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ABSTRACT 

Speech transmission over packet networks has to copc with packet 
delays and packet losses. When a packet loss occurs the missing 
information must be estimated. In this contribution we focus on 
restoring the spectral parameters of a speech coder. A novel ap- 
proach to estimating missing Line Spectral Frequency (LSF) pa- 
rameters using Gaussian Mixture Models (GMM) is proposed. We 
present the estimation algorithm and study its performance when 
one or several LSF paramcters are lost. We show that a GMM of a 
relatively low order is sufficient to achieve a substantial improve- 
ment in parameter SNR. Therefore, the new estimation procedure 
requires much less memory than histogram based estimation meth- 
ods. 

1. INTRODUCTION 

The number of Internet users and the data traffic on the Intemet 
have been rapidly increasing during the last years. The ubiqui- 
tous data networks and the emergence of new interactive applica- 
tions make the integration of traditional speech services, such as 
telephony, into the packet networks of the Intemet highly desir- 
able. However: speech transmission imposes stringent rcal time 
demands on the network and network congestion is likely to lead 
to packet delays and packet loss. When a packet is delayed bcyond 
acceptable limits or completely lost, the missing speech parame- 
ters must be extrapolated from the available information in order 
to satisfy real time constraints. 

A versatile candidate for Voice over IP applications is the GSM 
Adaptive Multi-Rate speech coder [I]. It offers coding rates be- 
tween 4.75 kbit/s and 12.2 kbiUs and allows switching of bitrates 
from one speech frame of 20 ms to the next. The AMR coder is 
based on the ACELP principle, i.e. it is a linear predictive (LP) 
coder with algebraic codebook excitation. The LP coefficients are 
converted to the Line Spectral Frequcncy (LSF) domain prior to 
transmission. 

In this contribution we focus on the estimation of missing LSF 
parameters. The method presented here uses the intraframc cor- 
relation of the differentially encoded (residual) LSF parameters 
and a priori information to find a Minimum Mean Square Error 
(MMSE) estimate of missing LSF parameters given the present 
parameters. The apriori information which is required for MMSE 
estimation is the joint probability density function of the LSF pa- 
rameters. In this work, a Gaussian Mixture Model (GMM) is used 
to model the joint density. 
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Optimal parameter estimation using a priori knowlcdge has 
been proposed before in thc context of error concealment and so&- 
hit decoding, e.g. [2, 31. In those studies the a priori knowledge 
has been stored in terms of histograms. The application of those 
concepts to intraframe estimation of LSF parameters is difficult 
as the dimension of the LSF vector leads to prohibitively large 
memory requirements. Suboptimal methods based on first order 
Markov modeling [4] require less memory but do not completely 
solve the memory problem. The GMM approach proposed in th s  
paper, however, has very modest memory requirements. 

The remainder of this paper is organized as follows: Section 2 
summarizes thc computation and the properties of differentially 
encoded (residual) LSF parameters in the AMR coder. Section 3 
presents the MMSE estimator and Gaussian Mixture Models. In 
Section 4 we summarize the objective measurements for various 
GMM orders. 

2. SPECTRAL PARAMETERS OF THE AMR SPEECH 
CODER 

The GSM AMR speech coder implements eight dilfcrent source 
coding modes at bitrates between 4.75 khit/s and 12.2 kbit/s [ I ] .  
All modes use a filter of order 10 for linear prediction (LP) analy- 
sis. The 12.2 kbit/s mode (which is identical to the GSM enhanced 
fullrate coder) uses two different windows to calculate two sets of 
LSF parameters. All other modes use a single window to calcu- 
late one set of coefficients for each speech frame of 20 ms. The 
LP coefficients are converted to the LSF domain and differentially 
encoded. To remove correlation a mean vector is subtracted from 
each LSF vector and a first order linear prediction filter with fixed 
prediction coefficients is applied. For modes below 12.2 kbit/s the 
residual LSF vectors sik, where k denotes the frame index, are then 
Split Vector (SVQ) quantized. The IO-dimensional vectors arc par- 
tioned into subsets of 3, 3, and 4 residual LSF coefficients. Each of  
thcse subsets is then vector quantized with 7 to 9 bits. E.g.. for the 
10.2 kbit/s mode the first, the sccond, and thc third subsct are quan- 
tized with 8, 9, and 9 bits, rcspectively. For the 10.2 kbit/s mode 
(whch we used in t h s  study) the joint histogram of the quantized 
LSF coefficients would require the storage of 2’. 2’. 2’ 67 lo6 
histogram values. For a suboptimal Markov chain approach the 
transition matrices between subsets need to be stored. For the 10.2 
kbit/s mode this still amounts to 2’ . 2’ + 2’ 2’ = 393,216 his- 
togram values. These memory requirements exclude a histogram 
based estimation approach. 

mailto:martin@ind.rwth-aachen.de


Figure 1 shows an intensity plot of the correlation coefficient 
matrix of the residual LSF vectors, computed on a data set of 
20,000 residual LSF vectors. Adjacent components of the LSF 
vector are strongly correlated. T h s  intraframe correlation will be 
used in the estimation procedure outlined below. 
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Fig. 1. Intensity plot of correlation coefficient matrix for residual 
LSF vectors. 

3. ESTIMATION OF MISSING COMPONENTS 

3.1. MMSE Estimators for Missing LSF Components 

We assume that some components of the current residual LSF vec- 
tor Lk are lost and that all other components and all other frames 
are received without error. The aim of the estimation procedure is 
to restore thc missing components using MMSE estimation. The 
approach taken here is also known as “Missing Feature Theory” 
whch has been employed in robust speech recognition [SI. 

We partition the current residual LSF vector Lk into a received 
(or present) part and a lost (or missing) part 

L, = (3:;) 
If quantization errors are negligible, the MMSE estimate of 

the missing components is given by the conditional expectation 

as a function of the present components and the sequence of all 
previously received residual LSF vectors E.g., in case that 
Lk is governed by a first order Markov model and quantization 
errors are negligible, we obtain 

If we neglect the correlation over timc the expression can be fur- 
ther simplified 

To compute the optimal estimate the conditional probability 
density p(L im)  1 &:)) must be known. 

If all components of the current LSF vector are lost and corre- 
lation over timc is neglected we have p(LLmm) I @)) = p(I,im)), 
In this case the best estimate is the mean value. The substitution of 
the lost components by the (unconditional) mean will be termed a 
priori mean imputation. 

3.2. Gaussian Mixture Models 

Mixture models are frequently used in data classification and clus- 
tering problems with the aimof fitting the probability density func- 
tion (pdf) of some given data. The mixture model can represent the 
statistics of the given data with a relatively small number of param- 
eters. We approximate the joint probability density of the residual 
LSF vectors by a Gaussian Mixture Model [6],  i.e., by a sum of M 
multivariate Gaussian densities 

M 

P(Lk) = Caiw,,pi>ci) ( 5 )  
i= l  

where each N-dimensional mixture density is given by 

. exp(-?& 1 - p i )  T CY’(&, -pi)) (7) 

and ai denotes the a priori probability of the mixture components 
Xi = Cn(L,,k, Ci), i.e. P(%) = ai. 

The mixture probabilities ai, the mixture mean vectors ei, and 
the covariance matrices Ci are determined from training the model 
by means of the well known Estimate-Maximize (EM) algorithm 
171. To reduce the number of free parameters it is common to use 
covariance matrices with non-zero elements on the main diagonal 
only [8, 61. 

3.3. MMSE Estimation Using GMM 

In order to compute an approximate MMSE estimate using the 
GMM, we partition all parameters of the GMM with respect to 
present and missing components. 

Analogous to the LSF parameter vector in (1) the mean vectors 
p .  and the covariances Ci of all mixture component can be then 
written as follows 
-a 

pi = ($) 1 

(9 1 

The conditional pdf of present and missing components can be 
now expressed in terms of a GMM 
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Sincc the conditional pdf and any marginal pdf of jointly Gaussian 
random variables are (multivariate) Gaussian densities, the joint 
probability n(Lk, pi, Ci)  of present and missing components can 
be factored into a conditional Gaussian pdf and a marginal Gaus- 
sian pdf (c.g. [9]). Therefore, p ( & p )  I Lp)) can be written as 

with 

and obtain 

Using (4), (12), and (15) an approximate MMSE estimate of Lp) 
is given by 

i=l 

If the GMM models the pdf of the current residual LSF vec- 
tor Lk by means of diagonal covariance matrices the off-diagonal 
matrices CZ("") and C!",'"' arc all zero and the MMSE estimatc 
is given by 

M 

where the a posreriori probabilities can be now casily computed 
using products of univariatc normal dcnsities 

denotes the j-th component of the k-th vector @) of present 
components, and p 5 )  and ( o ~ ~ " ' ) ) ~  are the mean and the variance 
of the 3-th vector component and the i-th mxture component, re- 
spectively. x, = and n, = nJNZl denote sums and prod- 
ucts over the present components where NP denotes the number of 
present components 

The mcmory requirements of the GMM approach are directly 
proportional to the dimension of the LSF vector and the GMM 
order, i.e for LSF vectors of size 10 and GMM's with diagonal 
covariance matrices (10 + 10 + 1) . M values must be stored. 
Since A4 is typically much smaller than 100 the GMM approach 
offers significant memory advantages with respect to the histogram 
approach. 

4. EXPERIMENTAL RESULTS 

The AMR coder groups the residual LSF parameters into three 
subsets. Each of these subsets is then vector quantized and trans- 
mitted. To reduce the probability that all subsets of a signal frame 
get lost we interleave the subsets of successive frames. When a 
single transmitted frame gets lost at least one out of three subsets 
is available for the reconstruction of the LSF vector. 

In our experiments we therefore considered three different sce- 
narios: 

Only one LSF coefficient is lost. The remaining 9 eoeffi- 
cients are present. This is of little practical importance for 
the above transmission scheme. It gives, however, an indi- 
cation of how much can be achleved and might be useful in 
other speech enhancement applications. 

One of the three subsets is lost. 

Two of the three subsets are lost 

The experimental results were obtained using GMM's with 2, 
4,8, 16,32, and 64 mixture components. The GMM's were trained 
by means of the EM algorithm and one million residual LSF vec- 
tors. A data base of (modified) IRS filtered male and female speech 
and the AMR coder (10.2 kbit/s mode) was used to generate the 
residual LSF vectors. The estimation algorithm was evaluated us- 
ing 20,000 residual LSF vectors which were not part of the training 
data base. 

4.1. Loss of a single LSF coefficient 

The improvement in parameter SNR with respect to a priori mean 
imputation are shown in Table I .  The gain dcpends mainly on 
the position within the LSF vector and the correlation of adjacent 
LSF's. For M = 64 an average gain of about 4.1 dB is obtained. 
Further doubling the GMM order did result in small improvements 
but also in a significantly increased computational complexity. 

4.2. Loss of I S F  subsets 

When a single subset of LSF coefficients is lost the results depend 
on the position within the subset. Table 2 summarizes the results. 
For M = 64 the average improvement is now 2.0 dB. 

Table 3 prescnts the results for the case of two missing subsets. 
Again the improvement is best for those LSF coefficients which are 
adjacent to the present coefficients. The average improvement of 
a single LSF coefficient with respect to a priori mean imputation 
is now only I .26 dB, however, six (subsets 1, 2) or seven (subsets 
2, 3 or 1 ,3) coefficients are estimated. A comparison with Table 2 
reveals that the subsets adjacent to a missing set contribute most to 
the improvement. A first order Markov approach is therefore close 
to optimal. 
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A t  LTF # 1 2  1 4  1 8  I 1 6 ( 3 2 1 6 4 ]  
tiMM order 

0 1  1.35 r 2.02 I 2.74 I 3.36 I 3.69 I 4.08 I 

lost sets 

1 

Table 1. Improvement with respect to apriori mean imputation of 
parameter SNR in dB for estimating a single LSF coefficient using 
a GMM of order A4. The average for order M is denoted by 0‘. 

+& 2 4 8 1 6 3 2 6 4  
1 -0.00 0.11 0.21 0.25 0.26 0.30 
2 0.31 0.44 0.49 0.55 0.58 0.62 
3 0.77 0.87 0.96 1.05 1.10 1.11 

I lost set I & I 2 1 4  1 8  1 1 6 1 3 2 1 6 4 )  
I 1 I 0.21 I 0.49 I 0.82 1 0.89 1 0.94 1 1.00 I 

I I 0 I 0.91 I 1.29 I 1.56 I 1.78 I 1.88 I 2.0 I 
Table 2. Improvement with respect to a przori mean imputation of 
parameter SNR in dB for the estimation of a single lost LSF subset 
using a GMM of order M .  

I 0 I 0.67 I 0.95 I 1.06 I 1.16 I 1.21 1 1.26 1 
Table 3. Improvement with respect to apriori mean imputation of 
parameter SNR in dB for the estimation of two lost LSF subsets 
using a GMM of order M .  

5. CONCLUSIONS 

The proposed LSF reconstruction scheme was implemented in an 
Voice over IP transmission scheme. The transmission scheme uses 
frame interleaving for the coded LSF parameters and a multiple 
description scheme for the transmission of the LP residual. Infor- 
mal listening tests confimied that the estimation scheme as out- 
lined above enhances the quality of the received speech signals 
when framc losses occur. Thc scheme is espccially uscful when no 
more than one LSF subset gets lost. Due to the corrclation prop- 
erties of residual LSF vectors, increasing the GMM order beyond 
20-30 is only hclpful when coefficients next to the lost coefficient 
arc present. Compared to histogram based approaches the GMM 
based approach consumes significantly less memory. 

The improvements for missing LSF subsets can be increased 
to the values given in Table 1 when the LSF coefficients are grouped 
differently into the subsets. If we, for instance, group LSF # 1, 3, 
5 into subsct one and LSF # 2, 4, 6 into subset two we obtain im- 
provements which cqual or exceed the ones given in Table 1. 
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