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Abstract

In this contribution we consider the transmission of voice over packet-switched
networks using Multiple Description encoding and optimal estimation of missing
information. We investigate Multiple Description encoding techniques for the trans-
mission of spectral parameters of a speech coder and present an approach for esti-
mating lost parameters. The reconstruction of missing information is based on intra-
frame Minimum Mean Square Error (MMSE) estimation with a priori knowledge
modelled by Gaussian Mixture Models (GMM). We show that the GMM approach
leads to implementations which are efficient with respect to computational complex-
ity and memory requirements. Experimental results are given for the estimation of
missing Line Spectral Frequency (LSF) parameters.

1. Introduction

Future telecommunications networks will most likely be based on a packet-switched “all-
IP” architecture with the benefits of utilizing a single network for all telecommunication
services and integrating traditionally separated services into powerful unified applications.
This also means that the plain old telephone service will migrate from circuit-switched to
packet-switched technology. As packet-switched networks such as the Internet suffer from
congestion, packet delays, and packet loss, network protocols and speech transmission
technology must be adapted to achieve at least the same quality as with the familiar
circuit-switched networks.

In this contribution we investigate methods for the transmission of coded speech param-
eters over packet-switched networks. Since packet losses on the Internet are bursty and
speech transmission cannot tolerate large transmission delays traditional error mitiga-
tion techniques are not always successful. The application of forward error correction
(FEC) methods in an environment with packet loss will require the interleaving of sev-
eral speech frames and hence will increase the transmission delay. For the same reason,
automatic repeat request (ARQ) methods are not feasable. We therefore focus on Mul-
tiple Descriptions (MD) encoding methods. Multiple Descriptions systems send two (or
more) individually good descriptions of the speech source via independent channels, hop-
ing that at least one description is received. However, when all descriptions are received
the combined information of these descriptions should be as large as possible. Thereby,
the method maximizes the quality in the error-free case while at the same time it adds
redundancy for improving the performance on channels with packet losses. We explore
the benefits of such a scheme for the Line Spectral Frequency (LSF) parameters of a
speech coder in conjunction with Minimum Mean Square Error (MMSE) estimators for

Tagungsband Elektronische Sprachsignalverarbeitung, Bonn, 2001




the lost information. Our objective is to use the redundancy within a single speech frame
to derive two or three descriptions of the spectral speech envelope and to restore lost
information. The design of optimal estimators for spectral parameters is a challenging
task in itself because these parameters are correlated over time and frequency, and the
representation of prior densities using histograms [1] leads to prohibitively large mem-
ory requirements. We therefore employ an approach based on Gaussian Mixture Models
(GMM) [2] and compare results for various encoding and estimation strategies. As the
Adaptive Multi-Rate speech coder [3, 4] is a candidate for Voice over IP applications [5],
the robust transmission of spectral parameters of the AMR coder will serve as an example
throughout this paper.

The remainder of this paper is organized as follows: After a brief review of the quantization
of LSF parameters and Multiple Description encoding in Sections 2 and 3, respectively, we
turn to the development of MMSE estimators using Gaussian Mixture Models in Section
4. We conclude with a presentation of experimental results in Section 5.

2. Quantization of Spectral Parameters in the AMR Coder

The GSM AMR speech coder implements eight different source coding modes at bitrates
between 4.75 kbit/s and 12.2 kbit/s [6]. All modes use a filter of order 10 for linear
prediction (LP) analysis. The 12.2 kbit/s mode (which is identical to the GSM enhanced
fullrate coder) uses two different windows to calculate two sets of LSF parameters. All
other modes use a single window to calculate one set of coefficients for each speech frame
of 20 ms. The LP coefficients are converted to the LSF domain and differentially encoded.
To remove inter-frame correlation a predicted LSF vector is subtracted from each incoming
LSF vector. The predicted LSF vector is computed using a first order linear prediction
filter with fixed prediction coefficients. For modes below 12.2 kbit/s the residual LSF
vectors are then Split Vector (SVQ) quantized. The 10-dimensional vectors are partitioned
into subsets of 3, 3, and 4 residual LSF coefficients. Each of these subsets is then vector
quantized with 7 to 9 bits. E.g., for the 10.2 kbit/s mode the first, the second, and the
third subset are quantized with 8, 9, and 9 bits, respectively. The direct histogram-based
implementation of an MMSE estimator for missing spectral information therefore requires
large memory and computational resources. For the 10.2 kbit/s mode (which we used in
this study) the joint statistics (histogram) of the quantized LSF coefficients would require
the storage of 2® - 27 . 29 ~ 67 - 10° values. For a less complex but suboptimal Markov
chain approach the transition matrices between subsets need to be stored. For the 10.2
kbit/s mode this still amounts to 2529+ 2%.2% = 393,216 histogram values. We therefore
propose to use Gaussian Mixture Models to represent the joint statistics of LSF vectors.
The improvements which can be achieved by optimal estimators are directly related to the
correlation within the parameter vectors. Figure 1 shows on the left hand side an intensity
plot of the correlation coefficient matrix of the LSF vectors, computed on a data set of
20,000 LSF vectors. The right hand side of Fig. 1 depicts the inter-frame correlation of the
LSF vectors. The inter-frame correlation can be used to conceal the loss of single speech
frames. This is in fact exploited in the bad frame mechanism of the AMR coder. Our
MD coding and estimation scheme, however, aims at using the intra-frame correlation.

3. Multiple Description Encoding

Multiple Descriptions (MD) source coding is a diversity based transmission scheme where
information about the source is transmitted over multiple possibly independent channels.
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Figure 1: Intensity plot of intra-frame (left) and inter-frame (right) correlation coefficient
matrices for LSFE vectors.

From the perspective of information theory it can be considered as a generalization of the
source coding problem subject to a fidelity criterion. Figure 2 depicts the basic idea for
a two channel system. The source is encoded using encoder 1 with rate R, and encoder
2 with rate R,. The encoded symbols of encoder 1 and encoder 2 are transmitted over
channels 1 and 2, respectively. These channels can be physically independent channels
like two different wireline or radio links but can be also two independent data streams
over the same physical channel. At the receiver side there are three decoders: the central
decoder 0 which has access to the output symbols of both channels and the two side
decoders 1 and 2 which use the output symbols of just one channel. The two encoders
and the three decoders are designed to meet distortion constraints Dy, D,. and D,.

R
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Figure 2: A two channel Multiple Description system.

If we send the same information on both channels half of the information is useless when
both channels work. This is similar to a repetition code. There is no improvement with
respect to the case when only one channel is received. The idea of MD encoding is to send
different information on both channels such that a minimum fidelity is achieved when only
one channel works and a higher fidelity is achieved when both channels work. This is in
fact a joint source/channel coding problem and properly designed MD encoders/decoders
can exhibit the “graceful degradation” feature known from joint source/channel coding
systems.

The basic difficulty in the design of MD encoders/decoders lies in the fact that when a
low distortion should be achieved for the single channel case both descriptions must be



correlated since they encode the same source. On the other hand, when the descriptions
are correlated, the gain of combining both descriptions in the error free case is also limited,
as little additional information is available. This dilemma has been quantified, e.g., in the
theorem on the region of achievable rates by El Gamal and Cover [7].

The MD idea has been employed, e.g., in audio streaming over the Internet. The Robust
Audio Tool (RAT) (8] piggybacks redundant information about the current packet onto
a later scheduled packet. When a packet is lost this second description can then be used
to restore the missing information at a lower fidelity. In our investigation we split the
LSF parameters into two or three subsets and assume that all subsets are transmitted
independently. If there are no packet losses the spectral information can be reassembled at
the receiver to obtain full fidelity. If packets and spectral information is lost we estimate
the missing information based on the received information and a priori knowledge.

4. MMSE Estimation of Missing LSF Parameters

We assume that some components of the current LSE vector L, are lost in several suc-
cessive frames and that all other components are received without error. The aim of the
estimation procedure is to restore the missing components using MMSE estimation. The
approach taken here is also known as “Missing Feature Theory” which has been employved
in robust speech recognition [9].

We partition the current LSF vector L, into a received (or present) part Li.p ) and a lost
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(or missing) part L™
If quantization errors are negligible, the MMSE estimate of the missing components is
given by the conditional expectation
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as a function of the present components and the sequence of all previously received LSF
vectors Z;_,. If we assume that no information is available from previous vectors (burst
errors) the expression can be further simplified
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To compute the optimal estimate the conditional probability density })(Lfcm) \ Li,m} must
be known.
4.1 Gaussian Mixture Models

Mixture models are frequently used in data classification and clustering problems with the
aim of fitting the probability density function (pdf) of some given data. We approximate
the joint probability density of the LSF vectors by a Gaussian Mixture Model [10], i.e.,
by a sum of M multivariate Gaussian densities

M
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where each N-dimensional mixture density is given by
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and o; denotes the a priori probability of the mixture components 91 = (L, By C,),
Lé. P19 = o

The mixture probabilities c;, the mixture mean vectors e and the covariance matrices C;
are determined from training the model by means of the well known Estimate-Maximize
(EM) algorithm [11]. To reduce the number of free parameters it is common to use
covariance matrices with non-zero elements on the main diagonal only [12, 10].

4.2 MMSE Estimation Using GMM

In order to compute an approximate MMSE estimate using the GMM, we partition all
parameters of the GMM with respect to present and missing components. Analogous to
the LSF parameter vector in (1) the mean vectors p. and the covariances C; of all mixture
components can then be written as follows
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The conditional pdf of present and missing components can now be expressed in terms of
a GMM
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Using (3) an approximate MMSE estimate of Li,m) can be written as [2]
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If the GMM models the pdf of the current LSF xe(tor L, by means of diagonal covariance
matrices the off-diagonal matrices C ™P) and C " are all zero and the MMSE estimate
is further simplified

M
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The a posterior: probabilities can now be computed using products of univariate normal
densities
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L dcnotes the j-th component of the k-th vector Lk of present components, and ,u,(‘rJ )

and (o f;p)) are the mean and the variance of the j-th vector component and the i-th

mixture component, respectively. »_; = Zj\:"l and [[; = HJ’V:"1 denote sums and products
over the present components where N, denotes the number of present components.

The memory requirements of the GMM approach are directly proportional to the dimen-
sion of the LSF vector and the GMM order, i.e for LSF vectors of size 10 and GMM'’s
with diagonal covariance matrices (10 + 10 + 1) - M values must be stored. Since M is
typically much smaller than 100 the GMM approach offers significant memory advantages
with respect to the histogram approach.

5. Experimental Results

The AMR coder groups the LSF parameters into three subsets. Each of these subsets
is then vector quantized and transmitted independently. In our experiments we assume
that one or two of these data streams are disrupted. More specifically, we consider three
different scenarios:

e One of the three subsets is permanently lost;
e Two of the three subsets are permanently lost;
e Even or odd numbered LSF parameters are permanently lost.

All these loss scenarios assume a burst error situation, i.e., that the parameters of more
than one consecutive frames are lost. The third scenario is not compatible with the AMR
coder since it assumes that the LSF parameters are grouped into only two subsets. The
first subset contains LSF # 1,3,5,7,9 and the other subset contains LSF # 2.4,6.8,10. If
one of these subsets is lost the missing information is highly correlated with the present
information and can be thus recovered with high accuracy.

The experimental results were obtained using GMM's with M = 1, 2, 4, 8, 16, 32, and 64
mixture components. If only one component is used the estimate is equivalent to the a
priort mean of the missing LSF components. The use of the a priori mean is also termed
mean imputation. The GMM’s were trained by means of the EM algorithm and 900,000
LSF vectors. A data base of male and female speech and the AMR coder (10.2 kbit/s
mode) was used to generate the LSE vectors. The estimation algorithm was evaluated
using 20,000 LSF vectors which were not part of the training data base.

5.1 Performance Measures

The performance of the estimators is measured by evaluating the parameter SNR and the
spectral distortion. The SNR of the j-th parameter is given by
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The resulting SNR value is then normalized on the SNR which is achieved for mean
imputation. The spectral distortion is defined as

L H@P] .
8D = QW[E ’lOlogm (ﬁ(Q)P)} 10 . (14)

The latter can be efficiently computed using cepstral coefficients [13]. The reference
frequency response H(£2) was computed using unquantized LSF vectors.

5.2 Loss of a single LSF subset

The improvement in parameter SNR with respect to a priori mean imputation is shown
in Table 1. The gain depends mainly on the position within the LSF vector and the corre-
lation to adjacent LSF’s. For M = 64 an average gain of about 3 dB is obtained. Further
doubling the GMM order did result in small improvements but also in a significantly
increased computational complexity.

Table 2 summarizes the spectral distortion which is achieved for GMM order M. We note
that a substantial improvement with respect to mean imputation M = 1 is obtained.

lost | LSF GMM Model Order M
set | # [ 2 [ 4 ] 8 [16 ] 32 | o4
1 [-0.09]0.30 [ 0.81 [ 1.31 | 1.55 | 1.83
1 [ 2 [0.28]007 172214248266
3 [ 1.17 [ 2.00 [ 3.24 | 3.83 [ 4.46 | 4.64
4 [2.20 [2.75 | 3.24 [ 3.31 | 3.84 | 4.08
2 [ 5 [ 0.82 103195 2.75]3.10 | 3.43
6 | 0.97 |1.94 [3.123.38 | 3.81 [4.11
7 | 1.24 [1.42 253252 | 2.50 | 2.71
5 | 8 [097 [T19 186|173 159|180
9 [ 1.10 [1.60 [ 2.18 [ 2.30 | 2.64 | 2.90
10 | 044 [0.80 [ 1.27 [ 1.84 | 1.99 [ 2.14

Table 1: Improvement of parameter SNR in dB with respect to a priori mean imputation
for the estimation of a single lost LSF subset using a GMM of order M.

lost GMM Model Order M
set [ 1 | 2 | 4 [ 8 [ 16 ] 32 | 64

1 1347|328 289 258|242 | 233|227
2 | 426356326 300|283 271|262
3 | 3.44|3.07 295|267 260|257 | 250

Table 2: Spectral distortion (SD) in dB for the estimation of a single lost LSF subset
using a GMM of order M.




5.3 Loss of two LSF subsets

When two subsets are lost the improvements which can be obtained by our estimation
procedure are significantly lower. The SNR measurements are summarized in Table 3.
Good results are obtained only for those LSF coefficients which are adjacent to the present
components. This is also reflected in the spectral distortion measurements (see Table 4).

lost | LSF GMM Model Order M
set | # 2 [ 4 [ 816 ]32]64
1 |-0.06|-0.24|0.090.19 | 0.09 | 0.07
1 2 037 | 0.35 [0.72 ] 0.79 ] 0.76 | 0.71
3 1.07 | 1.20 | 1.71 | 1.82 | 1.87 | 1.87
4 1.38 | 1.69 | 1.96 | 1.97 | 2.03 | 2.10
2 ] 1.31 | 1.74 | 1.94 | 2.22 | 2.25 | 2.37
6 1.55 | 2.04 | 2.33 | 2.22 | 2.42 | 2.58
4 2.02 | 2.65 | 2.81 292 |3.25]|3.38
2 5 -0.04 | 052 [0.751094 | 1.11 | 1.20
6 -0.27 | 0.69 | 1.48 | 1.84 | 2.08 | 2.15
7 0.29 | 0.55 | 0.850.96 | 1.01 | 1.11
3 3 0.14 | 0.47 | 0.80 | 0.96 | 0.92 | 1.05
9 0.21 { 0.70 | 1.13 | 1.30 | 1.42 | 1.52
10 0.22 | 0.57 090 |1.16 |1.15 | 1.15
1 0.07 | 0.84 | 1.26 | 1.55 | 1.64 | 1.73
1 2 0.37 | 1.41 | 1.80 | 2.08 | 2.31 | 2.29
3 1.25 | 2.53 | 3.00 | 3.55 | 4.01 | 4.06
7 1.82 | 2.16 | 2.83 | 2.74 | 2.64 | 2.68
3 8 1.59 | 1.69 | 2.00 | 1.83 | 1.78 | 1.75
9 1.54 | 1.63 | 2.15 | 2.18 | 2.15 | 2.37
10 0.42 | 0.64 | 1.00 | 1.28 | 1.37 | 1.53

Table 3: Improvement of parameter SNR in dB with respect to a priori mean imputation
for the estimation of two lost LSF subsets using a GMM of order M.

lost GMM Model Order M

sets | 1 [ 2 ] 4 ] 8 [16 ] 32 ] 64
1,2 | 5.56 | 4.99 [ 4.79 | 4.57 [ 4.54 [ 4.54 | 451
2,3 [ 5.64 528494 [472]4.60]452]4.48
1,3 | 5.10 | 4.58 | 4.19 [ 3.95 | 3.83 [ 3.78 | 3.75

Table 4: Spectral distortion (SD) in dB for the estimation of two lost LSF subsets using
a GMM of order M.

5.4 Loss of even or odd numbered LSF coefficients

The success of the GMM based estimator clearly depends on the correlation between
present and missing LSF components. An interesting variation of the above schemes is
therefore to group the LSF parameters into two interleaved subsets. The first subset
(denoted as “even” in Table 5) contains LSF # 2, 4, 6, 8, 10, and the second subset



lost | LSF GMM Model Order M
set | # [ 2 [ 4 ] 8 |16 ] 32 ] 64
2 |1.05]4.36|5.57|6.52 | 7.75 | 8.14
4 |3.201|4.00|4.75|5.22 | 5.68 | 5.87
even | 6 | 2.26|3.16 | 5.02 | 5.35 | 5.89 | 6.44
8 2.06 | 1.71 | 2.88 | 3.31 | 3.68 | 4.13
10 [ 0.7310.98 | 1.42 | 2.40 | 2.59 | 2.83
1 025|241 354|438 5.16 | 5.61
3 230516 | 6.06 | 6.68 | 7.58 | 7.59
odd g 2.24 1 2.72 |1 431 | 6.22 | 6.52 | 6.91
7 [1.78]2.06|322]|3.53]|3.98]4.33
9 | 214|211 275|347 |3.89|4.34

Table 5: Improvement of parameter SNR in dB with respect to a priori mean imputation
for the estimation of “even” or “odd” LSF subsets using a GMM of order M.

lost GMM Model Order M

set | 1 [ 2 ] 48 [16]32]64
even | 6.15 | 4.36 | 3.74 | 3.11 | 2.80 | 2.61 | 2.46
odd | 5.33 | 3.94 | 3.36 | 2.96 | 2.62 | 2.48 | 2.39

Table 6: Spectral distortion (SD) in dB for the estimation of “even” or “odd” LSF subsets
using a GMM of order M.

(denoted as “odd” in Table 5) contains LSF # 1, 3, 5, 7, 9. This scheme is not compatible
with the AMR coder but leads, as is shown in Tables 5 and 6, to significant improvements.

6. Conclusions

The proposed LSF reconstruction scheme was implemented in the AMR coder. It enhances
the quality of the received speech signals when bursty frame losses occur. The scheme is
especially useful when no more than one LSF subset gets lost. Compared to histogram
based approaches the GMM based approach consumes significantly less memory.

The improvements obtained for missing LSF subsets can be increased to the values given
in Table 6 when we deviate from the AMR transmission scheme and group LSF # 1, 3,
5, 7, 9 into subset one and LSF # 2, 4, 6, 8, 10 into subset two. Such a transmission
scheme will reduce the efficiency of the vector quantizer but will significantly improve the
robustness in the presence of frame erasures. The Multiple Description problem discussed
here is another example of joint source/channel coding where we have to find a good
balance between the redundancy in the source parameters and the redundancy added by
the error control mechanism. It is not quite obvious whether the best possible source
coding (vector quantization in this case) combined with less effective error concealment
techniques or suboptimal vector quantization combined with more effective parameter
estimation techniques will achieve the better subjective quality. These issues are currently
studied in more detail.
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