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ABSTRACT 

This paper introduces two shon-time spectral amplitude estima- 
tors for speech enhancement with multiple microphones. Based 
on joint Gaussian models of speech and noise Fourier coeffi- 
cients the clean speech amplitudes are estimated with respect 
to the MMSE or the MAP criterion. The estimators outperform 
single microphone minimum mean square amplitude estimators 
when the speech is highly correlated and the noise is sufficiently 
uncorrelated. Whereas the first MMSE estimator also requires 
the desired signals to be in phase, the second MAP estimator 
performs a direction-independent noise reduction. The estimators 
are generalizations of the well known single channel MMSE 
estimator derived by Ephraim and Malah and the MAP estimator 
derived by Wolfe and Godsill respectively. 

1. INTRODUCTION 

Speech communication appliances such as voice-controlled de- 
vices, hearing aids and hands-free telephones often suffer from 
poor speech quality due to background noise and room reverbera- 
tion. Single microphone speech enhancement algorithms, e.g. the 
Minimum Mean Square Error (MMSE) estimator of the speech 
Discrete Fourier Transform (DFT) amplitudes [I] ,  can achieve 
high noise reduction at the expense of moderate speech distortion. 
With multiple microphones spatial information can be exploited. 
e.g. by beamforming, to reduce noise and reverberation causing 
only very little speech distortion. However, if the Direction Of 
Arrival (DOA) can not be estimated with sufficient accuracy, the 
performance of the beamforming system degrades. 
In this contribution we propose two estimators for speech DFT 
amplitudes that exploit the benefits of multiple microphones. 
Whereas the first estimator requires the desired signal components 
IO be in phase, the second estimators delivers DOA independent 
noise reduction. 

Figure I shows an overview of the multichannel noise reduc- 
tion system with the proposed speech estimators. The time sig- 
nals y;(k) , i E {l . . . M} from M microphones are segmented 
and multiplied by half overlapping Hann windows. The resulting 
blocks are transformed via FFT. Yi(A) denotes the complex value 
of signal i in D I T  bin A. For the sake of brevity the frequency 
index X is omitted. 

Y ,-  - Q ejai = Ai ej"< + Ni ; i E {l . .M}. (I) 

E consists of a speech component S; = A;e'*" and noise N;. Ai 
denotes the spectral amplitude of speech and a; the corresponding 
phase. 
The noise variances ofi are estimated separately for each channel 
and are fed into a speech estimator. If M = 1, the minimum mean 
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Figure I :  Multichannel Noise Reduction System 

square short time spectral amplitude (MMSE-STSA) estimator [ I ] ,  
its logarithmic extension [Z], or less complex MAP estimators 131 
can be applied to calculate real spectral weights GI for each fre- 
quency. If M > 1, a joint estimator can exploit information from 
all M channels using a joint statistical model of the DFT coef- 
ficients. After IFFT and Overlap Add M noise reduced signals 
are synthesized. The remainder of the paper is organized as fol- 
lows: Section 2 introduces the underlying statistical model of mul- 
tichannel Fourier coefficients. In Section 3 two new multichannel 
spectral amplitude estimators are derived. First, a minimum mean 
square estimator that evaluates the expectation of the speech spec- 
tral amplitude conditioned on all noisy complex DFL coefficients 
is described. Secondly, a maximum a posteriori (MAP) estima- 
tor, conditioned on the joint observation of all noisy amplitudes is 
proposed. Finally, in Section 4, the performance of the proposed 
estimators in ideal and real environments is discussed. 

2. STATISTICAL MODELS 

Motivated by the central limit theorem, real and imaginary part of 
the D m  coefficients are usually modelled as zero mean Gaussian 
[4].This leads to the following statistical model for a DFT bin of 
the i-th signal. (cf. [l],[5]): 

Here describes the variance of the speech in channel i and Io 
denotes the modified Bessel function of the first kind and zeroth 
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order. To extend this statistical model for multiple noisy signals, 
we consider the typical noise reduction scenario of figure 2, e.g. 
inside a room or a car. A desired signal 8 arrives at a microphone 
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Figure 2 Speech and noise sources aniving at microphone array 

array from angle 8. Multiple noise sources arrive from various 
angles. The resulting diffuse noise field can be characterized by its 
coherence function. The magnitude squared coherence between 
two omnidirectional microphones i and j of a diffuse noise field is 
given by 

/ 
S 

Therefore, above a critical frequency depending on the micro- 
phone distance, the MSC becomes very low and thus the noise 
components of the noisy spectra can be considered uncorrelated 
with 

Hence (3) and (4) can be extended to 
M 

p ( R i ,  . . . ,  RMIA") = np(RlAm) (7) 
i=1 
M 

~ ( Y I , .  . . ,Y~lA,,an) = np(XIAn,an)  (8) 

for each n E {l . . . M } .  We assume the time delay of the speech 
signals between the microphones to be small compared to the short 
time stationarity of speech and thus the speech spectral ampli- 
tudes A; to be highly correlated. However, due to near field ef- 
fects and different microphone amplifications, we allow a devia- 
tion of the speech amplitudes by a channel dependent factor 9,  
i.e. A,  = ci . A and U:, = c:u:. 
In analogy to the single channel MMSE estimator of the speech 
spectral amplitudes, the resulting joint estimators will be formu- 
lated in terms of a priori and a posteriari SNRs 

i=1 

(9) 

where the a priori SNRs E. are estimated by the decision directed 
approach [I]. 

3. M-D SPECTRAL AMPLITUDE ESTIMATORS 

We derive Bayesian estimators of the speech spectral amplitudes 
A,, n E {l . . . M }  using information from all M channels. 
First, a straight forward multichannel extension of the well known 
MMSE-STSA by Ephraim and Malah [I] is derived. Second, 
a practically more useful MAP estimator for DOA independent 
noise reduction is introduced. All estimators output M spectral 

amplitudes and thus M enhanced signals are delivered by the 
noise reduction system. 

3.1. Estimation conditioned on complex spectra 

The single channel algorithm derived by Ephraim and Malah 
calculates the expectation of the speech spectral amplitude A 
conditioned on the observed complex Fourier coefficient Yn, 
i.e. E{A,IY,}. In the multichannel case, we can condition 
the expectation of each of the speech spectral amplitudes A,  on 
the joint observation of all M noisy spectra Yi. To estimate the 
desired spectral amplitude of channel n we have to calculate: 

A, = E{AnlYi, ..., Y M }  (10) 

= ~ ~ A , , p ( A . , , a n l Y L  ,..., Ynn)da,dAn. (11) 

0 0  

This estimator can be expressed via Bayes' Rule and using (8) as 
m 2n M 
J A n  Jp (An ,an )  , J I p ( X l A n , a n ) d a n d A n  

J Jp(An,an) I I ~ ( Y , ( A n , a n ) d a n d A n  
To solve (12) we assume perfect DOA coreclion, i.e. ai := a for 
all i E 1 1 . .  . M } .  Inserting Ai = Z A .  in (8),(4) the integral 
over a in (12) becomes: (I61 eq. (3.339)) 

. (12) 
A - 0  0 ,=I 

" -  m2r AI 

0 0  ,=I 

The remaining integrals over A,, can be solved using ([6] eq. 
(6,631.1)). After some straightforward calculations. the gain 
factor for channel n is obtained as 

F, denotes the confluent hypergeometric series and r the Gamma 
function. The argument of FI contains a sum of a priori and a pos- 
teriori SNRs with respect to the noisy phases 29i. i E {l . . . M } .  
F, has only to be evaluated once, since the argument is indepen- 
dent of n. Note, that in case of M = 1 (14) is the single channel 
MMSE estimator derived by Ephraim and Malah 

3.2. Estimation conditioned on spectral amplitudes 

The assumption ai := a , i E 11 . . . M }  introduces a DOA de- 
pendency, since this is only given for speech from 8 = 0'. For a 
DOA independent speech enhancement we condition the expecta- 
tion of d, on the joint observation of all noisy amplitudes Q, i.e. 
A, =E{A,IRi ,  . . . ,  RM}. 
When the time delay of the desired signal s in figure 2 between 
the microphones is small compared to the short time stationarity 
of speech, the noisy amplitudes R, are independent of the DOA 8. 
Unfortunately, after using (3) and (7). we have to integrate over a 
product of Bessel functions, which leads to extremely complicated 
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expressions even for the simple case M = 2. 
Therefore, searching for a closed form estimator, we investigate 
a MAP solution which has been characterized by 131 as a simple 
but effective alternative to the mean square estimator in the single 
channel application. 
We search for the speech spectral amplitude A, that maximizes 
the pdf of A,, conditioned on the joint observation of Ri , i  E 
1 1 . .  . M } .  

A, = argmaxp(A,IRI,  ..., R M )  (15) 
A" 

WeneedtomaximizeonlyL =p(Rl, .  . . ,R~lA, , ) .p(A,) ,s ince 
p(R1, . . . , R M )  is independent of A,. It is however easier to max- 
imize log(L), without effecting the result, because the natural log- 
arithm is a monotonically increasing function. Using (7), (2) and 
(3) we get 

A closed form solution can be found if the modified Bessel func- 
tion Io is considered asymptotically. For large arguments, the 
Bessel function can he approximated by 

Here, the term in the likelihood function containing the Bessel 
function simplifies to: 

4. EXPERIMENTAL RESULTS 

In this section we compare the performance of the joint speech 
spectral amplitude estimators with the well known single channel 
Ephraim and Malah algorithm. Both M single channel estimators 
and the joint estimators output M enhanced signals. All estimators 
were embedded in the DFT based noise reduction system in figure 
1, where the noise power spectral density was estimated by means 
of Minimum Statistics [7]. 
To measure the performance the noise reduction filter was applied 
to speech signals with added noise for different SNRs. The result- 
ing filter was then utilized to process speech and noise separately. 
The speech quality of the noise-reduced signal was measured by 
calculating the segmental speech SNR between original and pro- 
cessed speech. On the other hand, the amount of noise reduction 
was measured by dividing segmental input and output noise power. 
In all experiments we do not apply additional (commonly used) 
soft weighting techniques in order to isolate the benefits of the 
joint speech estimators compared to the single channel estimator. 
To study the performance in ideal conditions, we first utilize the 
estimators on M = 4 identical speech signals disturbed by un- 
correlated white noise. Figure 3 plots noise reduction and speech 
quality of the noise reduced signal averaged over all four micro- 
phones. Both joint estimators provide a significant higher speech 

Differentiation of log L and multiplication with the amplitude A, 
results in A, = 0 

This quadratic expression can have two zeros, for M > 2 it is also 
possible that no zero is found. In this case the apex of the parabolic 
curve in (20) is used as approximation, identical to the real p m  of 
the complex solution. The resulting gain factor of channel n is 
given as 

For the calculation of the gain factors, no exotic function needs 
to be evaluated any more. Also, Re{.} has only to be calculated 
once, since the argument is independent o f n .  Again, if M = 1, 
we have the single channel MAP estimator as given in [3]. 
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Figure 3: Speech quality and noise reduction of ID/MD-MMSE 
and MD-Map for 4 signals containing identical speech and white 
uncorrelated noise 

quality and noise attenuation than the single channel MMSE es- 
timator. The MAP estimator conditioned on the noisy amplitudes 
specifically outperforms the MMSE estimator by a higher noise re- 
duction. The MMSE estimator conditioned on the complex spectra 
delivers a much higher speech quality. 

Instead of white uncorrelated noise, we now mix the speech sig- 
nal from OD with noise recorded with a linear microphone array 
inside a crowded cafeteria. Figure 4 plots the performance of the 
estimators using M = 4 microphones with an interelement spac- 
ing of d = 12cm. Compared to figure 3 the gain in terms of 
speech quality prevails. The amount of additional noise reduc- 
tion decreases. Figure 5 shows the performance when using noise 
recordings from inside the crowded cafeteria with half the micro- 
phone distance, i.e. d = 6cm interelement spacing. The amount of 
noise reduction provided by the joint estimators decreases due to 

I - 882 



Noise Reduction 
- ldMMSE - -  MdMMSE 
,,,.,. MdMAP 

. . . . . . . . . . . . . . . . . . . . . . . . . . .  
z" 

I 
5 10 15 20 

i 2' 
$ 0  

SNR in dB 

Figure 4: Speech quality and noise reduction of IDMD-MMSE 
and MdMap for 4 signals containing speech from 0" and cafeteria 
noise (microphone distance: d = 12cm) 

the increased correlation at low frequencies according to ( 5 ) .  How- 
ever there is still a significant improvement left. The Md-MAP 
estimator still outperforms the single channel MMSE estimator in 
terms of both speech quality and noise attenuation. 

SNR in  dB 

Figure 5:  Speech quality and noise reduction of IDIMD-MMSE 
and MdMap for 4 signals containing speech from 0" and cafeteria 
noise (microphone distance: d = 6cm) 

Finally we examine the important DOA dependency of the esti- 
mators. Figure 6 depicts the performance of the estimators, when 
the desired signal arrives from 60", i.e. the desired signals are not 
in phase any more. 
It can be seen from comparison with figure 4, that the speech qual- 
ity of the joint MMSE estimator decreases significantly. However, 
the change of speech DOA has no influence on the performance of 
the MAP estimator conditioned on the noisy amplitudes. 
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Figure 6:  Speech quality and noise reduction of IDMD-MMSE 
and MdMap for 4 signals containing speech from 60" and cafeteria 
noise (microphone distanced = 12cm) 

5. CONCLUSION 

We have derived analytically a multichannel MMSE and a MAP 
estimator of the speech spectral amplitudes, which can be con- 
sidered as generalizations of [ I ]  and [3] to the multichannel case. 
Both estimators provide a significant gain compared to the well 
known Ephraim and Malah estimator when the speech components 
are in phase. Moreover, the MAP estimator conditioned on the 
noisy spectral amplitudes performs a DOA independent speech en- 
hancement. The multichannel noise reduction system using these 
estimators outputs multiple enhanced signals which can combined 
by a beamformer for additional speech enhancement. 
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