77a)

vl = ṽl + ṽl+1 · α ; l = Nld − 1, . . . , 1

⇔ ṽl = vl − ṽl+1 · α (B.77b)

1 =
1
ṽ0
− α · ṽ1

⇔ ṽ0 =
1

1 + α · ṽ1
(B.77c)

as given in Eq. (5.53).

B.6 Preservation of Minimum-Phase Property for Warped

Filters

It is proven that the allpass transformation of a minimum-phase filter results always
a filter with minimum-phase. A rational system function F (z) can be expressed in a
cascade form

F (z) = s0

M1∏
i=1

(
1− si z

−1
) M2∏

i=1

(
1− ti z−1

) (
1− t∗i z−1

)
N1∏
i=1

(
1− ui z−1

) N2∏
i=1

(
1− vi z−1

) (
1− v∗

i z
−1
) . (B.78)
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If F (z) is of minimum-phase, all poles and zeros are inside the unit circle. Hence, it is
sufficient to consider the term

D(z) =
1

1− d z−1
; |d| < 1; d ∈ C . (B.79)

Applying an allpass transformation of first order according to Eq. (4.1) results

D̃(z) =
1

1− d z
−1 − a∗

1− a z−1

; |a| < 1 (B.80)

=
1− a z−1

1 + a∗d− (a+ d) z−1

=
1

1 + a∗ d
· 1− ρ0 z

−1

1− ρ∞ z−1
(B.81)

with zero and pole given by

ρ0 = a (B.82a)

ρ∞ =
a+ d

1 + a∗d
. (B.82b)

The zero is always inside the unit circle as |a| < 1. The pole is inside the unit circle if∣∣1 + a∗d
∣∣ > |a+ d|

⇔
∣∣1 + a∗d

∣∣2 > |a+ d|2 . (B.83)

The simplified notation

aR = �{a} ; aI = �{a} ; dR = �{d} ; dI = �{d} (B.84)

leads to∣∣1 + a∗d
∣∣2 =

∣∣1 + (aR − j aI) (dR + j dI)
∣∣2

= (1 + aR dR + aI dI)
2 + (aR dI − aI dR)2

= 1 + 2 (aR dR + aI dI) + (aR dI)
2 + (aI dI)

2 + (aR dR)2 + (aI dR)2

= 1 + 2 (aR dR + aI dI) + |a|2 |d|2 . (B.85)

The right part of Eq. (B.83) can be written as follows

|a+ d|2 = (aR + dR)2 + (aI + dI)
2

= |a|2 + |d|2 + 2 (aR dR + aI dI) . (B.86)

Inserting of Eq. (B.85) and Eq. (B.86) into the inequality of Eq. (B.83) leads to

1 + |a|2 |d|2 > |a|2 + |d|2

1− |a|2 − |d|2 + |a|2 |d|2 > 0(
1− |a|2

) (
1− |d|2

)
> 0 (B.87)

which is true since |a| < 1 and |d| < 1. �



Appendix C

Related Filter-Banks

Some related filter-banks are discussed in the following to point out characteristic dif-
ferences to the treated allpass-based filter-banks. In App. C.1, FIR/FIR QMF-bank de-
signs are briefly described which play a role in the evaluation of the new IIR/IIR QMF-
bank designs in Sec. 3.1.2.5 and Sec. 6.1.2. In App. C.2, allpass-transformed filter-banks
are compared with gammatone filter-banks and tree-structured filter-banks, which are
the most common alternatives to realize an auditory filter-bank with an ERB or Bark-
scaled frequency resolution.

C.1 FIR/FIR QMF-Banks

An FIR/FIR QMF-bank with complete aliasing cancellation and no phase distortions
can be achieved by using an FIR prototype lowpass filter given by

H0(z) =

L−1∑
l=0

h0(l) · z−l (C.1)

with real coefficients and linear phase response so that h0(l) = h0(L − 1 − l) for
l ∈ {0, 1, . . . , L− 1}. The corresponding frequency response reads

H0

(
ej Ω
)

= e−j Ω L−1

2 A
(
ej Ω
)

with A
(
ej Ω
)
∈ R ∀ Ω . (C.2)

Inserting this equation into Eq. (3.6) yields

Tlin

(
ej Ω
)

=
1
2
e−j (L−1) Ω

(∣∣H0

(
ej Ω
)∣∣2 − (−1)L−1

∣∣H0

(
ej (π−Ω)

)∣∣2)
=

1
2
e−j (L−1) Ω

(∣∣H0

(
ej Ω
)∣∣2 +

∣∣H0

(
ej (π−Ω)

)∣∣2) (C.3)

for an even filter length L.1 The linear transfer function is then given by Tlin

(
ej Ω
)

=
1
2 e

−j (L−1) Ω, if the analysis filters are power complementary∣∣H0

(
ej Ω
)∣∣2 +

∣∣H1

(
ej Ω
)∣∣2 =

∣∣H0

(
ej Ω
)∣∣2 +

∣∣H0

(
ej (π−Ω)

)∣∣2 = 1 ∀ Ω . (C.4)

1An odd filter length L is not considered since Tlin(ej π) = 0 in this case.



194 C Related Filter-Banks

 

 

Ω/π

d
B

∣∣H0

(
ej Ω
)∣∣∣∣H1

(
ej Ω
)∣∣

0

−10

−20

−30

−40

−50

−60
0 0.2 0.4 0.6 0.8 1

Ω/π

2
∣ ∣ T lin(

ej
Ω
)∣ ∣ /d

B

0.03

0.02

0.01

0

−0.01

−0.02

−0.03
0 0.2 0.4 0.6 0.8 1

(a) (b)

Figure C.1: FIR QMF-bank design by LS error minimization of Eq. (C.5) with
L = 32, Ωs = 0.586π and η = 2:
(a) magnitude responses of the analysis filters
(b) magnitude response of the linear transfer function.

A frequently applied approach to design approximately power complementary analysis
filters with a good stopband attenuation and minimal amplitude distortions has been
proposed by Johnston [Joh80]. The filter coefficients are determined by minimizing the
objective function

Eη = 2

π∫
0

∣∣H0

(
ej Ω
)∣∣2 +

∣∣H0

(
ej (π−Ω)

)∣∣2 − 1 d Ω + η

π∫
Ωs

∣∣H0

(
ej Ω
)∣∣2 d Ω (C.5)

with 0 < η. A design example is provided by Figure C.1. The filter coefficients of this
32D Johnston design are listed in [CR83, Chap. 7]. This design achieves near-perfect
reconstruction with linear-phase subband filters so that the obtained FIR/FIR QMF-
bank requires only L/2 multiplications and L/2 summations for the analysis filter-bank
as well as the synthesis filter-bank, cf., [Vai93].

A design approach to achieve perfect reconstruction is proposed in [SB84, Min85].
The requirement of Eq. (3.4) is replaced by the equation

H1(z) = −z−(L−1) H̆0(−z) (C.6)

with L being even. The breve denotes the para-conjugate of a function, i.e., the z

variable is replaced by z−1 and the filter coefficients are replaced by their complex
conjugate counterparts, cf., [Vai93]. With the requirement of Eq. (3.5) for a complete
aliasing cancellation, the linear transfer function of Eq. (3.2) is given by

Tlin(z) =
1
2
z−(L−1)

(
H0(z) ·H0

(
z−1
)

+H0(−z) ·H0

(
−z−1

))
(C.7)

if the coefficients of H0(z) are real. The condition

H0(z) ·H0

(
z−1
)

+H0(−z) ·H0

(
−z−1

) !
= 1 (C.8)
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Figure C.2: FIR lowpass filters designed by the LS error design of [Joh80] and
the para-unitary Lattice design of [VH88] with prototype filter length L = 32
and stopband frequency Ωs = 0.586π.

implies that the transfer function

Tpc(z) = H0(z) ·H0

(
z−1
)

(C.9)

has to be a zero-phase half-band filter with the frequency response Tpc

(
ej Ω
)

being real
and positive for all Ω. As a consequence, the lowpass filter is power complementary
according to Eq. (C.4).

Techniques to design a prototype lowpass filter which fulfills these requirements
are proposed in [SB84, Min85]. It has been shown later that the obtained QMF-bank
belongs to the important class of para-unitary filter-banks, e.g., [Vai93].2 A possible
realization of such filter-banks is given by the QMF Lattice structure [VH88, Vai93].
One advantage of this structure is that it remains para-unitary despite quantization
of its coefficients. A comparison of the lowpass filters obtained by the LS error de-
sign of Johnston [Joh80] according to Figure C.1 and the para-unitary Lattice design
of Vaidyanathan and Hoang [VH88] is provided by Figure C.2. The lowpass filter of
the para-unitary Lattice QMF-bank design exhibits a significantly better stopband at-
tenuation than the lowpass filter obtained by the LS error design of Johnston. On the
other hand, the linear-phase property of the analysis filter is lost and the para-unitary
QMF-bank possesses a higher algorithmic complexity than the NPR design of Johnston
(see also Sec. 3.1.2.5).

It should be noted that para-unitary filter-banks are orthogonal filter-banks and
closely related to the discrete wavelet transform, e.g., [VK95, Fli93, Vai93]. A drawback
of orthogonal filter-banks is that their FIR filters cannot be of linear-phase (with the
exception of two unimportant special cases). This can be solved by a biorthogonal
QMF-bank design, e.g., [Fli93, TN95, VK95, BGG98], but such filter-banks are not
considered in this work.

2The property of being a para-unitary filter-bank is sufficient but not necessary for perfect

reconstruction.
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C.2 Auditory Filter-Banks

Besides frequency warped filter-banks, the use of gammatone filter-banks and tree-
structured filter-banks are the most common alternatives to realize an auditory filter-
bank with an ERB or Bark-scaled frequency resolution. The characteristic differences
of these filter-banks in comparison to allpass transformed filter-banks are discussed in
the following.

C.2.1 Gammatone Filter-Banks

Gammatone filters are widely used for computational auditory models to mimic the
peripheral filtering in the cochlea [PRH+92]. It is also possible to construct an AS
FB by means of such filters, e.g., [Sla93, Hoh02, FKK05]. One possibility is to use
FIR analysis and synthesis filters which, however, causes a very high computational
complexity and signal delay, cf., [FKK05].

A more efficient alternative is to use a recursive gammatone filter-bank [Sla93,
Hoh02]. The bandwidths of a gammatone analysis filter-bank can be well adapted to
the equivalent rectangular bandwidth (ERB), cf., [PRH+92, Sla93, Hoh02]. Figure C.3
compares the magnitude responses of the gammatone analysis filter-bank of [Hoh02]
with those of a corresponding allpass transformed DFT analysis filter-bank.3 The
gammatone filter-bank is designed for a sampling frequency of fs = 16.276 kHz. The
corresponding warped DFT filter-bank employs the ELT prototype filter of Eq. (2.33)
and is adapted to the ERB scale by means of Eq. (4.9).

Figure C.3 reveals the very different curve progressions for the magnitude responses
of the gammatone filter-bank and the allpass transformed DFT filter-bank: The gam-
matone filters exhibit a ‘triangular shape’ for their (logarithmic) magnitude responses
where the warped analysis filters tend to a ‘parabola shaped’ course and they show
no ‘spectral gaps’ at Ω = 0 and Ω = π. Another difference is that the gammatone
AS FB performs no subsampling and achieves near-perfect reconstruction [Hoh02]. In
contrast, allpass transformed AS FBs are modulated filter-banks, which can perform a
subsampling and can provide either a perfect or nearly perfect signal reconstruction as
shown in Chap. 4 and Chap. 5.

Hence, even though gammatone and allpass transformed filter-banks can both realize
an ERB or Bark-scaled frequency resolution with high accuracy, they have very different
properties and it is governed by the intended application (auditory modeling, subband
filtering etc.) which filter-bank is preferable.

C.2.2 Tree-Structured Filter-Banks

The realization of a non-uniform filter-bank by means of a tree-structure is another
important alternative to that of an allpass transformed filter-bank. The principle of
such a filter-bank is exemplified in Figure C.4. The basic element forms a two-channel
QMF-bank as treated before. In contrast to the filter-bank of Figure 3.1, the subband

3The IIR gammatone filter-bank of [Hoh02] provides complex-valued subband signals as

a DFT filter-bank. A brief comparison of an FIR gammatone filter-bank with real-valued

subband filters and a warped DCT filter-bank can be found in [FKK05].
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Figure C.3: Magnitude responses of analysis filter-banks with approximately
ERB-scaled frequency bands:
(a) gammatone filter-bank with 30 channels according to [Hoh02]
(b) allpass transformed DFT filter-bank with 60 channels (a = 0.7435).

signals of the analysis filters are now further decomposed by means of a lowpass (LP)
and highpass (HP) filter. This step can be repeated successively until the desired
frequency resolution is (approximately) achieved. This procedure leads to different
signal delays for the subband signals, which can be compensated by adequate delay
elements. The signal reconstruction is performed by a corresponding synthesis filter-
bank (tree) as shown in Figure C.4-b. The signal delay of such a tree-structured AS FB
amounts to

Dtree
o =

(
2Js − 1

)
·Dqmfb

o (C.10)

input sample instants with Js marking the number of stages and Dqmfb
o denoting the

signal delay of the underlying two-channel QMF-bank. For a para-unitary QMF-bank
which fulfills Eq. (C.7), this delay amounts to

Dqmfb
o = L− 1 (C.11)

sample instants. Thus, the signal delay of a tree-structured filter-bank grows exponen-
tially with the number of stages, which can become problematic for applications with
demanding signal delay constraints.
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Figure C.4: Tree-structured filter-bank with Js = 3 stages:
(a) analysis filter-bank
(b) synthesis filter-bank.

Instead of a pair of quadrature-mirror filters (QMFs), the closely related wavelets
can also used as basis, cf., Sec. C.1. The resulting tree-structured filter-bank is termed
as wavelet packets, e.g., [BGG98, VK95]. The choice for the nodes where the subband
signals are further split determines the bandwidths of the analysis filters. By this, it
is possible to obtain a filter-bank with octave bands, e.g., [Vai93]. Another option are
tree-structured filter-banks with Bark-scaled frequency bands, which are of interest for
speech coding as well as speech enhancement [Eng98, GEH98, CD99, Coh01, KKP07].

The magnitude responses of such a Bark-scaled analysis filter-bank are plotted in
Figure C.5 and contrasted to those of a comparable allpass transformed DFT filter-
bank. The decomposition of the tree-structured filter-bank is performed for a sampling
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Figure C.5: Magnitude responses of analysis filter-banks with approximately
Bark-scaled frequency bands:
(a) tree-structured QMF-bank with 20 channels
(b) allpass transformed DFT filter-bank with 40 channels (a = 0.577).

frequency of fs = 16 kHz according to [CD99]. This results in an (approximately) Bark-
scaled filter-bank with J = 6 stages and M = 20 channels. Para-unitary QMFs with
filter length L = 16 are employed, which are constructed by the design of [SB84] (briefly
described in App. C.1). The allpass transformed DFT analysis filter-bank possesses
M = 40 channels.4 It uses as prototype lowpass filter a root-raised-cosine filter of length
L = 4M with a roll-off factor of one (cf., [Fli93]) in order to achieve a similar stopband
attenuation as the tree-structured filter-bank. An allpass coefficient of a = 0.5755 is
taken, which provides a very good approximation of the Bark scale for a sampling
frequency of 16 kHz according to Eq. (4.7).

Figure C.5 reveals that the magnitude responses of the warped analysis filter-bank
are much more ‘regular’ and exhibit much less interfering sidelobes in comparison to
the analysis filters of the tree-structured filter-bank. A similar observation can also be

4The analysis filters of a QMF-bank as well as a DCT filter-bank have real-valued impulse

responses such that their magnitude responses are symmetric to Ω = π. A DFT filter-bank

with M channels has M − 2 subband filters with complex impulse responses where this

symmetry does not hold. Therefore, a DFT filter-bank with twice the number of channels

has to be taken to obtain analysis filters with comparable bandwidths.
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made for other QMFs or wavelets. For example, the use of a Daubechies wavelet with
16 coefficients yields a higher transition bandwidth and higher stopband attenuation,
but the course of the magnitude responses and its sidelobes is rather similar to that of
Figure C.5-a.

The considered tree-structured QMF-bank exhibits a signal delay of 945 samples
according to Eq. (C.10). In contrast, the delay of a comparable allpass transformed
AS FB of first order lies roughly between 3L ≤ Do ≤ 4L samples dependent on the
design and the tolerated reconstruction error, cf., Chap. 4. Therefore, the warped AS
FB has a signal delay which is only about 1/2 or at least 2/3 of the delay caused by
the considered tree-structured AS FB.

Hence, an advantage of tree-structured filter-banks is that they achieve perfect
reconstruction, if the underlying two-channel filter-bank achieves perfect reconstruc-
tion, which simplifies the design. In addition, critical subsampling can be performed,
which makes such filter-banks of special interest for subband coding, e.g., [VK95, CD99,
KKP07]. In contrast, allpass transformed AS FB have (usually) a lower signal delay
and are more suitable for applications with non-critical subsampling such as speech
enhancement. Such different applications for tree-structured and allpass transformed
filter-banks are discussed in Chap. 6.



Appendix D

Error Norms and Optimization
Methods

A frequent design problem is to find the optimal filter coefficients according to a given
optimization criterion. To solve this problem, an appropriate error criterion is needed
as well as a method to find the optimal solution. This section describes briefly the
errors norms and mathematical programs which are used in this work for the design of
filters and filter-banks, respectively.

D.1 Error Norms

A common design problem is to find an approximation for a desired function fdes(Ω)
which minimizes the weighted error over a set of (normalized) frequencies F :

Δf(Ω) = Υ(Ω) · [f(Ω)− fdes(Ω)] with Υ(Ω) ∈ R+ . (D.1)

All functions are assumed to be continuous and differentiable for Ω ∈ F . The considered
function f(Ω) has Kc unknown coefficients. These coefficients should be determined in
such a manner that the norm of the weighted error of Eq. (D.1) is minimized. The Lp-
norm of the approximation error function Δf(Ω) over the set F is given for a continuous
function by

‖Δf(Ω)‖p =

⎡⎣ ∫
Ω∈F

|Δf(Ω)|p d Ω

⎤⎦ 1
p

for p ∈ { 1, 2, . . . ,∞} . (D.2)

For a finite set of discrete frequencies, the Lp-norm of the approximation error is given
by

‖Δf(Ωn)‖p =

[ ∑
Ωn∈F

|Δf(Ωn)|p
] 1

p

. (D.3)

In this work, the L1-norm, the L2-norm (LS error norm) and the L∞-norm, which is
also termed as Chebyshev norm or infinity norm, are considered. The Chebyshev norm
features the property

‖Δf(Ω)‖∞ = max
Ω∈F

{|Δf(Ω)|} . (D.4)
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A Chebyshev solution for an approximation problem follows from the alternation theo-
rem, which can be briefly formulated as follows:1

For an appropriate set of functions f(Ω) with Ω ∈ F , a necessary and sufficient
condition that the function f(Ω) is a unique, best weighted Chebyshev approximation
to a given continuous function fdes(Ω) is that the weighted error of Eq. (D.1) exhibits
at least Kc + 2 extrema at the extremal points Ω0 < Ω1, . . . , < ΩKc+1 such that

Δf(Ωn) = −Δf(Ωn+1); n = 0, 1, . . . ,Kc (D.5a)

and |Δf(Ωn)| = max
Ω∈F

{|Δf(Ω)|} = ‖Δf(Ω)‖∞ . (D.5b)

The alternating extrema of the residual error Δf(Ω) are termed as alternate. Due to
the alternation theorem, the error between desired and approximated function shows
an equiripple behavior. Therefore, filters designed by this criterion are also denoted as
equiripple filters. An algorithm to find the extremal frequencies is given by the Remez-
Exchange algorithm, e.g., [PB87, Lan93]. An advantage of a Chebyshev approximation
is that the maximal deviation from the desired function is considered rather than the
sum or integral of all squared deviations as for an LS error solution.

D.2 Convex Programs

This section gives an overview of the different convex optimization problems considered
in this work. A more comprehensive treatment of convex optimization methods can
be found in various textbooks such as [WSV00, BV04, AL07]. It should be noted that
the different optimization problems (or programs) are formulated in this section in a
generic way, which means that the used notation for vectors, matrices and functions is
not related to the notation used for the numerical filter-bank designs (and hence not
listed in App. A).

In general, a convex optimization problem is of the form

minimize
xxx

f0(xxx) (D.6a)

subject to fk(xxx) ≤ 0 for k = 1, 2, . . . ,Ku (D.6b)

aaaT
k xxx = bbbk for k = 1, 2, . . . ,Ke (D.6c)

where the equality constraints are affine. The real objective function f0(xxx) and the
real inequality constraint functions f1(xxx) to fKu

(xxx) are convex. A real function f(xxx) is
convex, if for two arbitrary arguments xxx1 and xxx2:

f(μx1x1x1 + (1− μ)x2x2x2) ≤ μ f(x1x1x1) + (1− μ) f(x2x2x2) for 0 ≤ μ ≤ 1 . (D.7)

1A more precise formulation and discussion of this theorem can be found in [Lan93]

where the appropriate set of functions for which this theorem applies is exactly specified.

However, this shortened (informal) formulation of the alternation theorem is sufficient for

the treatment in Sec. 3.3.4 where Eq. (D.5) is used to characterize the derived expressions

for different approximation errors.
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The function is strictly convex, if Eq. (D.7) is a strict inequality whenever xxx1 �= xxx2

and 0 < μ < 1. An important example for a convex function is the norm of a vector
f(xxx) = ‖xxx‖p (see also App. D.1). The feasible set of vectors fulfills the constraints
of Eq. (D.6b) and Eq. (D.6c) and is a convex set. The vector x̂xx, which solves the
optimization problem of Eq. (D.6), is optimal, if the problem is feasible. The problem is
infeasible, if f0(x̂xx) = −∞. For the sake of simplicity, only real vectors and matrices are
considered in the following, but the listed mathematical programs can also be applied
to complex variables (as demonstrated in Chap. 4).

A special case of the general convex optimization problem of Eq. (D.6) is a semi-
definite program (SDP), which can be formulated as follows2

minimize
xxx

yyyTxxx (D.8a)

subject to CCC(k)
0 +

N∑
n=1

xn ·CCC(k)
n � 0 for k = 1, 2, . . . ,Ku (D.8b)

BBBxxx � hhh (D.8c)

FFF xxx = bbb (D.8d)

where xxx = [x1, x2, . . . , xN ]T ∈ R
N , bbb ∈ R

M and yyy,hhh ∈ R
N . The real matrices BBB and

CCC
(k)
n for k = 0, 1, . . . ,Ku are symmetric and FFF ∈ R

M×N with M > N .
A special case of an SDP is a second order cone program (SOCP)

minimize
xxx

yyyTxxx (D.9a)

subject to ‖AAAk xxx+ bbbk‖2 ≤ cccT
k xxx+ dk for k = 1, 2, . . . ,Ku (D.9b)

FFF xxx = bbb (D.9c)

with dk ∈ R, ccck ∈ R
N , bbbk ∈ R

Mk and AAAk ∈ R
Mk×N where Mk > N .

The special case ccck = 000N for k = 1, 2, . . . ,Ku leads to a quadratically constrained
quadratic program (QCQP)

minimize
xxx

1
2
xxxTPPP 0 xxx+ qqqT

0 xxx+ r0 (D.10a)

subject to
1
2
xxxTPPP k xxx+ qqqT

k xxx+ rk ≤ 0 for k = 1, 2, . . . ,Ku (D.10b)

FFF xxx = bbb (D.10c)

where the matrices PPP k ∈ R
N×N for k = 0, 1, . . . ,Ku are positive semi-definite.

A linearly constrained quadratic program (LCQP) is obtained, if the matrix PPP k is a
zero-matrix for k = 1, 2, . . . ,Ku:

minimize
xxx

1
2
xxxTPPP 0 xxx+ qqqT

0 xxx+ r0 (D.11a)

subject to qqqT
k xxx+ rk ≤ 0 for k = 1, 2, . . . ,Ku (D.11b)

FFF xxx = bbb . (D.11c)

2This inequality form is not the general standard form being mostly used, but more

convenient for the treatment in this work.
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Solving Eq. (D.10) without constraints is equivalent to an (unconstrained) LS error
minimization of the form

minimize
xxx

‖AAAxxx+ bbb‖2
2 (D.12)

with AAA ∈ R
M×N and bbb ∈ R

M where M > N .
Another special case of an SOCP is a linear program

minimize
xxx

yyyTxxx (D.13a)

subject to GGGxxx � ddd (D.13b)

FFF xxx = bbb (D.13c)

with GGG ∈ R
Ke×N and ddd ∈ R

Ke where Ke > N .
There exist different operations which allow to transform a convex optimization

problem into another convex problem. In this work, the conversion of a convex problem
into the epigraph form is of special importance. The epigraph of a real function is the
parameter set (xxx, ρ) for which f(xxx) ≤ ρ where ρ is denoted as ‘epigraph variable’ in this
work. For example, the convex optimization problem

minimize
xxx

f(xxx) (D.14)

can be expressed in the epigraph form

minimize
xxx, ρ

ρ (D.15a)

subject to f(xxx) ≤ ρ . (D.15b)

Since f(xxx) is convex, the function f(xxx)−ρ and hence the problem in the epigraph form
are also convex.



Appendix E

Instrumental Measures for Speech
Enhancement Systems

Instrumental quality measures are used in Sec. 6.2.1 to compare the performance of dif-
ferent filter-banks used for noise reduction. The investigated noise reduction systems are
judged based on listener’s impression and instrumental measures. This is important
since disturbing artifacts as, for instance, musical noise are only insufficiently repre-
sented by (most) instrumental measures. With this in mind, the following measures are
used according to [Gus99, VHH98].

In a simulation, the clean speech s(k) and the additive background noise u(k) can
be filtered separately with coefficients adapted for the noisy speech x(k) = s(k) + u(k).
This provides the filtered speech s̆(k) and filtered noise ŭ(k) separately where

y(k) = ŝ(k) = s̆(k) + ŭ(k) . (E.1)

The algorithmic signal delay of systems with a non-linear phase response is determined
here by the maximum of the cross-correlation between the clean speech s(k) and the
processed speech s̆(k) according to

Do = arg
{

max
κ

{
corr {s(k − κ), s̆(k)}

}}
. (E.2)

A common time-domain measure for the quality of the enhanced speech y(k) = ŝ(k) is
given by the segmental SNR

SNRseg

dB
=

10
C(Fs)

∑
m∈Fs

log10

⎛⎜⎜⎜⎝
Mm−1∑

μ=0

s2(mMm + μ−Do)

Mm−1∑
μ=0

(
ŝ(mMm + μ)− s(mMm + μ−Do)

)2

⎞⎟⎟⎟⎠ .

(E.3)

The calculation comprises only frames with speech activity (m ∈ Fs) whose total num-
ber is denoted by C(Fs).
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The achieved segmental noise attenuation is calculated by the expression

NAseg

dB
=

10
C(F)

∑
m∈F

log10

⎛⎜⎜⎜⎝
Mm−1∑

μ=0

u2(mMm + μ−Do)

Mm−1∑
μ=0

ŭ2(mMm + μ)

⎞⎟⎟⎟⎠ (E.4)

where F marks the set of all frame indices including speech pauses and C(F) denotes
the total number of frames.

A frequency-domain measure for the quality of the enhanced speech is given by the
cepstral distance (CD). The real cepstrum of a signal s(k) is considered. The cepstral
coefficients of s(k) with frame index m are given by

Cs(mM + i) = IDFTM

{
ln
∣∣DFTM{s(mM + k)}

∣∣} (E.5)

for i ∈ { 0, 1, . . . ,M − 1 }. Here, only a relatively coarse description of the spectrum
with MCD < M coefficients is needed. The (mean) CD value1 between the filtered and
original speech is calculated by averaging the cepstral distance per frame CD(m) over
all frames with speech activity

CD =
1

C(Fs)

∑
m∈Fs

10
ln(10)

CD(m) (E.6)

with

CD(m) =√√√√[Cs(mM −Do)− Cs̆(mM)
]2

+ 2

MCD−1∑
μ=1

[
Cs(mM −Do + μ)− Cs̆(mM + μ)

]2
.

(E.7)

A value of MCD = 40 coefficients is taken for this work. A high CD indicates a strong
distortion. As a consequence of the logarithmic spectrum and the reduced number
of cepstral coefficients MCD, the cepstral difference emphasizes differences in strong
speech components where differences in weak components or in the fine structure of the
spectrum are weighted less.

1The CD always refers to the mean CD value in this work.



Appendix F

Deutschsprachige Zusammenfassung

Digitale Signalverarbeitungssysteme haben analoge Systeme in den letzten Jahrzehnten
sukzessive ersetzt und sind heutzutage in einer Vielzahl von unterschiedlichen Geräten,
wie z.B. Mobilfunktelefonen, Unterhaltungselektronik oder Hörgeräten zu finden. Ein
entscheidender Vorteil der digitalen Signalverarbeitung besteht u.a. darin, dass damit
auch Systeme realisiert werden können, die mit analoger Signalverarbeitung nicht oder
nur sehr aufwendig zu realisieren sind.

Ein wichtiger Bestandteil vieler Systeme zur digitalen Signalverarbeitung sind Fil-
ter und deren Kombination zu Filterbänken. In vielen Fällen ist es notwendig oder
zumindest vorteilhaft, ein Signal im Frequenzbereich anstatt im Zeitbereich zu verar-
beiten. Dies kann man mit Hilfe einer Analyse-Synthese-Filterbank bewerkstelligen, wie
sie in Abbildung F.1 dargestellt ist. Das digitale Eingangssignal x(k) wird durch Ana-
lysefilter in verschiedene Teilbandsignale zerlegt. Diese sind bandbegrenzt und können
daher mit der Rate R unterabgetastet werden, d.h. mit einer geringeren Abtastrate
verarbeitet werden als das Eingangssignal. Die Teilbandsignale werden nach der Teil-
bandverarbeitung zuerst mit der Rate R hochgetastet und dann nach der Filterung mit
den entsprechenden Synthesefiltern aufaddiert, was schließlich das Ausgangssignal y(k)
liefert. Falls keine Teilbandverarbeitung durchgeführt wird, soll die Synthese-Filterbank

x(k) y(k)
h0(k)

h1(k)

hM−1(k)

g0(k)

g1(k)

gM−1(k)

↑R

↑R

↑R

↓R

↓R

↓R

Analyse-Filterbank Synthese-Filterbank

T
ei
lb
a
n
d
v
er
a
rb
ei
tu
n
g

Abbildung F.1: Digitale Analyse-Synthese-Filterbank mit M Teilbändern und
einheitlicher Unterabtastrate R.
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eine perfekte Rekonstruktion (PR) oder zumindest eine nahezu perfekte Rekonstruktion
(NPR) des Eingangssignals erreichen.

Die Unterabtastung der Teilbandsignale ermöglicht eine effiziente Realisierung von
Filterbänken, aber sie führt auch zu einer Überlagerung von Spektralkomponenten, dem
sog. Aliasing-Effekt. Dieser kann zu Signalverzerrungen führen und muss daher durch
die Synthese-Filterbank mittels einer Aliasing-Cancellation kompensiert werden.

Analyse-Synthese-Filterbänke (mit Unterabtastung) werden für eine Vielzahl von
Aufgaben benutzt, wie z.B. zur Teilbandcodierung von Sprach-, Audio- und Videosi-
gnalen oder zur adaptiven Filterung von Signalen im Frequenzbereich. Die vielfältigen
Einsatzmöglichkeiten von Filterbänken haben zur Entwicklung von unterschiedlichen
Klassen geführt.

Am häufigsten werden Analyse-Synthese-Filterbänke mit einer gleichförmigen Zeit-
Frequenzauflösung eingesetzt. Gleichförmige Filterbänke bieten den Vorteil, dass sie
sehr effizient realisiert werden können. Es handelt sich dabei meistens um modulierte
Filterbänke, die auf einer Diskreten Fourier Transformation (DFT) oder Diskreten Co-
sinus Transformation (DCT) beruhen und daher sehr effizient mittels eines sog. Poly-
phasennetzwerks implementiert werden können. Für die Analyse- und Synthesefilter
werden meist nichtrekursive Filter benutzt, die eine begrenzte Impulsantwort (Finite
Impulse Response, FIR) besitzen.

Ein Vorteil von FIR-Teilbandfiltern ist, dass eine Filterbank mit linearphasigen
Filtern oder perfekter Signalrekonstruktion einfacher zu entwerfen und realisieren ist
als mit rekursiven Filtern, die eine unbegrenzte Impulsantwort (Infinite Impulse Re-
sponse, IIR) aufweisen. Dementsprechend wird der Entwurf bzw. das Design von FIR-
Filterbänken in der Literatur stärker behandelt als von IIR-Filterbänken.

Ein Vorteil von rekursiven Filterbänken ist hingegen, dass sie mit einem deutlich
geringerem Filtergrad eine vergleichbare Frequenzselektivität wie FIR-Filterbänke errei-
chen können, was eine geringere Signalverzögerung und Komplexität impliziert. Darüber
hinaus ist es nicht immer notwendig eine Filterbank mit linearphasigen Teilbandfiltern
oder perfekter Signalrekonstruktion zu entwerfen. Bei der Sprach- und Audiosignalver-
arbeitung können beispielsweise leichte Signalverzerrungen toleriert werden, da diese
vom menschlichen Gehör in der Regel nicht wahrgenommen werden. Die Tolerierung
eines Rekonstruktionsfehlers liefert im Gegenzug zusätzliche Freiheitsgrade für den Ent-
wurf der Filterbank. Daher sind rekursive Filterbänke eine attraktive Alternative zu
nichtrekursiven Filterbänken.

In dieser Arbeit werden der Entwurf und die Anwendung von rekursiven Filter-
bänken behandelt, die mit Hilfe von Allpassfiltern realisiert werden. Die betrachteten
allpass-basierten Filterbänke teilen sich in zwei wesentliche Klassen auf.

Zum einen werden allpass-basierte zweikanalige Quadrature-Mirror-Filterbänke
(QMF-Bänke) und deren Erweiterung zu mehrkanaligen Pseudo-QMF-Bänken be-
trachtet. Diese rekursiven Filterbänke besitzen eine gleichförmige Frequenzauflösung
und führen eine sog. kritische Unterabtastung durch, was diese u.a. für die Teilband-
codierung von Signalen attraktiv macht. QMF-Bänke und Pseudo-QMF-Bänke sind
modulierte Filterbänke, die mittels eines Polyphasennetzwerks sehr effizient realisiert
werden können. Die Polyphasenkomponenten der in dieser Arbeit betrachteten rekur-
siven Filterbänke bestehen dabei aus Allpassfiltern.
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Die zweite Klasse bilden allpass-transformierte Analyse-Synthese-Filterbänke. Diese
entstehen aus einer gleichförmigen Filterbank indem deren Verzögerungselemente durch
Allpassfilter ersetzt werden. Diese sog. Allpass-Transformation erlaubt den Entwurf
einer ungleichförmigen Filterbank dessen (ungleichförmige) Zeit-Frequenzauflösung an
die des menschlichen Gehörs angepasst werden kann. Daher sind allpass-transformierte
Filterbänke von besonderem Interesse für die Sprach- und Audiosignalverarbeitung.

Ein Problem bei beiden Klassen von allpass-basierten Filterbänken ist es, die nicht-
linearen Phasenverzerrungen durch die rekursive Analyse-Filterbank syntheseseitig zu
kompensieren, was deren gemeinsame Betrachtung motiviert.

Frühere Arbeiten & Offene Probleme

Die in dieser Arbeit betrachteten allpass-basierten Filterbänke wurden bereits in ver-
schiedenen Dissertationen, sowie zahlreichen anderen Veröffentlichungen behandelt. Der
Entwurf derartiger Filterbänke stellt jedoch eine anspruchsvolle Aufgabe dar, und es
gibt immer noch eine Reihe von Problemen und Fragestellungen, die in bisherigen Ar-
beiten nicht oder nur teilweise gelöst wurden.

In der Dissertation von E. Galijašević (2002) wurde der Entwurf von allpass-
basierten QMF-Bänken und Pseudo-QMF-Bänken sowie allpass-transformierten DFT-
Filterbänken mit nahezu perfekter Rekonstruktion behandelt. Es wurde u.a. ein FIR-
Phasenequalizer vorgestellt, der in beiden Fällen für die Konstruktion der Synthese-
Filterbänke eingesetzt wird. Ein Vorteil dieses Verfahrens ist, dass der Phasenequalizer,
und somit die Filterbank, durch geschlossene Formeln konstruiert wird, was zu recht
einfachen Entwurfsverfahren führt. Ein Nachteil ist jedoch, dass der vorgeschlage-
ne Phasenequalizer im Falle einer allpass-transformierten Filterbank eine recht hohe
Signalverzögerung verursacht. Dies motiviert eine genauere Untersuchung von bekann-
ten und neuen Ansätzen zur Lösung des Phasenkomensationsproblems bei allpass-
basierten Filterbänken. Die Betrachtung dieses speziellen Problems ermöglicht dabei
besser angepasste bzw. einfachere Lösungsansätze, als sie durch den Einsatz von
allgemeinen Phasenequalizern, deren numerischer Entwurf in der Literatur relativ
ausführlich behandelt wird, erreicht werden können.

Der Entwurf von allpass-transformierten DFT-Filterbänken wurde in der Disser-
tation von M. Kappelan (1998) ausführlich behandelt. Es wurde u.a. gezeigt, dass
Filterbänke auch mittels einer Allpass-Transformation höherer Ordnung konstruiert
werden können, wobei die Verzögerungselemente der zugrunde liegenden gleichför-
migen Analyse-Filterbank durch Allpassfilter höherer Ordnung ersetzt werden. Dies
ermöglicht gegenüber einer Allpass-Transformation erster Ordnung eine erhöhte Fle-
xibilität für die Einstellung der Zeit-Frequenzauflösung. Für den Spezialfall einer
Allpass-Transformation erster Ordnung wurde erstmals gezeigt, dass eine perfekte
Signalrekonstruktion erreicht werden kann. Die in der Dissertation von Kappelan
vorgestellte Synthese-Filterbank hat den Vorteil, dass sie durch geschlossene Formeln
bestimmt wird und nur eine geringe Signalverzögerung und Komplexität aufweist. Ein
gravierender Nachteil ist jedoch, dass die Synthesefilter keine Bandpasscharakteristik
aufweisen. Dies kann zu starken Signalverzerrungen führen, falls eine Teilbandverar-
beitung stattfindet, und schränkt damit die praktischen Einsatzmöglichkeiten einer
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derartigen Filterbank sehr stark ein. Ein anderes ungelöstes Problem ist, ob es möglich
ist eine stabile und frequenzselektive Synthese-Filterbank zu entwerfen, die eine perfek-
te Rekonstruktion im Falle einer Allpass-Transformation erster sowie höherer Ordnung
ermöglicht.

Es gibt neben den geschlossenen Entwurfsmethoden für allpass-transformierte
Analyse-Synthese Filterbänke auch numerische Entwurfsverfahren, die u.a. in der
Dissertation von M. de Haan (2004) entwickelt wurden. Die Analyse- und Synthese-
Filterbank wird dabei jeweils einer Allpass-Transformation erster Ordnung unterzogen.
Der erhöhte Signalrekonstruktionsfehler, der sich dadurch ergibt, wird durch dedi-
zierte numerische Entwurfsverfahren für die Prototypfilter der Analyse- und Synthese-
Filterbank reduziert. Dieser Ansatz bietet den Vorteil, dass damit die Signallaufzeit und
Komplexität der ursprünglichen, allpass-transformierten Analyse-Synthese-Filterbank
nicht nennenswert verändert wird, so dass eine derartige Filterbank eine vergleichs-
weise geringe Latenz aufweist. Ein Nachteil ist jedoch, dass sich mit dieser Methode
keine allpass-transformierte Analyse-Synthese-Filterbank konstruieren lässt, die eine
(nahezu) perfekte Aliasing-Cancellation oder sogar eine perfekte Signalrekonstruktion
aufweist. Dies wirft die Frage auf, ob eine allpass-transformierte Analyse-Synthese-
Filterbank mit derartigen Eigenschaften mittels eines numerischen Entwurfsverfahrens
überhaupt konstruiert werden kann.

Die Anwendung von allpass-transformierten Filterbänken sowie Wavelet-Filter-
bänken für die Verbesserung von akustisch gestörten Sprachsignalen wurde in den
Dissertationen von A. Engelsberg (1998) sowie T. Gülzow (2001) erstmals ausführlich
behandelt. In diesen Arbeiten wurden die Vorteile von derartigen ungleichförmigen
Filterbänken für die Störgeräuschreduktion aufgezeigt und untersucht. Ein Nachteil
der vorgestellten (ungleichförmigen) Analyse-Synthese-Filterbänke ist jedoch deren
recht hohe Signallaufzeit. Daher sind diese Filterbänke weniger geeignet für Sprach-
verbesserungssysteme, die nur eine geringe Latenz aufweisen dürfen. Es stellt sich
daher die grundlegende Frage, ob die Vorteile einer allpass-transformierten Filterbank
mit ungleichmäßiger Frequenzauflösung bei der adaptiven Teilbandfilterung ausgenutzt
werden können, ohne dabei eine übermäßig hohe Signallaufzeit in Kauf nehmen zu
müssen.

In dieser Dissertation werden die aufgezeigten Fragestellungen und Probleme beim
Entwurf allpass-basierter Filterbänke behandelt und durch neue Entwurfsmethoden ge-
löst. Darüber hinaus wird die Anwendung der eingeführten Filterbänke anhand von
ausgewählten Beispielen diskutiert. Die wichtigsten Ergebnisse werden im Folgenden
kurz dargestellt.

Rekursive QMF-Bänke

In dieser Arbeit werden unterschiedliche Entwurfsverfahren für allpass-basierte QMF-
Bänke entwickelt. Bei all den vorgeschlagenen QMF-Bänken bestehen dabei die Poly-
phasenkomponenten der Analyse- und Synthese-Filterbank aus Allpassfiltern. Die
Allpassfilter der Synthese-Filterbank agieren dabei als Phasenequalizer, die die nicht-
linearen Phasenverzerrungen, die durch die rekursiven Analysefilter entstehen, ausglei-
chen. Diese Equalizer werden mittels einfacher geschlossener Formel entworfen, was es
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erlaubt den Zielkonflikt zwischen Rekonstruktionsfehler und Signallaufzeit in einfacher
Weise zu kontrollieren.

Ein erstes QMF-Bank-Design erreicht eine Minimierung der Amplituden-, Phasen-
und Aliasingverzerrungen der Filterbank in Abhängigkeit vom Grad der eingesetzten
Synthese-Polyphasenfilter (Allpassfilter). Das zweite vorgeschlagene QMF-Bank-Design
hat eine größere Komplexität und Signalverzögerung als das erste, ermöglicht dafür aber
eine komplette Aliasing-Cancellation und verursacht keine Betragsverzerrungen (falls
keine Teilbandverarbeitung stattfindet). Es wird auch gezeigt, wie die vorgestellten
Designs für zweikanalige QMF-Bänke auf mehrkanalige Pseudo-QMF-Bänke erweitert
werden können.

Die neu vorgestellten, allpass-basierten IIR/IIR-QMF-Bänke unterscheiden sich von
vergleichbaren FIR/FIR- und IIR/FIR-QMF-Bänken dadurch, dass sie höhere Phasen-
verzerrungen verursachen, aber dafür keine Betragsverzerrungen aufweisen und eine
geringere Komplexität besitzen. Aufgrund dieser Eigenschaften sind die vorgeschlagenen
allpass-basierten IIR/IIR-QMF-Bänke von besonderem Interesse für die Sprach- und
Audioverarbeitung, da das menschliche Gehör relativ unempfindlich gegenüber Phasen-
verzerrungen ist.

Das neue, rein allpass-basierte QMF-Bank-Design mit perfekter Aliasing-Cancel-
lation ist Bestandteil eines neuen Sprach- und Audiocodecs, der als Kandidat im Rah-
men einer ITU-T Standardisierung vorgeschlagen wurde. Die neue IIR/IIR-QMF-Bank
wird im vorgeschlagenen Codec dafür eingesetzt ein Signal in zwei Teilbandsignale der
halben Abtastrate zu zerlegen. Diese Teilbandsignale werden dann separat codiert um
einen hierarchischen Datenstrom (Bitstream) zu generieren, so dass je nach Übertra-
gungskapazität des Kanals bzw. Netzwerks Teile des Bitstreams verworfen werden kön-
nen. Es wird gezeigt, dass der Einsatz der neuen rekursiven QMF-Bank eine gerin-
gere Signallaufzeit und Komplexität verursacht als eine vergleichbare nichtrekursive
FIR/FIR-QMF-Bank, wie sie beispielsweise im bestehenden G.729.1 Codec eingesetzt
wird.

Phasenkomensation für Allpass-Basierte Filterbänke

Ein zentrales Problem beim Entwurf von allpass-basierten Filterbänken ist es, die nicht-
linearen Phasenverzerrungen durch die allpass-basierte Analyse-Filterbank mittels ei-
ner Phasenkompensation (Phase Equalization) syntheseseitig zu korrigieren. Deshalb
werden unterschiedliche Ansätze zur Lösung dieses Problem in dieser Arbeit näher un-
tersucht.

Einen perfekten Phasenausgleich kann man durch inverse Allpassfilter erreichen, die
jedoch ein nichtkausales System darstellen. Es gibt Ansätze derartige nichtkausale Filter
mittels einer Pufferung von Werten praktisch zu realisieren, deren Einsatz für allpass-
basierte Filterbänke jedoch mit Problemen verbunden ist. Es wird gezeigt, dass die
resultierenden Filterbänke entweder empfindlich gegenüber einer Teilbandverarbeitung
sind oder aber zusätzliche Aliasing-Verzerrungen verursachen können.

Diese Probleme treten nicht auf bei kausalen FIR- oder IIR-Phasenequalizern, die
ein lineares, zeitinvariantes System darstellen und auf eine nahezu perfekte Phasen-
kompensation abzielen. Im Falle von allpass-basierten Filterbänken können die benö-
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tigten Phasenequalizer mittels einfacher geschlossener Formel bestimmt werden und
müssen nicht notwendigerweise durch ein (aufwendiges) numerisches Design entwor-
fen werden. Für den FIR-Phasenequalizer, der in der Dissertation von E. Galijašević
für den Entwurf von allpass-basierten Filterbänken vorgestellt wurde, wird gezeigt,
dass dieser einen Equiripple-Approximationsfehler für die gewünschte Gruppenlaufzeit,
Phasen- und Betragsantwort bei der Phasenkompensation von Allpassketten erreicht,
weshalb die Bezeichnung als Equiripple-FIR-Phasenequalizer eingeführt wird. Der in
dieser Arbeit vorgestellte Allpass-Phasenequalizer erzielt ebenso einen Equiripple-
Approximationsfehler für die gewünscht Phasenantwort und Gruppenlaufzeit. Die
Phasenverzerrungen dieses Equiripple-Allpass-Phasenequalizers sind größer als für den
Equiripple-FIR-Phasenequalizer, wobei der Allpass-Phasenequalizer jedoch keine Be-
tragsverzerrungen verursacht und in der Regel eine geringere Komplexität aufweist.
Damit ist der vorgestellte Allpass-Phasenequalizer von besonderem Interesse für die
Sprach- und Audioverarbeitung, bei der Phasenverzerrungen weniger problematisch
sind.

Im Falle einer allpass-transformierten Filterbank tritt das Problem auf, dass die
Phasenantwort von zum Teil recht langen Allpassketten kompensiert werden muss. Es
wird gezeigt, dass ein sog. Least-Squares (LS) FIR-Phasenequalizer besonders gut dafür
geeignet ist. Dessen Koeffizienten erhält man dadurch, dass man die unendliche, nicht-
kausale Impulsantwort eines inversen Allpassfilters begrenzt und zeitlich verschiebt, was
einer Least-Squares-Fehlerapproximation des ‘idealen’, nichtkausalen Phasenequalizers
entspricht.

Allpass-Transformierte Filterbänke

In dieser Arbeit werden verschiedene Entwurfsverfahren für allpass-transformierte DFT-
Analyse-Synthese-Filterbänke entwickelt, die unterschiedlichen Anforderungen genügen.

Die Synthese-Filterbank für eine allpass-transformierte Analyse-Filterbank kann,
wie zuvor erwähnt, mit Hilfe von Phasenequalizern konstruiert werden. Es wird ge-
zeigt, dass der Einsatz des o.g. LS-FIR-Phasenequalizers für diesen Zweck deutliche
Vorteile gegenüber dem Equiripple-FIR-Phasenequalizer bietet, der in früheren Arbei-
ten vorgeschlagen wurde: Die mit dem neuen Verfahren entworfene Filterbank erreicht
bei gleicher Signallaufzeit und vergleichbarer Komplexität einen deutlich geringeren Re-
konstruktionsfehler und eine bessere Bandpasscharakteristik für die Synthesefilter als
das bisherige Verfahren.

Ein Vorteil der vorgestellten geschlossenen Entwurfsverfahren ist deren Einfach-
heit, da die Synthese-Filterbank mittels geschlossener analytischer Formeln konstruiert
werden kann. Hierdurch kann der Zielkonflikt zwischen Signalverzögerung und Rekon-
struktionsfehler der Filterbank recht einfach kontrolliert werden. Andererseits ist es
mit diesen Ansätzen schwierig, zusätzliche Entwurfskriterien zu berücksichtigen. Dieses
Problem wird durch eine neue numerische Entwurfsmethodik angegangen. Sie basiert
auf einer neuen Matrixbeschreibung für allpass-transformierte Filterbänke aus der un-
terschiedliche Entwurfsverfahren abgeleitet werden.

Das erste daraus abgeleitete Design ist eine Verallgemeinerung des geschlossenen
Designs mit LS-FIR-Phasenequalizern. Die FIR-Synthesefilter werden durch numeri-
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sche Optimierung mittels eines Linearly Constrained Quadratic Program (LCQP) be-
stimmt.1 Dabei werden die Phasenverzerrungen minimiert mit der zusätzlichen Be-
dingung für eine perfekte Aliasing-Cancellation. Dieser Ansatz wird in einem zwei-
ten Schritt verallgemeinert, so dass man einen begrenzten Fehler für die Aliasing-
Kompensation zulassen kann, um dadurch im Gegenzug die linearen Signalverzerrungen
stärker reduzieren zu können. Die Koeffizienten der Synthese-Filterbank können in die-
sem Fall durch ein Semi-Definite Program (SDP) bestimmt werden.

Eine andere Erweiterung dieses Entwurfsverfahrens zielt auf ein sog. sparse Design
ab. Dabei wird die Anzahl der Synthesefilterkoeffizienten die ungleich Null sind mi-
nimiert, um die Komplexität der Filterbank zu reduzieren. Dieses kann beispielsweise
von Vorteil für eine Hardwarerealisierung sein, um dadurch die Anzahl der benötigten
Schaltelemente zu reduzieren. Das hergeleitete Entwurfs- bzw. Optimierungsverfahren
für die Synthese-Filterbank beruht auf einem Second Order Cone Program (SOCP).
Dabei kann der Trade-Off zwischen Rekonstruktionsfehler der Filterbank und Komple-
xitätsreduktion durch ein Gewichtungsfaktor in einfacher Weise beeinflusst werden.

Es wird auch gezeigt, dass eine allpass-transformierte Filterbank mit perfekter Re-
konstruktion mittels eines numerischen Verfahrens konstruiert werden kann. Bei einem
ersten Entwurfsverfahren ohne Nebenbedingung werden die Koeffizienten der Synthe-
sefilter durch ein einfaches lineares Gleichungssystem (Linear Program) bestimmt. Ein
zweites Entwurfsverfahren mit Nebenbedingung strebt auch nach einer perfekte Rekon-
struktion, optimiert dabei aber zusätzlich die Bandpasscharakteristik der Synthesefilter,
dessen Koeffizienten in diesem Fall durch ein Linearly Constrained Quadratic Program
bestimmt werden.

Die eingeführten numerischen Designs haben deutliche Vorteile gegenüber bekann-
ten Designs für perfekte Rekonstruktion, die auf geschlossen lösbaren Entwurfsverfah-
ren beruhen. Die neuen numerischen Entwurfsmethoden liefern auch im Falle einer
Allpass-Transformation höherer Ordnung stabile Synthesefilter mit einer ausgeprägten
Bandpasscharakteristik. Darüber hinaus können sie auch auf Filterbänke angewendet
werden, bei denen der Filtergrad der Analysefilter größer ist als die Kanalzahl, was eine
erhöhte Frequenzselektivität der Teilbandfilter ermöglicht.

Die neu vorgestellten numerischen Entwurfsverfahren können alle durch Semi-
Definite Programmierung oder Spezialfälle davon gelöst werden. Derartige konvexe
Optimierungsprobleme liefern ein globales Optimum und können, im Vergleich zu
nicht-konvexen Optimierungsproblemen, relativ einfach gelöst. Im Gegensatz zu frü-
heren numerischen Designs für allpass-transformierte Filterbänke können die neuen
Ansätze eine perfekte Aliasing-Cancellation oder sogar eine perfekte Rekonstruktion
erreichen. Darüber hinaus beziehen die neuen Verfahren auch explizit den allgemeineren
Fall einer Allpass-Transformation höherer Ordnung mit ein, was zusätzliche Freiheits-
grade bei der Einstellung der Zeit-Frequenzauflösung der Filterbank erlaubt. Nicht
zuletzt können all die in dieser Arbeit vorgeschlagenen Synthese-Filterbänke durch ein
Polyphasennetzwerk effizient implementiert werden.

Eine Übersicht über die neuen Designs für allpass-transformierte Analyse-Synthese-
Filterbänke liefert Tabelle F.1. Es werden dabei aus Gründen der Konsistenz die in

1Der englische Begriff Program wird hier ausschließlich im mathematischen Sinne ver-

wendet und bezieht sich auf ein (numerisch zu lösendes) Optimierungsproblem.
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Optimierungs- Besondere
Entwurfsverfahren Abschnitt

methode Eigenschaft

NPR Design mittles geschlossene minimierte
Phase Equalization

4.2.2
Lösung Phasenverzerrungen

perfekte
Constrained NPR Design 4.3.3 LCQP

Aliasing Cancellation

Generalized Constrained kontrollierbarer
NPR design

4.3.3 SDP
Aliasingfehler

Filterbank mit
Sparse NPR Design 4.3.4 SOCP

geringer Komplexität

lineares einfaches
Unconstrained PR Design 4.3.5

Gleichungssystem Optimierungsproblem

optimierte
Constrained PR Design 4.3.6 LCQP

Bandpasscharakteristik

Tabelle F.1: Übersicht über die in dieser Arbeit entwickelten Entwurfsverfahren
für allpass-transformierte DFT-Analyse-Synthese-Filterbänke.

dieser Arbeit eingeführten englischen Bezeichnungen und Abkürzungen benutzt. Die
verschiedenen Verfahren verfolgen unterschiedliche Entwurfsziele, so dass es von der
beabsichtigten Anwendung abhängt welches Verfahren zu bevorzugen ist.

Filterbank-Entwurf mit geringer Signallaufzeit

In der Praxis benötigt man oft Filterbänke mit einer geringen Signallaufzeit. Beispiele
dafür sind Sprachverarbeitungssysteme, wie sie u.a. in Mobilfunktelefonen oder digita-
len Hörgeräten eingesetzt werden. Für derartige Anwendungsfälle wird das Konzept des
Filter-Bank Equalizers (FBEs) in dieser Arbeit entwickelt. Dieses System erlaubt die ad-
aptive Teilbandverarbeitung von Signalen mit gleichförmiger als auch ungleichförmiger
Frequenzauflösung sowie einer gleichzeitig geringen Signalverzögerung. Der FBE ist eine
effiziente Implementierung der sog. Filterbank-Summationsmethode, die als Spezialfall
einer Analyse-Synthese-Filterbank ohne Unterabtastung betrachtet werden kann.

Das Prinzip des FBEs ist in Abbildung F.2 dargestellt. Das Eingangssignal wird
mittels einer gleichförmigen oder allpass-transformierten Analyse-Filterbank in den Fre-
quenzbereich transformiert. Die im Frequenzbereich adaptiv berechneten Koeffizienten
werden mittels einer Spektraltransformation, wie z.B. der generalisierten diskreten Fou-
rier Transformation (GDFT), in den Zeitbereich transformiert und zur Filterung des
Eingangssignal im Zeitbereich verwendet. Im Falle des allpass-transformierten FBEs
werden eine allpass-transformierte Analyse-Filterbank und ein allpass-transformiertes
Zeitbereichsfilter verwendet. Die in diesem Fall auftretenden Phasenverzerrungen kön-
nen durch einen nachgeschalteten Phasenequalizer am Ausgang kompensiert werden.

Ein Vorteil des gleichförmigen und allpass-transformierten FBEs gegenüber ver-
gleichbaren Analyse-Synthese-Filterbänken mit Unterabtastung ist neben der geringe-
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berechnung

Analyse-Filterbank

mit Unterabtastung

Transformation
(GDFT)

Zeitbereichs-

filter

Phasen-

equalizer

Abbildung F.2: Prinzip des Filter-Bank Equalizers (FBEs). Der Phasen-
equalizer am Ausgang wird nur im Fall des allpass-transformierten FBEs
benötigt.

ren Signalverzögerung auch die Eigenschaft, dass eine perfekte bzw. nahezu perfekte
Signalrekonstruktion mit einem deutlich geringerem Aufwand erzielt werden kann.

Die Implementierung des FBEs in der direkten Filterform, sowie der transponiert
direkten Filterform wird untersucht. Die Realisierung mittels der transponiert direkten
Form hat den Vorteil, dass die zeitveränderlichen Filterkoeffizienten des Zeitbereichs-
filters stärker geglättet werden, was zur Vermeidung von hörbaren Artefakten durch
das Umschalten der Filterkoeffizienten beiträgt. Die direkte Form hat hingegen den
Vorteil, dass die Adaption der Koeffizienten im Frequenzbereich und die Filterung im
Zeitbereich ohne eine zeitliche Verschiebung erfolgt wie bei der transponiert direkten
Form. Mögliche Artefakte durch die zeitveränderliche Filterung im Zeitbereich können
durch eine spezielle Glättung (Cross-Fading) vermieden werden.

Der FBE kann mittels eines Polyphasennetzwerks effizient realisiert werden. Der
FBE mit gleichförmiger Frequenzauflösung hat dabei in der Regel eine höhere Komple-
xität als eine gleichförmige Analyse-Synthese-Filterbank mit Unterabtastung, wohin-
gegen der allpass-transformierte FBE in der Regel eine geringere Komplexität als ei-
ne vergleichbare allpass-transformierte Analyse-Synthese-Filterbank aufweist. In beiden
Fällen hat der FBE jedoch eine deutlich geringere Signallaufzeit als eine entsprechende
Analyse-Synthese-Filterbank. Es wird auch gezeigt, wie die Phasenantwort des FBEs
trotz der zeitveränderlichen Koeffizienten zeitinvariant bleiben kann, was z.B. für den
Einsatz in mehrkanaligen Signalverarbeitungssystemen von Vorteil sein kann.

Das neu vorgestellte Konzept des Low Delay Filters ist eine Erweiterung des FBEs.
Hierbei wird das ursprüngliche Zeitbereichsfilter des FBEs durch ein Filter geringeren
Grades approximiert. Dies ermöglicht die Signallaufzeit und Komplexität des Systems
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in einfacher und flexibler Art und Weise weiter zu reduzieren, ohne dabei die Adaption
der Koeffizienten im Frequenzbereich anpassen zu müssen. Die Approximation des ur-
sprünglichen Filters kann durch ein nichtrekursives Moving-Average (MA) Filter oder
ein rekursives Auto-Regressive (AR) Filter erfolgen. Die Approximation mittels eines
gleichförmigen oder allpass-transformierten MA-Filters erlaubt es, eine zeitinvariante
oder sogar nahezu lineare Phasenantwort zu erhalten, was beispielsweise für eine bi-
naurale Sprachverarbeitung in Hörgeräten von Interesse sein kann. Das gleichförmige
und allpass-transformierte AR-Filter ist ein minimalphasiges System und kann eine Si-
gnalverzögerung von nur wenigen Abtastwerten erreichen. Eine derartige Eigenschaft
ist von Interesse für Anwendungen, die nur eine sehr geringe Latenz erlauben.

Die Anwendung des FBEs zur Verbesserung akustisch gestörter Sprachsignale, sowie
zur Sprachverständlichkeitsverbesserung in gestörten Umgebungen wird behandelt. Es
wird gezeigt, dass der FBE mit gleichförmiger oder ungleichförmiger Frequenzauflösung
die gleiche subjektive und objektive Sprachqualität erreichen kann wie eine vergleichbare
Analyse-Synthese-Filterbank mit Unterabtastung, dabei jedoch eine deutlich geringe-
re Signalverzögerung verursacht. Der Einsatz einer allpass-transformierten Filterbank
kann entweder erfolgen um eine verbesserte Sprachqualität im Gegensatz zu einer Filter-
bank mit gleichförmiger Frequenzauflösung zu erreichen, oder aber um eine Teilbandfil-
terung mit einer geringeren Anzahl von Frequenzbändern durchzuführen. Der Einsatz
des Low Delay Filters erlaubt es dabei, die Signallaufzeit des FBEs weiter zu reduzieren,
ohne dabei eine deutlich wahrnehmbare Verschlechterung der Sprachqualität in Kauf
nehmen zu müssen.

Die Anwendung der neuen Filterbänke für die Sprach- und Audiosignalverarbei-
tung wird in dieser Arbeit primär betrachtet, aber die neu vorgestellten Verfahren und
Systeme sind auch für andere Anwendungen von Interesse.
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