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ABSTRACT

This contribution addresses the enhancement of noisy speech sig-

nals picked up by a dual microphone mobile phone in hands-free

position. A novel technique to estimate the noise power spectral

density is presented which combines two methods: a single micro-

phone algorithm based on the speech presence probability and a dual

microphone technique exploiting the coherence properties of the tar-

get signal and the background noise. Due to the novel approach,

the weakness of both methods can be overcome. Since the proposed

method requires knowledge of the current coherence properties, a

technique is presented which estimates the coherence of the speech

and noise signals, which is usually not known in practice.

Index Terms— speech enhancement, dual microphone noise

PSD estimation, noise reduction, coherence estimation

1. INTRODUCTION

Making a phone call in a noisy environment often leads to signifi-

cant degradations of the quality and intelligibility of the speech sig-

nal. This is even more severe during a phone call in hands-free posi-

tion where the signal-to-background-noise ratio (SNR) is often much

lower. Hence, it is necessary to reduce the distortions in the trans-

mitted signals by means of noise reduction techniques. One crucial

part of noise reduction systems is the estimation of the background

noise power spectral density (PSD), in particular in the presence of

speech. Given one microphone only, several well established meth-

ods exist (e.g., [1], [2], [3]). However, the performance of single

microphone algorithms is somehow limited especially in the case of

fast changing background noise. Hence, in the latest generation of

mobile phones there are frequently two microphones for the sup-

pression of background noise available. While the first microphone

is placed at the bottom of the phone, the second microphone is usu-

ally placed at the top or back of the device. Signals captured by the

second microphone can be used for a better differentiation between

the desired speech signal and the background noise. The proposed

system makes use of the different coherence properties of the desired

speech and the background noise. In most conditions the noise can

be seen as a diffuse sound field, while the speech is rather coherent

in both microphones. A dual microphone system for noise reduction

was proposed in [4] which exploits the coherence properties of the

captured signals and can be applied for the hands-free conditions.

This system has two drawbacks: For small microphone distances

(e.g., 10 cm) the reduction of low frequency noise is quite inefficient

because the speech and noise signals show similar coherence val-

ues. Furthermore, in practice deviations from the assumed coher-

ence properties significantly degrades the performance. In order to

overcome these drawbacks a novel approach is presented which is a

very efficient combination of a single and dual microphone noise es-

timation method. More detailed information about the signal model

is given in Sec. 2. In Sec. 3 the proposed noise reduction system is

described and evaluation results are shown in Sec. 4. This contribu-

tion closes with the relation to prior work (Sec. 5) and a conclusion

(Sec. 6).

2. ACOUSTICAL ENVIRONMENT

2.1. Dual Microphone Signal Model

The underlying signal model for using a mobile phone in a hands-

free position is shown in Fig. 1. The two microphones are situated at

the bottom and top of the device marked by the red circles. For this

alignment a microphone distance of at least 10 cm can be assumed.
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Fig. 1. Dual microphone set-up

The two microphone signals x1|2(k) are given by a superpo-

sition of the speech signals s1|2(k) and the noise signals n1|2(k),
where the indices 1|2 stand for the first and second microphone.

While the noise signals are assumed to be homogeneous and diffuse

the two speech signals are versions of the clean speech signal s(k)
filtered with the impulse responses h1|2. Since the mobile phone is

in hands-free position, there are only small power level differences

for the speech as well as the noise signals which have no signifi-

cant influence on the coherence properties of the speech and noise

signals.
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2.2. Coherence Analysis

The coherence properties of the speech and noise signals are ex-

ploited for the proposed noise reduction scheme. The coherence

function of two signals y1(k) and y2(k) is defined as

Γy =
Φy1y2√

Φy1y1Φy2y2

(1)

where Φy1y2 and Φy1y1 , Φy2y2 are the cross- and auto PSDs of

y1(k) and y2(k). For an ideal diffuse noise field this function can

be derived [5] as

Γn,dif = sinc

(
2πfdmic

c

)
(2)

with the distance dmic between two omnidirectional microphones at

frequency f and the sound velocity c. The speech signal is often

assumed to be coherent (Γs,coh = 1). However, these conditions

are not fulfilled in many real environments. One constraint is that

the microphones do not show an omnidirectional characteristic due

to the mounting into the mobile phone. This effect as well as reflec-

tions and reverberation have an impact on the coherence properties

of both the speech and noise signals [6], [7] yielding in deviations of

measured coherence functions from the theoretical curves as shown

in Fig. 2. The blue and red lines depict typical magnitude squared

coherence (MSC) of speech and noise signals, respectively recorded

with a dual microphone mock-up phone in a hands-free position.

More detailed information on the set-up is given in Sec. 4.1. The

theoretical curves for Eq. 2 and Γs = 1 for noise and speech respec-

tively are represented by the black dashed lines. An analysis of the

coherence of the superposition of speech and noise is given in [8].
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Fig. 2. Measured and theoretical coherence functions

It can be seen that except for the low frequency range it is possi-

ble to distinguish between speech and noise based on the measured

coherence. Besides, there are partially large deviations between the

measured curves and the theoretical values for both the speech and

noise coherence.

3. SYSTEM OVERVIEW

The proposed speech enhancement system is realized in an overlap-

add structure and is shown in Fig. 3. First the two noisy input signals

x1|2(k) are segmented, windowed and transformed in the frequency

domain using the Fast Fourier Transform (FFT) to yield X1|2(λ, μ),
with λ as the frame index and μ as the discrete frequency bin. The

noise estimation is realized in two steps: The first stage is the single

microphone SPP based noise estimation method [3] (see Sec. 3.1).

This estimate of the noise PSD Φ̂N,SPP (λ, μ) is applied for the low

frequency range for which the coherence of speech and noise are

both high and thus can not used for an efficient noise PSD estima-

tion (see Fig. 2). The speech presence probability (SPP) ρ of the first

stage and the input signals X1|2(λ, μ) are needed for the second

stage, the coherence based noise estimation, which then produces

the final noise PSD estimate Φ̂N (λ, μ) (see Sec. 3.2). For the spec-

tral gain calculation G(λ, μ) we use the single-microphone magni-

tude DFT estimation procedure under the generalized gamma-model

for the DFT-magnitudes proposed in [9]. The enhanced spectrum

Ŝ(λ, μ) is given by the multiplication of the coefficients X1(λ, μ)
with the spectral weighting gains. The enhanced time domain signal

ŝ(k) is obtained by using the IFFT and overlap-add.
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Fig. 3. Speech enhancement system

The novel concept presented in this paper is the two-stage noise es-

timation in the two highlighted blocks in Fig. 3.

3.1. SPP Based Noise Estimation

The method proposed in [3] estimates the noise PSD of a single mi-

crophone speech signal based on a soft decision voice activity de-

tection (VAD). A criterion to distinguish between speech pauses and

speech activity is given by the SPP ρ which is defined as [3]

ρ =

(
1 + (1 + ξopt) exp

(
−

|X1(λ, μ)|
2

Φ̂N,SPP (λ− 1, μ)

ξopt

ξopt + 1

))−1

(3)

and results into values between 0 and 1, where 1 indicates speech

presence. Φ̂N,SPP (λ − 1, μ) is the noise estimate of the previous

frame and ξopt is the fixed optimal a priori SNR. The SPP can then

be used to update the noise estimate as a weighted sum of the noisy

input and the noise estimate from the previous frame as

Φ̂N,SPP (λ, μ) = ρ ·Φ̂N,SPP (λ−1, μ)+(1−ρ) · |X(λ, μ)|2. (4)

More details on the derivations of this method can be found in [3]

and the references therein.

3.2. Coherence Based Noise Estimation

For the auto- and cross-PSDs which are needed in the following the

short-term estimates are calculated by recursive smoothing of the

input signals as

Φxixj
(λ, μ) = αsΦxixj

(λ−1, μ)+(1−αs)Xi(λ, μ) ·Xj(λ, μ)
∗
.

(5)

The {}∗ operation denotes the complex conjugate of the signal and

the smoothing factor αs is chosen to 0.75. As initially mentioned,
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the coherence properties of the input signals X1|2(λ, μ) can be used

for the noise estimation in the higher frequency range. For the sake

of brevity the frame and frequency indices (λ and μ) are omitted in

the following equations. We assume that speech and noise signals

are uncorrelated. Then, the auto- and cross PSDs of the input signals

read

Φx1x1
= Φs1s1 +Φn1n1

(6)

Φx2x2
= Φs2s2 +Φn2n2

(7)

Φx1x2
= Φs1s2 +Φn1n2

. (8)

Furthermore, we assume a homogeneous speech and noise field in

both microphone signals of the system, i.e.

Φs1s1 = Φs2s2 = Φs (9)

Φn1n1
= Φn2n2 = Φn. (10)

In [4] we assumed ideal coherent speech (Γs = 1) which is, how-

ever, not always fulfilled in real situation as it was shown in Sec. 2.

In the following we skip this assumption and thus, the cross PSD in

(8) can be rewritten with (1) and (9, 10) as

Φx1x2
= Γs · Φs + Γn · Φn, (11)

where Γs and Γn are the coherence functions of the speech and noise

signals, respectively. Inserting (9), (10) in (6) and (7) and using the

geometric mean of two auto PSDs√
Φx1x1

Φx2x2
= Φs +Φn (12)

(11) can be reordered to get the noise PSD estimate

Φ̂N,theor =

√
Φx1x1

Φx2x2
−

Φx1x2

Γs

1− Γn

Γs

. (13)

Due to the fact that the noise PSD must be real-valued, the absolute

values of
Φx1x2

Γs
and Γn

Γs
are used in the implementation of the algo-

rithm. Furthermore, in (13) it has to be ensured that the denominator

is greater than zero, e.g., by an upper threshold of the coherence ra-

tio |Γn

Γs
| < 0.99. Note, that if Γs = 1 is assumed this leads to the

noise estimate provided by [4].

In periods, where speech is not predominant, it turned out that a

weighted average with the noisy input signal (e.g., from the first mi-

crophone) is more accurate than the estimate from (13). Therefore,

the final noise PSD estimate of coherence based stage is given by

Φ̂N,coh = ρcoh Φ̂N,theor + (1− ρcoh)|X1|
2
. (14)

The weighting factor

ρcoh =
Γx,λ − Γn

Γs − Γn

(15)

is a function of the short-term coherence Γx,λ in the current signal

frame which is calculated by using the short-term estimates of the

auto- and cross-PSDs (5) in (1). ρcoh can be seen as a dual micro-

phone voice detector equivalent to the one of (3).

3.3. Coherence Function Update

The coherence based noise estimate given in (13) - (15) requires the

coherence functions. This can be constant functions as described

in [4]. As in practice, Γs and Γn are not known, we propose to

update Γs in periods where speech is predominant and Γn in periods

where speech is absent. The speech presence probability ρ from (3)

determines these periods by applying a simple threshold. The update

rule is based on the short-term coherence Γx,λ and reads for the noise

coherence function

Γ̂n = αΓΓ̂n,last + (1− αΓ)Γx,λ , if ρ < 0.1 (16)

where Γ̂n,last is the last updated coherence function. This rule uses

the speech pauses to update the noise coherence. The same rule can

not be applied directly for the update of the speech coherence func-

tion because a high SPP value ρ does not indicate a noise-free signal

segment. Hence, the influence of the noise must be taken into ac-

count. Using (6) - (8) and assuming again that noise and speech

signals are uncorrelated the coherence function of X1|2 can be ex-

pressed as

Γx =
Φs1s2 +Φn1n2√

Φx1x1
Φx2x2

=
Φs1s2 +Φn1n2

Φs +Φn

=
Φs1s2

Φs

(
1 +

Φn

Φs

)−1

+
Φn1n2

Φn

(
1 +

Φs

Φn

)−1

. (17)

With the definition of the a posteriori SNR

γ =
Φx

Φn

=
Φs +Φn

Φn

(18)

and inserting the coherence function (1) for speech and noise in (17)

the coherence can be rewritten as

Γx = Γs
γ − 1

γ
+ Γn

1

γ
. (19)

For the a posteriori SNR the current noise estimate and the noisy

input are used to compute Φn and Φx. Now (19) can be rearranged

to finally lead to the corrected speech coherence function

Γs,cor = Γx,λ
γ

γ − 1
− Γn

1

γ − 1
. (20)

The update of the speech coherence can be carried out during periods

where speech is active:

Γ̂s = αΓΓ̂s,last + (1− αΓ)Γs,cor , if ρ > 0.9. (21)

It should be mentioned, that ρ is frequency dependent which means

that the coherence functions (16) and (21) are updated in time-

frequency ranges where the SPP exceeds the corresponding thresh-

olds. The smoothing constants in (16) and (21) are chosen to

αΓ = 0.95 and the coherence functions are initialized as Γs = 1 for

the speech and ideal diffuse (2) for the noise signals.

The whole algorithm can be summarized as shown in the table

below, where μs represents the split-frequency between the single

microphone and dual microphone noise estimate. Here, we propose

to use the frequency where the MSC of the ideal diffuse coherence

in (2) takes the value 0.5 (see Fig. 2). All parameters for the SPP

based component of the system are chosen as proposed in [3].

Proposed noise PSD estimation (repeat for all signal frames)

1 Compute auto- and cross-PSDs (5)

2 Obtain single microphone estimate of SPP ρ

and noise PSD ΦN,SPP (3, 4)

3 Obtain dual microphone noise PSD

estimation ΦN,coh (13,14)

4 Combine noise PSD estimates, as

Φ̂N (λ, μ) =

{
Φ̂N,SPP (λ, μ) , for μ < μs

Φ̂N,coh(λ, μ) , for μ > μs

5 Update speech and noise coherence

functions (16, 20, 21)

6 Apply temporal smoothing of Φ̂N (λ, μ) with αN = 0.9

to obtain the noise power estimate
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Fig. 4. Evaluation results: left: noise PSD estimation accuracy (logErr: logarithmic error); middle: noise reduction performance

(NA-SA: noise attenuation minus speech attenuation); right: intelligibility enhancement (SII: speech intelligibility index)

4. EXPERIMENTS AND RESULTS

To rate the performance, the proposed system was evaluated with

recorded audio signals. Thereby, we compared our method with two

other algorithms: The SPP based method which turned out to give

the best results among the single microphone algorithms (c.f., [3],

[7]) and the dual microphone method in [4]. The latter was as well

designed for the use in mobile phones and will be termed as ICoh.

For all schemes the spectral gain calculation from [9] was applied

and to prevent musical tones in the processed speech signal the gain

smoothing from [10] was used. Besides, the frame length was 20 ms

using a Hann window with 50 % overlap and the FFT-size was 512

(including zero-padding), while the sampling frequency was 16 kHz.

4.1. Measurement Set-up

For the evaluation measurements with a dual-microphone mock-up

phone were carried out. The microphones were arranged as shown

in Fig. 1 with dmic = 10 cm. The desired speech signal was pro-

duced by an artificial head (HEAD acoustics HMS II.3) in a low

reverberant room (reverberation time ≈ 100 ms), while the mock-up

phone was located at the hands-free reference point 50 cm in front

of the artificial head [11]. A diffuse noise field was generated us-

ing four loudspeakers as defined in [12]. For the speech signals 60

samples were taken from the TSP database [13]. The background

noise simulation was carried out by using three noise types from

[12] (’Mensa’,’FullsizeCar’,’WorknoiseJackhammer’) in addition to

white noise and modulated white noise. The speech and noise sig-

nals were recorded separately and can be superposed to simulate dif-

ferent SNR conditions.

4.2. Evaluation

Estimation Accuracy: The accuracy of the investigated methods is

measured with the segmental logarithmic error (logErr) between the

estimated noise PSD Φ̂N (λ, μ) and a smoothed version of the true

noise signal yielding the reference noise PSD ΦN,ref (λ, μ), where

K and M are the number of frames and discrete frequency bins:

logErr =
1

KM

K∑
λ=1

M∑
μ=1

∣∣∣∣∣10 log10
(

Φ̂N (λ, μ)

ΦN,ref (λ, μ)

)∣∣∣∣∣ . (22)

The smoothing constant for the reference noise PSD was chosen to

0.9 (c.f., [14]). A low logarithmic error indicates an accurate noise

PSD estimation. The results of this measure are depicted in the left

plot of Fig. 4 averaged over all noise types. For the whole SNR

range the ICoh method shows the highest estimation error. This

is caused by the non-ideal coherence properties of the audio data.

In this case the single microphone SPP estimator yields to a better

accuracy. Except for the 20 dB SNR condition, the proposed method

gives the lowest logarithmic error and thus the most accurate noise

PSD estimate.

Speech Enhancement Performance: The whole system is also

evaluated in terms of the speech enhancement. The noise reduc-

tion performance is determined by means of the noise attenuation

minus speech attenuation (NA-SA) measure (e.g., [15]), where an

improvement results in higher values. In addition the Speech Intel-

ligibility Index (SII) [16] is applied as measure. The SII provides a

value between 0 and 1 where a SII higher than 0.75 indicates a good

communication system and values below 0.45 correspond to a poor

system. The results for both measures are shown in Fig. 4 in the

middle and right plot. The SII of the noisy input signal is shown by

the black dashed line. Both plots show the same ranking of the in-

vestigated methods as the logErr measure. It can be concluded, that

the proposed algorithm outperforms the two other methods in terms

of noise reduction and enhances the speech intelligibility. Informal

listing tests confirm these results, where the proposed system shows

less speech distortion and better reduction of low frequency noise

then the previous coherence based method [4]. In addition, the SPP

based method leaves some audible residual noise during changes in

the background noise.

5. RELATION TO PRIOR WORK

The SPP based component of the proposed system can be ranked in

the evolution of single microphone noise estimators such as [1], [2],

[17] or [3]. For the coherence based part of the system the algo-

rithms presented in [18] and [4] can be seen as special cases of the

proposed noise estimation scheme, where both methods assume con-

stant coherence properties of the speech and noise signals. In [19]

and [20] coherence based techniques were presented which are de-

signed small microphone distances as in hearing aids to suppress in-

terfering coherent noise sources. A procedure to estimate the coher-

ence properties in order to classify the background noise was shown

in [8] and was advanced in [21]. In our system both the noise and

speech coherence are estimated by a new update rule.

6. CONCLUSIONS

In this contribution a new noise PSD estimator is presented for mo-

bile phones in hands-free position. The proposed system is a very ef-

fective combination of a single and dual microphone method. For the

higher frequency range the coherence properties of speech and noise

are exploited, while for the lower frequency range the SPP based

noise estimate is directly used. Besides, a technique was introduced

to estimate the coherence of the background noise and the desired

speech signal. An evaluation with real audio recordings shows that

the proposed method outperforms the single microphone SPP esti-

mator and a previously proposed dual microphone method.



IEEE ICASSP, May 2013, Vancouver, Canada, DOI: 10.1109/ICASSP.2013.6639076 5 / 5

7. REFERENCES

[1] R. Martin, “Noise power spectral density estimation based

on optimal smoothing and minimum statistics,” IEEE Trans.

Speech Audio Process., vol. 9, no. 5, pp. 504–512, 2001.

[2] R.C. Hendriks, R. Heusdens, and J. Jensen, “MMSE based

noise PSD tracking with low complexity,” in Proc. of

IEEE Intern. Conf. on Acoustics, Speech, and Signal Process.

(ICASSP), Dallas, Texas, USA, 2010.

[3] T. Gerkmann and R. Hendriks, “Noise power estimation based

on the probability of speech presence,” in Proc. of IEEE Work-

shop on Applications of Signal Processing to Audio and Acous-

tics (WASPAA), New Paltz, NY, USA, 2011.

[4] M. Jeub, C.M. Nelke, H. Krüger, C. Beaugeant, and P. Vary,
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