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ABSTRACT "
In this paper we consider optimal estimators for speech enhance-
ment in the Discrete Fourier Transform {DFT) domain. We present
an analytical solution for estimating complex DFT coefficients in
the MMSE sense when the clean speech DFT coefficients are Gam-
ma distributed and the DFT coefficients of the noise are Gaussian
or Laplace distributed. Compared to the state-of-the-art Wiener
or MMSE short time amplitude estimators the new estimators de-
liver improved signal-to-noise ratios. When the noise model is a
Laplacian density the enhanced speech shows less annoying ran-
dom fluctuations in the residual noise than for 2 Gaussian density.

1. INTRODUCTION

Almost all of the known speech enhancement algorithms which
operate in the Discrete Fourier Transform (DFT) domain [1, 2, 3]
assume that the real and imaginary part of the clean speech DFT
coefficients can be modelled by a Gaussian distribution. The Gaus-
sian assumption is indeed true in the asymptotic case of large DFT
frames when the span of correlation of the signal under consid-
eration is much shorter than the DFT frame size [4]. For speech
signals and the typical DFT frame sizes used in mobile communi-
cations this assumption is not well fulfilled. This has been recog-
nized e.g. by Porter and Boll [5], who proposed a heuristic method
to construct approximately optimal estimators from given clean
speech material. As it will be shown below, the DFT coefficients
of clean speech might be well modelled by a Gamma distribution.
In this paper we will therefore present analytical solutions to the
MMSE estimation of complex DFT coefficients with Gamma dis-
tributed speech priors. The probability density (pdf) of the DFT
coefficients of the noise might be either a (complex) Gaussian or a
Laplacian density.

It is well known that the MMSE estimator is a linear estima-
tor when both the speech and the noise coefficients are complex
Gaussians, Another consequence of the Gaussian model is that
the spectral coefficients of the filter are real valued. The estimated
clean speech coefficients then have the same short time phase as
the noisy coefficients and only the magnitude needs to be manip-
ulated. The estimator is therefore spherically invariant and easily
implemented. For Gamma or Laplace distributions the MMSE es-
timator is highly nonlinear and complex valued. It’s application,
however, leads to an improved SNR in the enhanced speech.

The remainder of this paper is organized as follows: In Section
2 we briefly review the distribution of DFT coefficients of speech
and noise. The results presented there will support our assumption
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that speech coefficients might be better modeled by Laplacian or
Gamma probability densities. Section 3 presents the new MMSE
estimators for our models of speech and noise. Finally, in Section
4 we will discuss experimential results,

2. STATISTICAL MODELS IN THE DFT DOMAIN

In what follows we consider a bandlimited, sampled noisy speech
signal y(f) which is the sum of a clean speech signal (i) and a
disturbing noise n(3), y(i} = $(3) + n(f). i denotes the sampling
time index. We further assume that s(i) and n({) are statistically
independent and zero mean. The noisy signal (i) is transformed
into the frequency domain by applying a window h(i) to a frame
of L consecutive samples of y(i) and by computing the DFT of
size L on the windowed data. Before the next DFT computation
the window is shifted by R samples. This sliding window DFT
antalysis results in a set of frequency domain signals which can be
writien as

L-1

Y(MK) = SOK) + N E) = 3 y(AR + w)h(p)e ™20/t

p=0

)
where X is the subsampled time index, A € Z, and k is the fre-
quency bin index, & € {0,1,..., L — 1}, which is related to the
normalized center frequency X by @ = 2wk/L. Furthermore,
to facilitate our notation and to avoid additional normalization fac-
tors we assume 37570 A?{p) = 1. In 2 mobile communications
application, we typically use a sampling rate of f, = 8000 Hz and
L =2R=256.

2.1. Statistical Models

It is well known that the pdf of speech samples in the time domain
is much better modelled by a Laplacian or a Gamma density rather
than & Gaussian density [6]. We here suggest that also in the short
term DFT domain (frame size < 100 ms} the Laplace and Gamma
densities are much better models for the pdf of the real and imagi-
nary parts of speech coefficients than the commonly used Gaussian
density. In this section we will briefly review these densities and
provide examples of experimental data.

Let Sr = R{S5(), k)} and S; = S{S(A, k}} denote the real
and the imaginary part of a ¢lean speech DFT ceefficient, respec-
tively. To enhance the readability of the following results we will
drop both the frame index A and the frequency index k and con-
sider an individual speech DFT coefficient § = Sp + 751 at
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a given time instant. Then the Gaussian, the Laplacian, and the
Gamma prior densities (real and imaginary parts) can be defined
as follows. o2/2 denotes the variance of the real and imaginary
parts of the DFT coefficients. Similar probability densitics can be
defined for the DFT coefficients of the noise.

2.1.1. Gaussian speech model
_ 1 5% 1 _ 5
p(Sr) = T exp(‘“;;") p(Si)= Trae exp( 03)
- @

2.1.2. Laplacian speech model

pisn) = S exp(- 252 ps) = L2 )

2.1.3. Two-sided Gamma speech model
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The Gamma density diverges when the argument approaches
zero but, as shall be seen, provides otherwise an excellent fit to the
observed data.

2.2. Experimental Data

Figure 1 plots the histogram of the real part of the DFT coeffi-
cients of high SNR (“clean”) speech averaged over three male and
three female speakers. Since speeck can be considered to be a
non-stationary random process only quasi-stationary coefficients
were sclected for the histogram. The coefficients represented in
the histogram are taken from a narrow predefined SNR interval.
For the depicted histograms only those coefficients are selected
which have an SNR larger than 28 dB but smaller than 30 dB. The
rationale behind this approach is that modern speech enhancement
algorithms base the computation of the enhanced spectral coeffi-
cients on the (estimated) a priori SNR. [2, 3]. The statistics of the
DFT coefficients and hence the resulting optimal estimators must
be therefore characterized with respect to the (measured) a priori
SNR. The full histogram in the top graph of Fig. 1 as well as the
enlarged section in the bottom graph of Fig. 1 show that indeed
the Laplace (dashed) and Gamma (solid) densities provide a much
better fit to the experimental DFT data than the Gaussian {(dotted)
distribution. Other SNR intervals as the one stated above were
tested as well with similar results.

Another assumption which is frequently invoked in the devel-
opment of spectral estimators is that the real and the imaginary part
of the complex DFT coefficients are statistically independent [4].
To verify this assumption we evaluated scatter plots of the real and
imaginary parts of clean speech DFT coefficients. From these plots
{not shown here) we conclude that the real and imaginary part are
onty weakly dependent. Note, that only for the Gaussian density
the components can be strictly independent in both cartesian and
polar coordinates,

To conclude this Section we note that also real noise signals
are not necessarily complex Gaussians in the DFT domain. For a
car noise recorded at a constant speed of 90 km/h we found that

histogram, pdf

histogram, pdf

6,05

Fig, 1. Gaussian (dotted), Laplace (dashed), and Gamma (solid)
density fitted to clean speech DFT coefficients. The lower graph
shows an enlarged section of the top graph.

also the Laplacian density could provide a reasonable fit to the
experimental data.

3. MMSE ESTIMATORS

If we assume independence of the real and the imaginary parts of
DFT coefficients the MMSE estimator for the complex DFT coef-
ficignts can be split in the estimators for the real and the imaginary
paris which can be treated independently

E{S|Y}=E{Sr |Yr}+JE{S; |Vi}. (3

Again we have dropped the time and frequency indices. Based on
the above prior models we will now develop MMSE estimators for
the clean speech coefficients.

3.1. Gaussian Noise and Gaussian Speech Model

It is well known, that when both the noise and the speech coef-
ficient pdf is a complex Gaussian the optimal estimator is linear
(Wiener filter), ie.,

2
o, &

Y —r
oi+ol  1+¢

5=E{5|Y}= Y, 6)

where a? and a2 are the mean of |S|* and | N2, respectively. £ =
a2 fa? denotes the a pricri SNR.
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3.2, Gaussian Noise and Gamma Speech Model

We now derive the MMSE estimator for the complex DFT coeffi-
cients of clean speech when the speech prior is Gamma distributed
and the noise is modeled by a Gaussian pdf.

For ease of notation we define

\ﬁ?‘lﬂ:n YH \/5 YR
= _— = —— — 7
At 2\[2‘0’, + Tn 2\/5\/5 M Tn { )

G —__2\/-_05—0'—“:__2\/5\/5_0'". (8)

The optimal estimator for the real part of Sg in the MMSE sense
is then given by the conditional expectation

G

E{Sr|Yr}= / SR|SR|_0 5

21ra'n\/cr—,p

2
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- exp(Ghe/DD-1.5(V2Gr4)}
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where Zg g is given by

Zor = exp(Gh-/2)D_0.5(V2Gr-)

11

+exp(Gh4 /2 D_05(V2Gry) . an
D, () denotes a parabelic cylinder function [7, Theorem 9.240].
We note that the denominator of E{Sr | Yr} is an even function
of Yr while the numerator is an odd function of Yg. The same
estimator can be used for the imaginary part if Yr is substituted
by Y; in (7)-(11). Figure 2 plots the estimated cocfficients (solid)
and the coefficients estimated by a Wiener filter (dashed) for in-
put coefficients 0 < Yz < Sand o? = oF + 02 = 2. We find
that for high a priori SNR conditions both filters are more or less
transparent. However, for low SNR conditions the new estimator is
highly nonlinear and distinctly different from the Wiener filter. If
the disturbed input coefficient is smaller than the variance 17,2, the
new estimator achieves a higher attenuation than the Wiener fil-
ter. If the disturbed input coefficient is larger than the variance o2
(speech is predominant) the new estimator delivers a significantly
larger output than the Wiener filter. It can be therefore assumed
that the new estimator results in less speech distortions than the
linear estimator.

3.3. Laplacian Noise and Gamma Speech Model

In this Section we derive the MMSE estimator when the noise pdf
is a Laplacian and the speech coefficients can be modelled by a
Gamma pdf. We define

G, = V1.50, + 20, _ VIB/VE+2 (12)
20400 20,

G. = V180, —20, 1.5/ — 2 13)
00,05 20,
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Fig. 2. E{Sr | Ygr) for the Gamma spccch model and a
Gaussian noise model (solid), and for three & pricri SNR values
10log(o? foZ) = 15,0, ~10 dB, o2 + a2 = 2, The Wiener filter
solution is indicated with dashed lines.

For Yr > 0 we obtain [7, Theorem 3.381]

AS
1 f SRISRl—DS
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where ®(a, v;2) = 1Fi(a@;v;2) denotes a confluent hypergeo-
metric function and ¥{a, -y; ) ancther confluent hypergeometric
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function whjch is defined as [7, Theorem 9.210}

oy T(d-7)
\P(u'%z)—f'(a—_'y-t-ﬁ

P(v-1) L _ e
+—1—_,Ta-)—z Pla—y+1,2—;z).

(a1 2)
(18)

I'(z} is the complete Gamma function [7, Theorem 8.310]. For
Yr < 0 we have E{Sg | Yr} = ~E{Sr | [Yz|}.

Figure 3 plots the estimation characteristics for the Gamma
speech model in combination with the Laplacian noise model. For
high a priori SNR conditions we find a behaviour similar to the
case of the Gaussian noise model, however, below a certain a pri-
ori SNR threshold the estimator delivers an almost constant en-
hanced DFT coefficient regardless of what the magnitude of the
input coefficient is. As a result, this estimator delivers enhanced
speech with a very low level of unnatural fluctuations in the resid-
ual noise.
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Fig. 3. EB{Sr | Ygr} for the Gamma speech model and a
Laplacian noise model (solid), and for three a priori SNR values
10log(e?/ol) = 15,0, —10 dB. 02 + 02 = 2. The Wiener filter
solution is indicated with dashed lines.

4. EXPERIMENTAL RESULTS

The proposed estimators are implemented in MATLAB and em-
bedded into a standard DFT based speech enhancement program
with L = 2R = 256 and a Hann window for spectral analy-
sis. The apriori SNR is estimated using the “decision directed”
approach of [3). We evaluate the newly derived estimators on a
speech data base with 6 different speakers and 3 minutes of speech.
Computer generated stationary Gaussian noise as well as prere-
corded car noise is added at several SNR levels. When the com-
puter generated Gaussian noise is used its variance is assumed to
be perfectly known, To determine the variance of the slightty non-
stationary car noise a Minimum Statistics noise estimator is em-
ployed [8, 9]. The results are presented in terms of the segmental
SNR before and after the processing. Speech pauses are excluded
from the computation of the segmental SNR. Table 1 shows the
results of processing the noisy speech with either the Wiener filter
(case Gaussian/Gaussian), the MMSE estimator with a Gaussian
noise pdf and a Gamma speech pdf (case Gaussian/Gamma), or

the Laplacian noise model and the Gamma speech model (case
Laplace/Gamma). The application of the Gaussian/Gamma esti-
mator results in a consistent improvement of the measured seg-
mental SNR. The improvement using the Laplace/Gamma estima-
tor is somewhat smaller but, as listening tests confirm, significantly
less “musical noise” is audible.

noise/speech [ Gaussian noise: SNR|  car noise: SNR
model 0dB[10 20dB |0dB[10dB]20dB
Gaussian/Gaussian | 7.31] 14.30 | 22.04 [ 6.65] 13.97( 20.90
Gaussian/Gamma [ 7.73 ] 14.61 ] 22.30 | 6.81§ 14.11] 20.94
Laplace/Gamma | 7.32 [ 14.47] 22,26 [6.35] 13,581 21.00

Table 1. Segmental SNR in dB for our speech and noise models
before (0, 10, 20 dB) and afier enhancement,

5. CONCLUSIONS

[n this contribution we have derived two new estimators for speech
enhancement in the DFT domain, Experimental results show that
these estimators provide consistently better results than the well
known linear estimator (Wiener filter).
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