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ABSTRACT 

In this contribution we optimize a speech enhancement pre- 
processor such that a distortion measure in the Line Spec- 
tral Frequency (LSF) domain is minimized. We can thus 
improve the estimation of spectral parameters of a speech 
coder when the input signal to the coder is a noisy speech 
signal. The optimization aims at the maximum noise reduc- 
tion of the enhancement preprocessor. The average maxi- 
mum noise reduction characteristic is determined as a func- 
tion of the speech signal SNR and is approximated by an 
exponential function. Since LSF parameters are widely used 
in speech coding the results are applicable to  a wide range 
of speech coders and enhancement preprocessors. We re- 
port experimental results for an MhlSE Log Spectral Am- 
plitude estimator in conjunction with the new ETSI Adap- 
tive Multi-Rate (AhIIR) speech coder. We found that the 
method is most effective for the low bit rate coding modes. 

1. INTRODUCTION 

For many years speech coding research has aimed at  re- 
ducing the bitrate of coded speech signals while maintain- 
ing a high level of speech quality and intelligibility. While 
this endeavour has been very successful for clean speech (as 
manifested in new standards such as the ITU G.729 and 
the ETSI AMR codec) the coding of noisy speech becomes 
significantly more difficult as bit rates are decreasing. 

Informal and formal listening tests show that improve- 
ments are obtained when the speech coder is combined with 
a speech enhancement preprocessor. However, to obtain 
optimal results, the preprocessor needs to  be specifically 
adapted for a given speech coder a t  a given bitrate [I]. This 
optimization should take the parameters of a speech coder, 
especially the spectral parameters like LPC or LSF coeffi- 
cients, explicitly into account [l,  21. The spectral parame- 
ters are in fact very important for speech intelligibility [2] 
and are influenced by the noise attenuation characteristics 
of the enhancement preprocessor. Since a low noise atten- 
uation does not remove a sufficient amount of noise from 
the disturbed signal and a high noise attenuation will also 
distort speech components it is not quite obvious how much 
noise reduction should be applied to a noisy speech signal 
in order to minimize the spectral distortions of a speech 
coder. 

In this contribution we provide an answer to this ques- 
tion. We optimize a speech enhancement preprocessor such 
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that  the weighted mean square distance measure in the LSF 
domain [3] 

is minimized where f i , m  and f i ,m  denote the i th LSF param- 
eter of the mth signal fra.me of the clean and the enhanced 
noisy speech signal, respectively. A4 denotes the total num- 
ber of speech signal frames, and ci is given in Table 1 below. 

LSF index I 1 ... 8 I 9 I 10 
Ci I 1.0 I 0.64 I 0.16 

Table 1: Weights for the LSF distortion measure [3]. 

Throughout this paper we will use the spectral parame- 
ters of the ETSI Adaptive Multi-Rate coder to  optimize the 
maximum noise reduction of our speech enhancement pre- 
processor. The speech enhancement preprocessor is based 
on the MMSE Log Spectral Amplitude (MMSE LSA) esti- 
mator approach as described in [4, 51. Optimizing the max- 
imum noise reduction is important since insufficient atten- 
uation of the signal in between the speech formant regions 
distorts the overall spectral shape such that an LPC anal- 
ysis does not yield accurate results [l]. Allowing a higher 
maximum noise reduction in between the formant regions 
therefore improves the estimation of the speech envelope. 

The remainder of this paper is organized as follows: Af- 
ter briefly reviewing the AMR speech coder in Sec. 2 we 
explain why the maximum noise reduction of the prepro- 
cessor is a key parameter for the optimization. In Sec. 3 we 
summarize the MMSE LSA speech enhancement technique 
and show how the maximum noise attenuation can be lim- 
ited by limiting the a priori SNR. In Sec. 4 we explain our 
optimization procedure and conclude with informal listen- 
ing test results. 

2. SPECTRAL PARAMETERS OF THE AMR 
CODER 

The AMR concept allows a flexible distribution of the gross 
bit rate to source and channel coding and thus achieves 
high speech quality for good channel conditions and a high 
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degree of robustness for heavily disturbed channels. The 
ETSI AMR speech coder implements eight different net bit 
rates between 4.75 kbps and 12.2 kbps. In the 12.2 kbps 
mode two sets of LSF coefficients are computed for each 
speech frame of 20 ms. All other modes extract only one 
set of LSF coefficients per speech frame. Regardless of the 
mode each set contains 10 LSF coefficients. When the in- 
put speech is disturbed by noise the LSF coefficients as 
computed in the encoder deviate from the coefficients of 
the clean speech signal. Especially for the lower bit rate 
modes, these deviations lead to significant quality and in- 
telligibility impairments in the decoded speech signal. 

As an example, Fig. 1-A shows the magnitude squared 
DFT coefficients (dotted) and the LPC spectrum for a given 
frame of noisy speech (recorded in a Nissan Sunny at  140 
km/h; dashed) as well as the LPC spectrum of the corre- 
sponding clean speech signal (solid). Obviously, as the SNR 
of the noisy speech sample is about 3 dB the additive noise 
results in a significant distortion of the LPC spectrum. 

Fig. 1-B shows the three spectra for the same frame of 
speech after enhancement. In this case the maximum noise 
attenuation had been limited to about 10 dB. Although the 
enhancement improves the LPC spectrum, there is still a 
significant deviation from the clean speech LPC spectrum. 
Finally, Fig. 1-C shows the magnitude squared DFT coeffi- 
cients and the LPC spectrum for the enhanced signal where 
the maximum noise attenuation was limited to about 20 dB. 
Note, that the clean speech and the enhanced speech LPC 
spectra are now much closer and that also the first two for- 
mants are more pronounced. 

We conclude that a high maximum noise reduction is 
beneficial for the enhancement of low SNR speech when the 
enhanced speech is the input to a speech coder. However, 
for high SNR speech a high maximum noise reduction might 
lead to undesirable speech distortions and, during speech 
pause, it results in spectral distortions of the background 
noise ('musical noise'). It is therefore of interest to optimize 
the maximum noise reduction as a function of the speech 
signal SNR such that the LPC or LSF spectra are optimally 
reproduced. 

3. MMSE LSA SPEECH ENHANCEMENT 

Our speech enhancement algorithm consists of three major 
components: a spectral analysis/synthesis system (realized 
by means of a windowed FFT/ IFFT and overlap/add), a 
noise estimation algorithm (using the 'Minimum Statistics' 
approach [6]), and a spectral gain computation. While all 
of these components have significant impact on the overall 
quality of the enhanced signal we focus here on the spec- 
tral gain computation. Fig. 2 shows a block diagram of 
the speech enhancement algorithm. The spectral gain is 
computed on the basis of the Fourier magnitudes and mod- 
ifies only the Fourier magnitudes of an input frame. Since 
the noise cannot completely removed without distorting the 
speech signal the gain function has to strike a balance be- 
tween the amount of noise reduction and the amount of 
speech signal distortion. We might add that in frequency 
bins which contain mostly noise any implementation of an 
optimal gain function suffers from estimation errors in the 
power spectral density of the noise. It is therefore very sen- 
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Figure 1: A: Noisy speech, B: enhanced speech with low 
maximum attenuation, C: enhanced speech with high max- 
imum attenuation. Dotted: magnitude squared DFT spec- 
trum, solid: LPC spectrum of clean speech, dashed: LPC 
spectrum of enhanced speech. 

sible to introduce additional measures such as an adaptive 
limiting mechanism for the gain function. 

Because of its close relation to the Itakura-Saito mea- 
sure we use the Minimum Mean Square Error Log Spectral 
Amplitude estimator (MMSE LSA) [4] to  compute the gain 
function. The MMSE LSA estimator minimizes E((1og &- 
log &)*} where Ak = l S k l  denotes the spectral speech am- 
plitude in the kth DFT bin and Ak its optimal estimate. 
The solution to the minimization problem is given by the 
expected value for the clean speech amplitude Ak given the 
noisy DFT coefficient Yk = s k  + N k  and is obtained by ap- 
plying a real gain function G(&, Y k )  [4] to the noisy spectral 
coefficient Yk: 

(2) 

,-. 

A^k = exp(E{ln(Ak)IYk}) = YkG([k,Yk) 

and Yk denote the a priori  and Q posteriori SNR values 
for bin k [7], respectively, and vk = & Y k .  According to  
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Figure 2: Block diagram of our single microphone speech 
enhancement algorithm. 

[5] the a priori SNR should be conditioned on the presence 
of speech, i.e. <k = qk/(1 - q k ) ,  where q k  is the uncon- 
ditional a priori SNR (obtained via the 'decision-directed' 
estimation approach [7]) and q k  is the probability of speech 
absence. Further improvements to the quality of the en- 
hanced signal are obtained by using the multiplicatively 
modified MMSE-LSA estimator [5] which accounts for the 
probability of speech absence. With 

(4) 

the gain modifier G M  ( & ,  Y k ,  q k )  is given by 

and the total gain G ( < k , Y k , q k )  by 

E ( t k l  Y k ,  q k )  = G ( E k ,  Y k ) G M  (<kJ Y k ,  Q k )  . ( 6 )  

The probability of speech absence Qk is updated for each 
new frame of speech by using the hard-decision approach 
described in [8, 51. 

Similar to the MMSE STSA estimator [7] the MMSE 
LSA estimator can be approximated by a power subtraction 
rule for frequency bins which contain only noise. In fact for 
Uk << 1 the MMSE LSA gain can be approximated by 

(7) 

where C is Euler's constant. Similarly, the gain modifier 
approaches 

for low a priori signal-to-noise ratios. Due to the adapta- 
tion strategy for q k  [8 ,  51 G ~ ( < k , y k ,  q k )  is close to zero for 
frequency bins which never contain speech (e.g. because of 
a bandpass filter) and close to 0.5 for bins which contain 
mostly noise but might also contain some speech at a dif- 
ferent time. Therefore, the maximum noise attenuation for 
bins within the band of speech frequencies which contain 
mostly noise can be limited by limiting q k .  However, the 
approximations of eqs. 7 and 8 do not hold if q k  is lim- 
ited to values larger than 0.1 since then U k  becomes too 
large for noise only bins. In this case the interaction be- 
tween the estimated probability of speech absence q k  and 
the a priori SNR q k  results in a total gain for noise only 

bins which is heavily influenced by the multiplicative mod- 
ifier G M  ( ( k ,  Y k ,  q k ) .  It is therefore reasonable to  also limit 
G M  ( & ,  y k ,  q k )  in a similar way as q k .  However, to  avoid an 
unnecessary increase in the complexity of the optimization 
task we limited G M ( [ ~ ,  Y k ,  Q k )  to a fixed Value GMmin = 0.2 
which gives close to optimal results for a wide range of a 
priori SNR values. 

With the help of the optimization procedure as outlined 
in the next Section the lower limit q,in of the unconditional 
a priori SNR q k  was determined as a function of the overall 
speech signal SNR which was estimated and updated by a 
first order recursive system for each speech frame. We found 
that the lower limit for the unconditional a priori SNR q k ,  

i.e. the maximum noise reduction, can be approximated by 
(see Section 4): 

10l~gl, ,(~min) = - 16.5 (9) 

where SNR denotes the estimated average signal-to-noise 
ratio (on a linear scale). This SNR value can be computed 
as the ratio of the recursively smoothed average speech 
power and the recursively smoothed average noise power. 
The adaptive limit qmin is only applied to signal frames 
which contain speech. Noise only frames are limited to  
a constant limit qmin = 0.12 to avoid musical fluctua- 
tions during speech pause. The resulting time varying qmin 
was recursively smoothed with a smoothing parameter of 
av = 0.8. 

4. OPTIMIZATION PROCEDURE AND 
RESULTS 

To obtain the optimal limit for the maximum noise atten- 
uation q,in in equ. 9 as a function of the input speech 
SNR we added computer generated white Gaussian noise 
to 60 s of male and 60 s of female speech at various aver- 
age signal-to-noise ratios (lOlog(SNR) = 0, 6, 12, 18, 24 
dB). These files were processed with the enhancement pre- 
processor as described in Section 3 for several fixed values 

-32, -35, -38, -40 dB). The enhanced speech files were then 
fed into the AMR coder (4.75 and 12.2 kbps modes) and 
the LSF parameters were recorded for each speech frame. 
For each SNR and qmin value the distortion measure A:sF 
was computed and an optimal qmln value was determined 
after the measurement points were interpolated by cubic 
splines. Fig. 3 plots AisF vs. qmzn for SNR M 0 dB and 
female speech. We found that for this condition as well as 
for all other SNR values the AisF vs. lOlog(q,i,) plot 
showed a pronounced minimum. After computing the op- 
timum for all other SNR values the resulting minima were 
plotted in Fig. 4 for male and female speech as a function of 
10 log(SNR). Fig. 4 also includes the approximation given 
in equ. 9 which was then used to implement the maximum 
attenuation characteristic of the enhancement preprocessor. 

For the sake of standardized experimental conditions 
the optimization was performed with white Gaussian noise. 
However, similar improvements were obtained with other 
noise types. Since frequency bins which contain mostly 
speech are not much affected by the maximum noise atten- 
uation the algorithm performed almost equally well with 

of qmin (lOlOg(q,in) = -3, -8, -11, -17, -20, -23, -26, -29, 
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Figure 3: LSF distortion measure AiSF vs. 10log(qmin) 
for SNR E 0 dB and female speech. 

other noises. Also, as Fig. 4 indicates, we could not find a 
significant difference between male and female speech. 

Informal listening tests of speech processed with the 
joint enhancement and coding system were conducted with 
speech disturbed by stationary car noise a t  three differ- 
ent signal-to-noise ratios (6, 12, 18 dB) and two coding 
modes (4.75 and 12.2 kbps). These tests compared the 
new approach to  a system which applies a fixed limit of 
10log(vmin) = -9dB to  all signal frames. The listening 
tests indicated that also in the new approach 10log(qmin) 
should be limited to values equal or above -12 dB to avoid 
distortions for low SNR speech. For the low coding rate the 
optimized limit gave audibly improved speech quality while 
a t  the higher rate and for high SNR speech the improve- 
ments were less pronounced. 

5. CONCLUSIONS 

In this paper we showed how the performance of a joint 
speech enhancement and coding system can be improved by 
optimizing the maximum noise reduction of the enhance- 
ment preprocessor. We showed that for the widely used 
MMSE LSA speech estimator the a priori SNR can be used 
to limit the maximum noise reduction and determined the 
optimal lower limit of the a priori SNR such that a distor- 
tion measure in the LSF domain is minimized. The opti- 
mized system gave improved results in conjunction with the 
ETSI AMR coder which were most notable for the 4.75 kbps 
mode and low SNR conditions. Our listening test suggest 
that for the higher bit rates it is crucial to  also include other 
coder parameters such as the linear prediction residual in 
the optimization procedure [9]. 
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