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ABSTRACT

This contribution presents a framework for combined noise
and acoustic echo reduction which is based on minimum
mean square error (MMSE) short time spectral amplitude
estimation and soft-decision weighting. This framework is
derived by means of quadratic cost functions and allows to
use two separate signal estimators, one for near end single
talk and one for double talk. The soft-decision weighting of
both estimators is based on the activity of the near end and
the far end speakers. We derive the estimation algorithm
and compare this system to a more conventional approach
which uses only one estimator. ‘

1. INTRODUCTION

With the wide dissemination of mobile communications and
the increased use of natural man-machine interfaces, acous-
tic echo cancellation and noise reduction algorithms are in
high demand. In harsh acoustic environments, however,
acoustic echo cancellation and noise reduction algorithms
by themselves do not always perform satisfactorily. Thus,
additional measures must be taken. It has been shown that
there are advantages when the echo and noise reduction
tasks are jointly treated by means of an echo canceller of
reduced order and a postfilter which reduces residual echoes
as well as noise. Previously, this postfilter had been op-
timized according to MMSE and psychoacoustic criteria
(1,2, 3,4, 5]

In this contribution we derive a new solution for the
joint reduction of noise and residual echoes. This solution
takes advantage of the fact that the near end and the far
end speakers are not always active at all frequencies and
that the estimation of the enhanced output signal can be
improved by soft-decision switching between different esti-
mators. The new algorithm is based on the MMSE (log)
spectral amplitude estimator [6, 7] and speech presence un-
certainty tracking as proposed in [8]. This new estimator
will be compared to a soft-decision estimator which does
not take the activity of the far end speaker explicitly into
account.
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2. DEFINITION OF SIGNALS

Fig. 1 depicts the combination of an echo canceller C and
an adaptive postfilter H. We will not treat the problem
of designing a robust echo canceller C itself and assume
that a canceller (e.g. [9]) is given which achieves sufficient
echo reduction. The postfilter is implemented in the fre-
quency domain by means of a Discrete Fourier Transform
(DFT) analysis, a spectral modification algorithm, and an
overlap/add synthesis system [4].
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Figure 1: Combined acoustic echo and noise reduction.

In what follows, we consider bandlimited, sampled sig-
nals (i), y(i), z(i), and (i) where { denotes the sampling
time index. z(i) is the far end speech signal and y(i) is
the microphone signal which is the sum of a clean near end
speech signal s(i), a disturbing noise n(i), and an echo sig-
nal e(i), y(i) = s(i) + n(i) + e(i). The compensated signal
z(i) is equal to the microphone signal minus the estimated
echo (i), z(i) = y(i) — (i) = s(i) +n(i) +&(i). &(i) denotes
the residual echo after echo compensation. We further as-
sume that s(i), z(#), and n(i) are statistically independent
and zero mean. The noisy compensated signal z(i) is trans-
formed into the frequency domain by applying a window
h(i) to a frame of L consecutive samples of z(i) and by
computing the DFT of size L on the windowed data. Be-
fore the next DFT computation the window is shifted by R
samples. This sliding window DFT analysis results in a set




of frequency domain signals which can be written as

L-1
2 AR = wh(ue™ L, (1)

p=0

Zi(N) =

where A is the subsampled time (frame) index, A € Z, and
k is the frequency bin index, k € {0,1...,L — 1}, which
is related to the normalized center frequency wy by wi =
k2m/L. Typically, we use a sampling rate of f4 = 8000 Hz
and L = 2R = 256.

Likewise, we obtain the complex Fourier coefficients of
the kth bin of the other signals in Fig. 1 where we have
also dropped the frame index A for clarity. We denote the
coefficients of

o the clean near end speech by Si = |Sk|exp(jax),

e the noise signal by N = |Nk|exp(iox),

e the noisy near end speech by Yi = |Yi| exp(j9«),
e the residual echo signal by Ex = |E|exp(jBs),
e the compensated signal by Zx = |Zi|exp(jx),

e the far end signal by X: = | X«|exp(j6s),

e and the estimated near end speech by
5. = 8], exp(jan).

We note that for all practical purposes and for k ¢
{0, L/2} the real and imaginary part of the Fourier trans-
form coefficients of Zi(A) (and all other signals) can be
modelled as independent, zero mean Gaussian random vari-
ables [10]. Under this assumption and when the far end
and the near end speakers are active each periodogram bin
|Zk(A)|? is an exponentially distributed random variable
with probability density function (pdf)

fizy2(z)
_ U(z) exp(=z/(®nn (k) + Pss (k) + Paz(k))) @)
- $nn (k) + @,, (k) + @,—;(k) '

where ®,,(k) = E{|Sk|*}, ®an(k) = E{|Ni|*}, and ®zz(k) =
E{ ]Eg[ }, are the power spectral densities of the speech, the
noise, and the residual echo, respectively. U(z) denotes the
unit step function.

3. MMSE SOFT-DECISION ESTIMATION

To derive the new estimator we introduce the hypotheses
H!, and HY, for the presence and the absence of the near
speech signal S, in the kth frequency bin as well as the cor-
r&spondmg hypotheses for the residual echo signal E..,, HL

and H2,, respectively. Similar to the approach of (11] we
model the probability density functions of the magnitude
and the phase of the clean near end speech, p,(|Sk|, ax),
and the magnitude and the phase of the residual echo,

pz(|Exl, Be), as

Ps(1Skl, ax) = P(HL)p(ISkl, ax | HY) + P(HZ)8(ISk], a(:.))
3
pe(|Ex], Bx) = P(HE)p(1Ex|, Be | HA) + P(H&)J(IFJ&I,%)) ;
4
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where P(H),) and P(H%,) are the probabilities that near
end speech and residual echo are present in the kth DFT
bln respectively, and P(H%) =1 — P(H,l;,) and P(HY,) =
P(HY). p(|Sk|, ax | Hyi) and p(|El, Bx | H2,) are the
probability density functions of the near end speech and
the residual echo, conditioned on the signal presence. §(-)
denotes the Dirac impulse. For the four cases of near end
speech presence or absence and residual echo presence or
absence we define quadratic cost functions in Table 1:

case cost function
=l
Hfha Hgk ISII:
1 oz
skr Hek IS'k
Hslkv He'k (lskf = |5|k)2
Hy, H | (156 = 15],)?

Table 1: Cost functions for the different cases of speech
activity.

In what follows we will drop the DFT bin index k. For
each frequency bin k we minimize the average cost function

- f f (P PE))S p(2 | B, )
Oz

+ PUH)P(HD[S| p(Z | B, HY)
+ PhPED ([ (51 -1s)°
s

-p(Z | |S), @, HD)p(IS), @ | H})dS

+rahpad) [[ [[@E- 1502 1151,,181,

s 0z

-p(1S) & | H)p(E|, 8| H)dEds }dz .
(5)

This integral can be minimized by minimizing the integrand
of the integral over the signal space Qz’[‘l 1]. After differ-
entiating the integrand with respect to |S| and some fairly
straightforward calculations we obtain

IS]=
H°P= ! H? (©)
where

Pg = P(H,)P(H?)p(Z | H], H?)
+ P(H,)P(Hz)p(Z | Hy, Hz)
+ P(H])P(H;)p(Z | H], H})
+ P(H,)P(H)p(Z | H,, H?)




and

P(Z | HS, HD) = —— exp(=7a) ®)

oy L 1
p(Z | H; H?) = = exp( 7"1+£n) (9)
p(Z | HY, H}) = —— exp(—7a) (10)

T®nn

PR L) TR s SN

p(Z | Hy, H;) ﬂ,“(HEd)exP( 7"'1+£a) (11)

Yn and vq are the a posteriori SNR values for near end
single talk and for double talk, respectively. They are de-
fined as

2
o = [fn'ﬂ (12)
— gz—' (13)

én = E{yn — 1}/P(H}) and & = E{7a — 1}/P(H}) are
the corresponding & priori SNR values. The noise power
spectral density for the double talk case is defined as the
sum of the noise power spectral density $nn and the power
spectral density of the residual echo, conditioned on the
presence of the residual echo, i.e.

$nn = $an + E{|E)? | HE} . (14)

E{|S|| Z,H;,H:)} and E{|S| | Z,H}, H?} are the op-
timal MMSE estimators for double talk and near end single
talk, respectively, and are given by

1

(I ¢ ) 5 V. SN

" ) (15)
: f f IS15(Z | IS], o HY)p(IS], o | H)AS
. s
and
1 270y _ 1
E{|S|| z,H,,H:} = PZTELED
(16)

: f f IS1p(Z | 1S], @, HO)p(IS|, a | H})dS .
Qg

The conditional densities p(Z | |S|, a, H?) and p(Z | |S], e,
|E|,3) can be derived from the exponential distribution
model for the DFT coefficients, i.e.

-— : 2
P(Z[ISI.a,H§)=w;M (-2 [S;T)(Ja)l) an
- : 2
WZ 1S, 1) = —— exp(- 212U g

Hence, the optimal estimators E{|S| | Z, H}, H}} and E{|S|
| Z,H}, H?} are given by a variation of the well known
MMSE spectral amplitude estimator [6]. However, similiar
to [8], improved performance is obtained when the estima-
tors E{|S| | Z,H,,H}} and E{|S| | Z, H}, H?} are replaced

IWAENC' 99

86

by the log spectral amlitude estimators exp(E{log(|S]) |
Z,H;, H}}) and exp(E{log(|S]) | Z, HJ, H2}), respectively,
as derived in [7]. In fact, all results reported below where
achieved using the log spectral amplitude estimators, but
other estimators could be used within this framework as
well.

The unconditional a priori SNR values 1, = E{y, — 1}
and 74 = E{vys — 1} are easier to estimate than £, and
£4. Mn and 7 are estimated using the 'decision directed’

approach [6]:

A = e BB L (1 s - 1)

_ "\ 12 (19)
7i0J = a2 AU 4 4 — 0=t =1)
where Z(-) is defined as
arx_ jJ® T2 0
S {n £<0 (20)

These SNR values are limited to values above 0.08 (7, ) and
above 0.01 (n4). .

To compute the probabilities of near end speech and
residual echo presence we use two VAD's and the probability
tracking approach of [8]. The VAD’s are based on the mean
a posteriori SNR values of the compensated and the far end
signals [12, 13]. Near end speaker activity is detected if

1 L=1
Ta=T > v (21)

k=0

is larger than a preselected threshold Tyay, €.8- Tdav = 1.4.
The far end speech VAD is based on the same principle.
The probability of near end speech is tracked for all
frequency bins individually. As in [8], we compare the a
posteriori SNR 4nx to a preselected threshold 'y (e.g. ['a =
0.8) and store the result of the test in an index function I,
i.e. Iy =1 if yax < I'g and Iz = 0 otherwise. Whenever
speech is present in a frame this index function is smoothed
to yield an estimate of the probabilities for speech absence

P(HS)(A) = agP(HS)(A - 1) + (1 —ag)u(d),  (22)

where the smoothing parameter is set to a, = 0.95. The
probabilities for the residual echo are derived from the far
end speech signal in the same fashion.

The power spectral density of the near end noise was
estimated using the Minimum Statistics approach [14] and
the power spectral density of the residual echo using the
estimation method proposed in [4].

We also investigated an alternative solution which uses
only one estimator and does not take the presence or ab-
sence of the far end speaker explicitly into account. This
algorithm uses the same estimator for the near end single
talk and the double talk case. The estimator can be derived
from eq. 6 by assuming P(H:) =1 at all times and for all
frequencies and can be therefore written as

5= P(H,)p(Z | H;, H2)E{|S| | Z, H,, Hi} (23)
~ P(H})p(Z | H}, H}) + P(H?)p(Z | H?, H})




where in this case a modified noise power spectral density
is estimated as

Bnn = Bpn + E{|E*} . (24)

4. RESULTS AND CONCLUSIONS

To evaluate the performance of the proposed MMSE frame-
work the above soft-decision methods were implemented
and tested at various SNR levels. The sampling frequency
of the speech material was 8 kHz. The echo signal was gen-
erated by convolving speech signals with a measured room
impulse response of 512 taps and the echo canceller was
simulated by truncating this impulse response to 300 taps
and by adding a small perturbation to all remaining impulse
response taps. The simulated echo compensated signal z(i)
contained an audible residual echo at a level of approxi-
mately 10 dB below the level of the near end speech signal.
To avoid audible artifacts at low SNR conditions the soft-
decision multipliers in eqs. 6 and 23 were limited to values
above 0.1. This also limits the maximum echo and noise
reduction. For noise free conditions more echo reduction is
desirable. Ideally, these limiting factors should be adjusted
according to the SNR of the speech sample.

The smoothing parameter of the decision directed a pri-
ori SNR estimators were chosen to a, = 0.94 for the esti-
mation of 7, and a4 = 0.85 for the estimation of 4. The
single estimator algorithm was operated with ag = 0.94 at
all times.

We found that both algorithms gave very little distor-
tion of the near end speech signals and a very natural sound-
ing residual noise. 'Musical noise’ occured only sometimes
at low SNR conditions (below 6 dB), mostly due to non-
stationary noise. During speech pause the noise and the
residual echo were attenuated by about 15 dB.

All other conditions being equal, there were only small
audible differences between the algorithms of eqs. 6 and
23. Overall, the algorithm of eq. 6 achieved better echo
reduction during double talk, less near end speech distor-
tions, and less artifacts. This can be attributed to the ad-
ditional flexibility of the two estimator solution. However,
as outlined above, for lower SNR. conditions this flexibility
is somewhat reduced since the maximum attenuation must
be limited in order to avoid annoying artifacts. Neverthe-
less, different estimators can be used for near end single
talk and for double talk and parameters can be tuned in
different ways for these two cases. E.g. the near end speech
distortion and echo reduction during double talk can be
adjusted independently from the performance during near
end single talk. Hence, the proposed framework helps to
improve the overall performance of the combined noise and
echo reduction system.
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