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Noise Power Spectral Density Estimation Based on
Optimal Smoothing and Minimum Statistics

Rainer Martin, Senior Member, IEEE

Abstract—We describe a method to estimate the power spectral
density of nonstationary noise when a noisy speech signal is given.
The method can be combined with any speech enhancement algo-
rithm which requires a noise power spectral density estimate. In
contrast to other methods, our approach does not use a voice ac-
tivity detector. Instead it tracks spectral minima in each frequency
band without any distinction between speech activity and speech
pause. By minimizing a conditional mean square estimation error
criterion in each time step we derive the optimal smoothing param-
eter for recursive smoothing of the power spectral density of the
noisy speech signal. Based on the optimally smoothed power spec-
tral density estimate and the analysis of the statistics of spectral
minima an unbiased noise estimator is developed. The estimator is
well suited for real time implementations. Furthermore, to improve
the performance in nonstationary noise we introduce a method to
speed up the tracking of the spectral minima. Finally, we evaluate
the proposed method in the context of speech enhancement and low
bit rate speech coding with various noise types.

Index Terms—Minimum statistics, spectral estimation, speech
enhancement.

I. INTRODUCTION

W ITH the advent and wide dissemination of mobile com-
munications speech enhancement has found many new

applications. In turn the interest in practical and powerful speech
enhancement algorithms has grown considerably, and signifi-
cant progress has been made [1], [2]. Yet, speech processing
under adverse conditions is still a challenge. When the signal to
noise ratio is low or the disturbing noise is nonstationary the re-
sults are plagued by speech distortions and unnatural sounding
or fluctuating residual background noises.

Frequency domain speech enhancement systems typically
consist of a spectral analysis/synthesis system, a spectral gain
computation method, and a background noise power spectral
density (psd) estimation algorithm. While the former two are
well understood [1]–[3] and easily implemented the noise
estimator has frequently received less attention. The noise
estimator is, however, a very important component of the
overall system, especially if the algorithm should be capable of
handling nonstationary noise. In fact the noise estimator has a
major impact on the overall quality of the speech enhancement
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system. If the noise estimate is too low, unnatural residual noise
will be perceived. If the estimate is too high, speech sounds
will be muffled and intelligibility will be lost. The traditional
SNR based voice activity detectors (VAD) are difficult to
tune and their application to low SNR speech results often
in clipped speech. Current research [4]–[6] aims therefore at
incorporating soft-decision schemes which are also capable of
updating the noise psd during speech activity.

In this paper, we present a novel noise estimation algorithm
which is based on an optimal signal psd smoothing method and
on minimum statistics. The psd smoothing algorithm utilizes a
first order recursive system with a time and frequency dependent
smoothing parameter. The smoothing parameter is optimized
for tracking nonstationary signals by minimizing a conditional
mean square error criterion.

Speech enhancement based on minimum statistics was pro-
posed in [7] and modified in [8]. In contrast to other methods the
minimum statistics algorithm does not use any explicit threshold
to distinguish between speech activity and speech pause and
is therefore more closely related to soft-decision methods than
to the traditional voice activity detection methods. Similar to
soft-decision methods it can also update the estimated noise psd
during speech activity. It was recently confirmed [9] that the
minimum statistics algorithm [7] performs well in nonstationary
noise.

The minimum statistics method rests on two observations
namely that the speech and the disturbing noise are usually sta-
tistically independent and that the power of a noisy speech signal
frequently decays to the power level of the disturbing noise. It
is therefore possible to derive an accurate noise psd estimate by
tracking the minimum of the noisy signal psd. Since the min-
imum is smaller than (or in trivial cases equal to) the average
value the minimum tracking method requires a bias compen-
sation. As we will show in the paper, the bias is a function of
the variance of the smoothed signal psd and as such depends
on the smoothing parameter of the psd estimator. In contrast to
earlier work on minimum tracking [7] which utilizes a constant
smoothing parameter and a constant minimum bias correction,
the time and frequency dependent psd smoothing now also re-
quires a time and frequency dependent bias compensation. We
therefore analyze the underlying statistics and develop an ap-
proximation to the bias of minimum power estimates which is
well suited for real time implementations.

The remainder of this paper is organized as follows. After
a brief introduction to noise estimation via minimum statistics
in Section II, we will derive the optimum smoothing parameter
and a heuristic error monitoring algorithm in Section III. In Sec-
tion IV, we investigate the statistics of minimum (noise) power
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spectral density estimates. An algorithm for the compensation
of the bias which is associated with minimum power spectral
density estimates is developed in Section V. Section IV presents
the algorithm for searching spectral minima. Special emphasis
is placed on a novel extension which significantly improves the
tracking of nonstationary noise. Finally, in Section VII we sum-
marize experimental results in terms of measurements and lis-
tening tests.

II. PRINCIPLES OFMINIMUM STATISTICS NOISEESTIMATION

A. Spectral Analysis

In what follows we consider a bandlimited, sampled noisy
speech signal which is the sum of a clean speech signal

and a disturbing noise . denotes
the sampling time index. We further assume that and
are statistically independent and zero mean. The noisy signal

is transformed into the frequency domain by applying a
window to a frame of consecutive samples of and
by computing the FFT of size on the windowed data. Before
the next FFT computation the window is shifted bysamples.
This sliding window FFT analysis results in a set of frequency
domain signals which can be written as

(1)

where is the subsampled time index, , and is the fre-
quency bin index, , which is related to the
normalized center frequency by . Furthermore,
to facilitate our notation and to avoid unnecessary normalization
factors we assume . Typically, we use a sam-
pling rate of Hz and .

We note that for all practical purposes and for
the real and imaginary part of a Fourier transform coefficient

can be considered to be independent and can be mod-
eled as zero mean Gaussian random variables [10].1 Under this
assumption each periodogram bin is an exponentially
distributed random variable [10] with probability density func-
tion (pdf)

(2)

where and
are the power spectral densities of the speech

and the noise signals, respectively. denotes the unit step
function, i.e., for and otherwise.
Obviously, during speech pause, , the mean and
the variance of are equal to and ,
respectively.

B. Minimum Statistics Noise Estimation

The minimum statistics noise tracking method is based on the
observation that even during speech activity a short term power

1Strictly speaking, this assumption holds only wheny(i) is stationary with a
relatively small span of correlation and for a large frame sizeL !1 .

spectral density estimate of the noisy signal frequently decays
to values which are representative of the noise power level. The
method rests on the fundamental assumption that during speech
pause or within brief periods in between words and syllables the
speech energy is close or identical to zero. Thus, by tracking the
minimum power within a finite window large enough to bridge
high power speech segments the noise floor can be estimated.

To highlight some of the obstacles which are encountered
when implementing such an approach we consider a recursively
smoothed periodogram

(3)

and a simplified minimum tracking algorithm. Fig. 1 plots the
periodogram , the smoothed periodogram as
an estimate of the signal psd, and the estimated noise power

which has not yet been compensated for bias as a
function of the frame index and for a single frequency bin

. The noise in the noisy speech signal is nonstationary ve-
hicular noise with an overall SNR of approximately 10 dB. The
window size is . The periodograms are recur-
sively smoothed with an equivalent (rectangular) window length
of seconds which represents a good compromise be-
tween smoothing the noise and tracking the speech signal. By
assuming independent periodograms and equating the variance
of to the variance of a moving average estimator with
window length the smoothing parameter in (3) can be
computed as .
The noise psd estimate is obtained by picking the min-
imum value within a sliding window of 96 consecutive values
of , regardless whether speech is present or not.

The minimum tracking provides a rough estimate of the noise
power. However, we note that to improve the method we have
to address the following issues.

• The smoothing with a fixed smoothing parameter
widens the peaks of speech activity of the smoothed
psd estimate . This will lead to inaccurate
noise estimates as the sliding window for the minimum
search might slip into broad peaks. Thus, we cannot use
smoothing parameters close to one and, as a consequence,
the noise estimate will have a relatively large variance.

• The noise estimate as shown in Fig. 1 is biased toward
lower values.

• In case of increasing noise power, the minimum tracking
lags behind.

The main themes of this paper are therefore to find a time
varying smoothing parameter such that the tracking ca-
pabilities of the smoothed periodogram and its variance
are better balanced, to develop an algorithm for bias compensa-
tion, and to speed up the noise tracking in general.

III. OPTIMAL TIME VARYING SMOOTHING

The smoothed signal psd estimate from which the
noise psd estimate is derived has to satisfy conflicting
requirements. On one hand the variance should be as small as
possible requiring the smoothing parameterin (3) to be close
to one. On the other hand, the smoothed psd estimate has to
track possibly nonstationary noise and, since we do not employ
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Fig. 1. PeriodogramjY (�; k)j , smoothed periodogramP (�; k) ((3),
� = 0:85), and noise estimatê� (�; k) for a noisy speech signal and a single
frequency bink = 25 .

a voice activity detector, also has to follow the highly nonsta-
tionary excursions of the speech signal. Especially when the
input signal has a high dynamic range these requirements are
impossible to satisfy with a constant smoothing parameter.
However, as we will see below, these problems can be circum-
vented with a time-varying and possibly frequency dependent
smoothing parameter .

A. Derivation of the Smoothing Parameter

To derive an optimal smoothing procedure we assume
speech pause and consider again the first order
smoothing equation for , now with a time and frequency
dependent smoothing parameter

(4)

Since we want to be as close as possible to the true noise
psd our objective is to minimize the conditional mean
square error

(5)

from one iteration step to the next. After substituting in
(5) and using and

the mean square error is given by

(6)

Setting the first derivative with respect to to zero yields

(7)

and the second derivative, being nonnegative, reveals that this is
indeed a minimum. The term

Fig. 2. Optimal smoothing parameter� as a function of the smootheda
posterioriSNR �(�; k).

on the right hand side of (7) is recognized as a smoothed version
of thea posterioriSNR [11]

(8)

Fig. 2 plots the optimal smoothing parameter for
. Since the optimal smoothing parameter is between zero

and one a stable and nonnegative noise power estimate
is guaranteed.

Having assumed speech pause in the above derivation does
not pose any principal problems. The optimal smoothing pro-
cedure reacts to speech activity in the same way as to highly
nonstationary noise. In case of speech activity the smoothing
parameter is reduced to small values which enables the psd esti-
mate to closely follow the time varying psd of the noisy
speech signal.

B. Error Monitoring

In a practical implementation of the optimal smoothing pa-
rameter (7) we replace the true noise psd by its latest
estimated value and limit the smoothing param-
eter to a maximum value , e.g., , to avoid
dead lock for .

In general, the time evolution of the estimated noise psd
lags behind the time evolution of the true noise

psd (tracking delay, see Section VI). As a consequence, the
estimated noise psd might be smaller or larger than the true
noise psd and thus, the estimated smoothing parameter might
be too small or too large. Problems may arise when the
smoothing parameter is close to one since then the smoothed
psd estimate cannot react quickly to changes in the
true noise psd. Given this uncertainty in the noise psd estimate
the tracking error in the smoothed short term psd must
be monitored. When tracking errors are detected the optimal
smoothing parameter must be decreased to guarantee reliable
operation under all circumstances.

Tracking errors in the short term estimate can be
monitored by comparing to a reference quantity, for in-
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stance the frequency averaged periodogram. Our monitoring al-
gorithm therefore compares the average short-term psd estimate
of the previous frame to the average
periodogram and thus detects deviations
of the short term psd estimate from the actual averaged peri-
odogram. The result of this comparison can be used to modify
the smoothing parameter in case of large deviations.

The comparison between the average smoothed psd estimate
and the average actual periodogram is implemented by means
of a “soft” characteristic

(9)

and the resulting correction factor is limited to values larger than
0.7 and smoothed over time

(10)

The smoothing parameter in recursion (10) was chosen empir-
ically. It does not appear to be a sensitive parameter. The mul-
tiplication of the correction factor with the optimal smoothing
parameter then yields the final smoothing parameter

(11)

The smoothing parameter is suboptimal but deviations
from the optimal smoothing parameter are small on av-
erage. For stationary noise the average deviation is about 5%
and for highly nonstationary noise, such as street noise, about
10%.

To improve the performance of the noise estimator in high
levels of nonstationary noise we found it advantageous to
apply also a lower limit , with a maximum of
0.3, to and thus limit also the variance of the bias
correction factor (see Section V). This lower limit, however,
might decrease the performance for high SNR speech. As
limits the rise and decay times of the lower limit is
therefore set as a function of the overall signal-to-noise ratio
(SNR) of the speech sample. To avoid the attenuation of weak
consonants at the end of a word we require that can
decay from its peak values to the noise level in about 64 ms (or
four frames at ). Then, can be computed as

(12)

IV. STATISTICS OFMINIMUM POWER ESTIMATES

The minimum tracking psd estimation approach determines
the minimum of the short time psd estimate within a finite
window of length . Since for nontrivial densities the min-
imum value of a set of random variables is smaller than their
mean the minimum noise estimate is necessarily biased. The
objective of this section is to derive the bias and the variance of
the minimum estimator and to develop an efficient algorithm
for the compensation of the bias in nonstationary noise.

The bias can be computed analytically only if successive
values of are
independent, identically distributed (i.i.d.) random variables.
Unless the sequence of successive values is subsam-
pled this is clearly not given. We therefore move directly to
the case of correlated short term psd estimates and develop
an approximate solution. To simplify notations, we restrict
ourselves to the case of speech pause. All results carry over to
the case of speech activity by replacing the noise variance by
the variance of the noisy speech signal.

A. Mean of the Minimum of Correlated PSD Estimates

We consider the minimum of successive short
term psd estimates

. For an infinite sequence of periodograms the
short term psd estimate can be written as ( )

(13)

For independent, exponentially and identically distributed pe-
riodograms the characteristic function of the pdf of

is then given by [12, Ch. 18]

(14)

Since the pdf of is scaled by the minimum
statistics of the short term psd estimate is also scaled by

[13, Sec. 6.2]. Therefore, the mean
is proportional to and the variance is proportional to

. Without loss of generality, it is sufficient to compute
the mean and the variance for . We introduce
the notation and
determine the mean of the minimum of correlated vari-
ates as a function of the inverse normalized variance

by generating large
amounts of exponentially distributed data with variance
and by averaging minimum values for various values of. The
inverse normalized variance is also called “equiva-
lent degrees of freedom” since nonrecursive (moving average)
smoothing of independent squared Gaussian variates
would yield an estimate with the same variance.

The result of this evaluation is shown in Fig. 3. Fig. 3 depicts
and thus the factor by which the minimum is smaller than

the mean as a function of the lengthof the minimum search
window and as a function of the equivalent degrees of freedom

.
For software implementations it is practical to have a closed

form approximation of the inverse mean , i.e., the bias cor-
rection factor. We note that for (see Ap-
pendix A) and for . Using an asymptotic result
in [14, Sec. 7.2], we approximate the inverse mean of the min-
imum by

(15)
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Fig. 3. Mean of minimum of correlated short term noise psd estimates for
� = 1.

where is a scaled version of

(16)

and and are functions of (see Appendix B).
denotes the complete Gamma function [15]. This approxi-

mation has a mean square error over the range of values shown
in Fig. 3 of less than and a peak relative error of less
than 4%. The largest errors are obtained for small values of.
For values the peak error is always below 2%. In a
real-time application with fixed window length and

will be precomputed and (15) and (16) will be evaluated
during runtime.

We note that the simplified approximation

(17)

works equally well since the additional term in (15) reduces the
approximation error for small values of only. Small values
occur predominantly when a significant amount of speech
power is present. During speech activity, however, it is highly
unlikely that attains a minimum.

B. Variance of the Minimum Statistics Noise Estimator

The error variance of the minimum statistics noise psd es-
timator is compared to the variance of a moving average esti-
mator. The evaluation and comparison of these two estimators
is based on an equivalent amount of input raw data and also takes
the bias of the minimum statistics estimator into account. Again,
analytical results are only feasable for the less practical case of
mutually independent random variables. We turn directly to the
case of correlated short term estimates.

Fig. 4 plots the logarithmic variance ratio

(18)

Fig. 4. Normalized variance of minimum of correlated noise psd estimates for
� = 1.

as a result of a numerical evaluation of the variance of the
minimum of correlated variates. The variance of a moving
average estimator which uses the same equivalent number of
successive periodogram data points as the minimum estimator
is given by . We find, that for

and the variance of the minimum estimator
is less than four times as large as the variance of the moving
average estimator. The increased variance is essentially the price
for completely avoiding the voice activity detection problem.
Despite this increased variance, the minimum statistics approach
to noise estimation appears to be feasible since the minimum of
the psd is obtained during speech pauses and the smoothing
parameter is then close to one, resulting in large
values of . Furthermore, in our comparison of variances
we assumed that the reference moving average estimator is
combined with an ideal VAD. Under realistic circumstances a
VAD based moving average estimator will introduce additional
errors which will shift the balance in favor of the minimum
statistics approach.

V. UNBIASED NOISE ESTIMATOR BASED ON

MINIMUM STATISTICS

As a result of the previous sections we see that an unbiased
estimator of the noise power spectral density is given
by

(19)

where we now emphasize the dependency of on and
. The unbiased estimator requires the knowledge

of the normalized variance
of the smoothed psd estimate at any given

time and frequency index.
To estimate the variance of the smoothed psd estimate

we use a first order smoothing recursion for the ap-
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proximation of the first moment, , and the second
moment, , of

(20)

(21)

(22)

Good results are obtained by choosing the smoothing parameter
and by limiting to values less or

equal to 0.8.
Finally, is estimated by

(23)

and this estimate is limited to a maximum of 0.5 corresponding
to . Since an increasing noise power can be tracked
only with some delay the minimum statistics estimator has a
tendency to underestimate highly nonstationary noise. Fur-
thermore, since the bias compensation (15) (or (16)) depends
on the estimated normalized variance the bias compensation
factor is a random variable with a variance depending on the
variance of . It is therefore advantageous to increase
the inverse bias by a factor proportional to
the normalized standard deviation of the short term estimate

with the average normal-

ized variance and
typically set to . This bias correction has an impact
only when the short term psd estimate and thus the estimated
variance has a large variance. Without the bias correction the
variations in would push the minimum
to values which are too low. For stationary noise this factor is
close to one.

VI. EFFICIENT IMPLEMENTATION OF THEMINIMUM SEARCH

Our algorithm requires that we find the minimum ofsub-
sequent psd estimates . The computational complexity
as well as the delay inherent in this procedure depends on how
often we update this minimum estimate. If we update the min-
imum in every time step we have compare operations for
each time step and frequency bin. On the other hand, we might
choose to update the minimum only afterconsecutive sam-
ples of have been computed. In this case, we need only
one compare operation per signal frame and frequency bin but
the worst case delay when responding to a rising noise power is
now . Following the proposal in [7] we implemented a tree
search to balance the complexity and the update rate in a flex-
ible manner.

We divide the window of samples into subwindows
of samples . This allows us to update the min-
imum every samples while keeping the computational com-
plexity low. Whenever samples are read the minimum of the
current subwindow is determined and stored for later use. The
overall minimum is obtained as the minimum of all sub-
window minima. We therefore have compare

operations per signal frame and frequency bin. The delay in re-
sponse to a rising noise power is now only . For a sampling
rate of 8 kHz and an FFT length of samples we
typically use and .

For less stationary noise the tracking can be improved by
looking in each subwindow for local minima with amplitudes
in the vicinity of the overall minimum. A minimum of a sub-
window is considered to be local if its value was not obtained
in the first or the last signal frame of this subwindow. Since we
now explicitly consider the minima of the subwindows we also
have to compute a bias compensation for these shorter subwin-
dows.

The new algorithm is summarized in Fig. 5. All computa-
tions in Fig. 5 are embedded into loops over all frequency in-
dices and all time indices . Subwindow quantities are sub-
scripted by . In the description of the algorithm we make ref-
erence to a subwindow counter which counts the signal
frames within a subwindow and to the running minimum esti-
mate . At the startup of the program this counter
is initialized to and is initialized
to a preset maximum value. The vector holds the
overall minimum of the length window. It is updated when-
ever , when the current minimum
becomes smaller than , or when a local minimum
is detected.

The search range for local minima is
within 0.8 to 9 dB of the current overall minimum. It depends
on the average normalized variance of the short term
psd estimate. If the variance is small a local minimum very
likely indicates the noise level. It can be therefore accepted
even if it is several dB larger than the current overall min-
imum. An increasing noise level can be therefore tracked on
the subwindow level. If the variance is large fluctuations of
local minima are not necessarily due to a rising noise floor.
Therefore, only minima close to the overall minimum are
accepted. The functional dependence of the variance and the
search range for local minima was optimized by experiments.

and are auxilliary vectors for
keeping track of those frequency bins which might contain
local minima. If the minimum of a subwindow was determined
as the first or the last value
of this subwindow it is not accepted as a local minimum

. If the minimum was obtained in
between the first or the last value of the subwindow it is
marked as a local minimum . If a local
minimum is larger than the overall minimum but still within
the search range it replaces all previously
stored subwindow minima and thus leads to an increased noise
psd estimate.

VII. PERFORMANCEEVALUATION

A. Qualitative Results

The noise estimation algorithm was evaluated in the context
of speech enhancement with various noise types. We begin
our presentation of experimental results with a second look at
the noisy speech file of Fig. 1. Fig. 6 plots the periodogram,
smoothed periodogram, noise estimate, and time varying
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Fig. 5. Minimum statistics noise estimation algorithm.

smoothing parameter for the same noisy speech file
and the same frequency bin as in Fig. 1. We see that the time
varying smoothing parameter allows the estimated signal
power to closely follow the peaks of the speech signal while
during speech pause the noise is well smoothed. Also, the
bias compensation appears to work very well as the smoothed
power and the estimated noise power follow each other closely
during speech pause. We also note that the noise psd estimate
is updated during speech activity. This is a major advantage of
the minimum statistics approach.

Fig. 7 gives another example of the noise tracking abilities of
the algorithm. We now look at a speech sample which has high
SNR speech ( dB) at its beginnning. After about 780
clean speech frames computer generated white noise is added
to the speech. The response of the noise estimator is shown in
Fig. 7. The noise jump is tracked with a delay of frames.
The small overshoot is a result of increasing the bias compensa-
tion factor by the variance dependent factor which is in
this situation at its upper limit.

Fig. 6. Periodogram, smoothed periodogram, and noise estimate for a noisy
speech signal and a single frequency bin. The time varying smoothing parameter
�(�; k) is shown in the lower inset graph.

Fig. 7. Periodogram, smoothed periodogram, and noise estimate for a speech
signal averaged over all frequency bins. The noise is switched on after about
780 frames.

B. Quantitative Results

We measure the relative estimation error with respect to a ref-
erence noise psd for computer generated white Gaussian noise,
for vehicular noise, and for street noise without and with speech.
While the white Gaussian noise is completely stationary, the ve-
hicular noise has some fluctuations and the street noise is highly
nonstationary. Speech (six male and six female speakers, no
pauses) was added at an SNR of 15 dB. In all cases the estima-
tion error was averaged over three minutes of audio material.
As the true noise psd is not known for vehicular noise and for
street noise we used a first order recursive system as in (3) with

to compute the reference noise psd. The variance of
this estimator contributes to the variance which we observe for
the noise psd estimation error.

Table I summarizes the results for speech pauses. Three dif-
ferent algorithms were tested: the minimum statistics approach
which was proposed in [7] and uses a fixed smoothing param-
eter and the new algorithms as described in Fig. 5
with the bias compensation according to (15) and (17). We also
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tested our algorithm without the error monitoring algorithm
(Section III-B) and found that it diverges unless the noise is
completely stationary. All algorithms in Table I exhibit mean
errors in the order of several percent except for street noise.
For highly nonstationary noise the algorithm underestimates
the noise floor on average. This is a result of the immediate
tracking for decreasing noise power and the tracking delay in
case of increasing noise power. Note, that the algorithm [7]
uses a gradient detection approach to track increasing noise
power. It therefore achieves a smaller bias for street noise than
the two other algorithms.

The second set of experiments was performed with
noise speech at an SNR of 15 dB and no speech pauses.
Three minutes of continuous speech is clearly an extreme
situation and a conventional VAD based algorithm is likely to
fail. Table II summarizes the results for this case. We now find
that the algorithm [7] with delivers a heavily biased
estimate. For continuous speech a relative small smoothing
parameter of is still too large. The smoothed short term
psd estimate never fully decays from the peak power
values to the noise floor. As a result the noise psd estimate
becomes too large. For white Gaussian and vehicular noises the
algorithms proposed in this paper deliver estimates which are
accurate within a few percent.

C. Listening Tests

The noise estimator was tested in conjunction with a mul-
tiplicatively modified minimum mean square error log spec-
tral amplitude (MM-MMSE-LSA) estimator [2], [6] and the
2400 bps MELP [16] speech coder. The purpose of the listening
tests was to evaluate the quality and the intelligibility of the
enhanced and coded speech. What listeners usually find most
objectionable when presented with enhanced or enhanced and
coded speech is structured residual noise (including “musical
tones”) and muffled or even clipped speech. The character of
the residual noise is mainly influenced by the accuracy of the
noise estimator and the spectral gain function that is applied
to the noisy Fourier coefficients. We compared our approach
to a state-of-the-art noise estimator which estimates the noise
psd by means of a VAD and by soft-decision updating during
speech activity [6]. Except for the noise psd estimator both al-
gorithms were identical. Compared to the VAD and soft-deci-
sion based algorithm, which was also carefully optimized for
the speech material at hand, informal listening tests indicated
a quality improvement for the minimum statistics approach. It
turned out that the minimum statistics approach preserved weak
voiced sounds, especially voiced consonants like and ,
much better than the alternative algorithm. Since voiced sounds
concentrate their energy in a small number of subbands (rela-
tive to ) the computation of the smoothing parameter and the
tracking of the smoothed periodogram statistics individually for
all frequency bins is very helpful. We also found that the new
algorithm gave quite dramatic improvements when the input
signal was a music signal. On the other hand, in highly non-
stationary noise the alternative algorithm resulted in smoother
residual noise since the minimum statistics estimator tends to
consider small speech-like noise fluctuations as speech.

TABLE I
AVERAGE RELATIVE ESTIMATION ERROR INPERCENT AND ERRORVARIANCE

(IN PARENTHESES) FOR THREENOISETYPESDURING SPEECHPAUSE

TABLE II
AVERAGE RELATIVE ESTIMATION ERROR INPERCENT AND ERRORVARIANCE

(IN PARENTHESES) FOR THREE NOISE TYPESDURING SPEECHACTIVITY

(SNR = 15 dB, NO PAUSES)

These results were confirmed in formal quality and intelligi-
bility tests with the enhanced and MELP coded speech. In a stan-
dardized diagnostic acceptability measure (DAM) [17] quality
test (administered by Dynastat Inc.) with speech disturbed by
vehicular noise (SNR approximately 10 dB) the minimum sta-
tistics method scored about 1.4 DAM points better than the al-
ternative method. The standard error (s.e.) of the test was about
0.9 DAM points. A DRT (Diagnostic Rhyme Test [17]) test
showed a slightly improved intelligibility for vehicular noise
( DRT points, s.e. ) and a significantly improved
intelligibility for highly nonstationary helicopter noise (
DRT points, s.e. ). This is a result of the minimum tracking
during speech activity which leads to an improved reproduction
of weak speech sounds and to less clipping.

VIII. C ONCLUSION

Even though most speech enhancement algorithms use
a modified noise psd (noise “overestimation” [18] or noise
“underestimation” [19]) we believe it is of utmost importance
to first obtain an unbiased noise psd estimate and then to
modify it based on statistical arguments or on listening tests.
Based on our previous work [7] and the results obtained by
others [9] we have extended the minimum statistics noise esti-
mation approach to improve its performance in nonstationary
noise. Key components of our approach are a power spectral
density smoothing algorithm which employs a time varying
smoothing parameter, an algorithm to track the variance of
the smoothed power spectral density in frequency bands, and
a bias compensation algorithm for minimum power spectral
density estimates. Our experiments with various noise types
show that the time varying smoothing significantly improves
the minimum statistics approach. The algorithm turns out to be
fairly generic. In experiments with different noise types we did
not observe a need for retuning the parameters of the algorithm.

We found that the new minimum statistics noise estimator
when combined with a speech enhancement system and com-
pared to more traditional approaches has a superior ability to
preserve weak speech sounds and therefore delivers a superior
intelligibility.
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TABLE III
PARAMETERS FOR THEAPPROXIMATION OF THEMEAN OF THE

MINIMUM (15) AND (17)

APPENDIX I
MEAN OF MINIMUM FOR

The probability density of the minimum of i.i.d.
random variables , is given by

(24)

where denotes the probability distribution function
of . For and the Gaussian assumption
is exponentially distributed and

(25)

Therefore, for we obtain .

APPENDIX II
APPROXIMATION OF THEMEAN

Table III lists values for and as a function of
. Values in between can be obtained by linear interpolation.
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