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ABSTRACT

This contribution presents an efficient technique for the enhance-

ment of speech signals disturbed by wind noise. In almost all noise

reduction systems an estimate of the current noise power spectral

density (PSD) is required. As common methods for background

noise estimation fail due to the non-stationary characteristics of wind

noise signals, special algorithms are required. The proposed estima-

tion technique consists of three steps: a feature extraction followed

by a wind noise detection and the calculation of the current wind

noise PSD. For all steps we exploit the different spectral energy dis-

tributions of speech and wind noise. In this context, the so-called

signal centroids are introduced. Investigations with measured audio

data show that our method can cope with the non-stationary charac-

teristics and enables a sufficient reduction of wind noise. In contrast

to other wind noise reduction schemes the proposed algorithm has

low complexity and low memory consumption.

Index Terms— Wind noise reduction, speech enhancement,

wind detection, noise PSD estimation, single microphone

1. INTRODUCTION

Mobile communication devices are quite often used in extreme

acoustical environments. An annoying factor is the occurrence of

noise which is picked up by the microphone during a conversation.

Wind noise represents a special class of interference because it is

generated by turbulences in an air stream around the edges of the

device leading to a fast changing, non-stationary noise signal. In the

case of a speech signal superposed by wind noise the quality and

intelligibility can be greatly degraded. Most mobile devices do not

offer space for a wind screen, therefore it is necessary to develop

systems which can reduce the effects of wind noise by means of

signal processing. The crucial part of all of these systems is the

accurate estimation of the noise PSD. In the past decades many

single microphone methods where proposed to estimate the noise

PSD from noisy speech signals (e.g. [1], [2], [3]). All these algo-

rithms rely on the assumption that the noise signal is slower varying

over time than the speech signal. This is however not true for wind

noise signals. The conventional algorithms provide no or only lit-

tle noise reduction due to inaccurate noise PSD estimates. Some

prior works exhibit methods which were especially designed for

wind noise reduction. Efficient algorithms were proposed exploiting

the coherence of dual microphone recording ([4], [5]). However,

many mobile applications are equipped with a single microphone.

Approaches dealing with the reduction of wind noise in single mi-

crophone signals can be found in [6], [7], [8], [9], [10]. While [6],

[7] and [10] directly modify the noisy input signal, the methods of

[8] and [9] provide an estimate of the wind noise PSD.

The approach proposed in this contribution estimates the wind

noise PSD by exploiting the spectral characteristics of speech and

noise. The 1/f -decay of the magnitude spectrum towards higher

frequencies of the wind noise and the harmonic structure of voiced

speech signals are used for differentiation. In Sec. 2 the proposed

system is presented. Then the general signal statistics and the pro-

posed noise PSD estimation technique are introduced in Sec. 3 and

4. An evaluation and conclusions are given in Sec. 5 and 6.

2. WIND NOISE REDUCTION SYSTEM

It is assumed that the noisy signal x(k) is the superposition of the

clean speech signal s(k) and the wind noise signal n(k). The wind

noise reduction system is realized as a short-time frequency domain

overlap-add structure as depicted in Fig. 1. The noisy input sig-

nal x(k) is first segmented into frames of 20 ms with 50% overlap

on which a Hann window is applied. The frames are transformed

into the frequency domain via a fast Fourier transform (FFT) yield-

ing X(λ, μ) where λ and μ are the discrete frame index and fre-

quency bin. The enhanced signal Ŝ(λ, μ) is obtained by multiplying

X(λ, μ) with spectral gains G(λ, μ). The enhanced time domain

signal s(k) is obtained by using the IFFT and overlap-add. The novel

concept presented in this paper is the estimation of the wind noise

PSD Φ̂n(λ, μ) which can be separated into the three highlighted

blocks.
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Fig. 1. Wind Noise Reduction System
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3. SIGNAL STATISTICS

As initially mentioned wind noise is mainly generated by a turbulent

air flow around obstacles. The effects caused by the direct inter-

action of the wind with the microphone has only a small influence

on the acoustic signal [11] but the turbulences in the wind flow in-

duce transient acoustic signals. The duration of one wind gust varies

from 100 ms up to several seconds. In order to detect wind noise seg-

ments a feature is required which is only dependent on the short-term

statistics. A particular characteristic of wind noise is the spectral en-

ergy distribution. The spectrum has a constant level for low frequen-

cies (< 10 Hz) and a 1/f -behavior for higher frequencies [11]. The

spectrum of speech signals differ greatly from this low pass char-

acteristic. Segments of a speech signal can roughly be divided in

two classes: voiced and unvoiced. While voiced segments have a

harmonic structure unvoiced segments are noise-like. The spectral

energy distributions of wind, voiced and unvoiced speech are shown

in Fig. 2. The curves show the averaged spectra of speech segments

from [12] and wind noise signals. More details on the wind noise

recordings are given in Sec. 5.1. The wind noise is depicted by the

red line and exhibits clearly visible the low pass characteristic. The

main energy of voiced speech (black line) is located between 100

and 1000 Hz whereas unvoiced speech (gray line) is distributed in

the frequency range above 3000 Hz. From the depicted energy distri-
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Fig. 2. Spectral Energy Distribution of Speech and Wind

butions it can be seen that wind noise mainly overlaps the frequency

range of voiced speech segments. Consequently, the proposed noise

estimation and reduction is only realized in this frequency range be-

low unvoiced speech (0-3000 Hz).

4. WIND NOISE ESTIMATION

As described in Sec. 2, the wind noise PSD estimation is divided into

three parts which will be explained more detailed in the following.

4.1. Feature Extraction

For the detection and estimation of wind noise so-called spectral sub-

band centroids (SSCs) are introduced as a feature. The SSCs deter-

mine the spectral “center-of-gravity” of a signal in a certain subband

and were formerly used to support automatic speech recognition sys-

tems [13], [14]. For the PSD Φx(λ, μ) of a signal frame the SSC of

the m-th subband is defined by

SSCm(λ) =
fs
L

∑μm−1

μ=μ
m−1

μ · Φx(λ, μ)∑μm−1

μ=μ
m−1

Φx(λ, μ)
. (1)

Here, the PSD is estimated by the squared magnitude of the noisy

input X(λ, μ). The subbands are limited by the frequency bins μm,

fs is the sampling frequency (16 kHz) and L = the FFT size (512).

Because the SSCs refer to a position in the spectrum they will be

treated as a frequency in the following. For our algorithm we only

consider a single SSC representing the frequency range from 0 to

3000 Hz (μ0 = 1 ... μ1 = 96) which will be denoted as SSC1. The

observations made in Sec. 3 lead to the fact that SSC1 is mainly af-

fected by voiced speech segments and wind noise segments, whereas

unvoiced speech segments have only marginal influence on the first

centroid. For an ideal 1/f -decay of a wind noise signal, the SSC1

value is constant and independent of the absolute signal energy due

to the normalization. In Fig. 3, the histograms of SSC1 values from

20 ms segments of wind noise and voiced speech segments taken

from [12] are shown. Here, about 25 minutes of speech samples and

6 minutes of wind noise were used for this measurement. The low

pass characteristic of wind noise results in a narrowband distribution

of the SSCs clearly below 100 Hz while the SSCs of voiced speech

segments are distributed mostly between 300 Hz and 500 Hz.
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4.2. Wind Noise Detection

In the proposed algorithm it is necessary to reliably detect signal seg-

ments containing wind noise. This detection is based on the SSC1

calculated in every signal frame. Based on the assumption that the

speech and noise signals are uncorrelated, the PSD of the noisy sig-

nal is given by the sum of the speech PSD Φs(λ, μ) and the noise

PSD Φn(λ, μ). With the definition of the a posteriori SNR

γ(λ, μ) =
Φx(λ, μ)

Φn(λ, μ)
(2)

Eq. 1 can be rewritten as

SSC1(λ) = SSC1,S(λ)·

(
1−

1

γ(λ)

)
+ SSC1,N(λ)·

(
1

γ(λ)

)
(3)

with SSC1,S(λ) and SSC1,N(λ) representing the centroid frequen-

cies of clean speech and pure wind and γ(λ) is the a posteriori SNR

averaged over the frequency bins used for the SSC1 computation in

one frame. From Eq. 3 it can be seen that SSC1 can be used as an

indicator for clean voiced speech, pure wind noise, or a soft decision

on a mixture of the two previous cases. While applying a thresh-

old to SSC1 can identify segments containing clean voiced speech

or pure wind (e.g. 150 Hz in Fig. 3) a soft decision which determines

the degree of disturbance can be based on SSC1. Fig. 4 depicts the

influence of the superposition of voiced speech and wind noise on

SSC1, where the same signal samples were used as for the exper-

iment shown in Fig. 3. Here the SSC1 of frames of voiced speech
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Fig. 4. SSC1 of voiced speech disturbed by wind noise

segments disturbed by wind noise are computed and sorted accord-

ing to the current signal-to-noise ratio (SNR) in this frame. The

black solid curve in Fig. 4 shows the mean SSC1 values as a func-

tion of the different SNR values. The theoretical relationship derived

in Eq. 3 is given by the red dashed line. Here the dependency on the

averaged a priori SNR ξ = Φs/Φn is given for reasons of clarity. It

can clearly be seen that the measured centroid frequencies from the

signal frames follow the theoretical curve. Based on this relation be-

tween the centroid frequency and the SNR three labeled ranges (A,

B and C) are defined. In ranges A and C, pure wind and clean voiced

speech are predominant, respectively. In range B both voiced speech

and wind are active and the SSC1 gives information on the degree

of distortion. We denote the frequencies corresponding to the limits

between A-B and B-C by f1 and f2. For SSC1 values below f1 pure

wind and SSC1 values above f2 clean voiced speech is assumed.

The energy of unvoiced speech segments is rather located at higher

frequencies and show a spectrally flat characteristic in the frequency

range of the SSC1 (see Fig. 2). This leads just to marginal effects on

the SSC1 which can only be seen in periods without wind noise in

terms of higher SSC1 values (> 1000 Hz). Therefore the influence

of unvoiced speech on the wind noise detection can be neglected.

4.3. Noise PSD Estimation

In general, the estimation of the PSD Φ̂2

n(λ, μ) of a time varying sig-

nal is often realized via recursive smoothing of the noise component

N(λ, μ) in consecutive signal frames as

Φ̂n(λ, μ) = α(λ) · Φ̂n(λ− 1, μ) + (1− α(λ)) · |N(λ, μ)|2, (4)

where the smoothing factor α(λ) can take values between 0 and 1

and can be chosen fixed or adaptive. |N(λ, μ)|2 is called a noise pe-

riodogram and is not directly accessible since the input signal con-

tains both speech and wind noise. Hence, for the proposed system

the noise periodograms are estimated based on the classification de-

fined in Sec. 4.2. Within the range A, where only wind noise occurs

the input signal can directly be used for the calculation of the noise

periodogram. Within range C, where we assume clean speech the

noise periodogram is set to zero. For the estimation within the third

range B, where both voiced speech and wind noise are active, a more

sophisticated approach is used which exploits the spectral character-

istics of wind noise and voiced speech. Due to the 1/f -decay of the

spectral power of wind signal, the noise periodograms are approxi-

mated with a simple exponential fit as

|N̂exp(λ, μ)|
2 =

β

μν
. (5)

The parameters β and ν are introduced to adjust the power and the

decay of the periodogram. For the computation of β and ν, two

supporting points are required corresponding to the spectrum of the

wind noise. Our technique exploits the harmonic structure of voiced

speech where the spectrum exhibits local maxima at the pitch fre-

quency and multiples of this frequency. The pitch frequency is de-

pendent on the articulation and varies for different speakers. Be-

tween the multiples of the pitch frequency the spectrum reveals local

minima where no or only very low speech energy is located and thus

the spectrum of the wind noise is exposed. The approximation in

Eq. 5 is now fit to these local minima which can be assigned to the

wind noise spectrum. Typical values for the decay parameter ν are

between 0.5 and 2. In Fig. 5 the dashed gray line depicts the noisy

speech spectrum, the red line the wind noise spectrum and the green

dashed line the approximation from Eq. 5 using the points marked

by the black circles for the computation of β and ν.

Frequency [Hz]

M
ag

n
it

u
d

e
[d

B
]

0 500 1000 1500 2000
-80

-70

-60

-50

-40

-30

-20
Noisy Voiced Speech

Approx. Periodogram

Wind Noise

Fig. 5. Approximation of wind noise periodogram

Overestimation of the wind noise is avoided by limiting the

estimate |N̂exp(λ, μ)|
2 to the current noisy input frame. Finally,

the calculation of the wind noise periodogram based on the current

SSCw(λ) value can be summarized as:

|N̂(λ, μ)|2 =

⎧⎪⎨
⎪⎩
|X̂(λ, μ)|2 , if SSC1(λ) < f1

|N̂exp(λ, μ)|
2 , if f1 < SSC1(λ) < f2

0 , if SSC1(λ) > f2

(6)

The performance of the noise estimation is heavily dependent on the

smoothing factor α(λ) in Eq. 4. On the one hand, a small smoothing

factor allows fast tracking of the wind noise. This has the drawback

that speech segments which are wrongly detected as wind noise have

a great influence on the estimated noise PSD. On the other hand, a

large smoothing factor reduces the effect of wrong detection during

speech activity. However, this leads to slow adaptation of the noise

estimate. Thus, an adaptive computation of α(λ) is favorable where

low values are chosen during wind activity in speech pauses and high

values during speech activity. Since the SSC1 value is an indicator

for the current SNR condition (see Fig. 4) the following linear map-

ping for the smoothing factor is used:

α(λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

αmin , if SSC0(λ) < f1
1

f2−f1
[αmax(SSC0(λ)− f1)

+αmin(f2 − SSC0(λ))]
, if f1 < SSC0(λ) < f2

αmax , if SSC0(λ) > f2
(7)

This relationship between the smoothing factor α(λ) and the

SSC0(λ) value leads to a fast tracking and consequently accu-

rate noise estimate in speech pauses (SSC0(λ) ≈ f1) and reduces
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Fig. 6. Evaluation results: left: noise reduction performance (NA-SA: noise attenuation minus speech attenuation); middle: intelligibility
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put of the proposed system (bottom)

the risk of wrongly estimating speech as wind noise during speech

activity (SSC0(λ) ≈ f2). The frequencies f1 and f2 are the values

of SSC1 for pure wind and pure speech, respectively.

5. EXPERIMENTS AND RESULTS

5.1. Experimental Setup

For this evaluation, wind noise was recorded with a mock-up mobile

phone mounted in hand-held position on an artificial head (HEAD

acoustics HMS II.3 & HHP III) on a windy day with wind speeds up

to 15 m/s. In order to have a reference for the evaluation the noisy

speech was generated by a superposition of clean speech from [12]

with the wind noise recordings at different SNR values. The thresh-

olds f1 and f2 for the classification were set to 200 and 600 Hz,

respectively. The limits were chosen somewhat higher than shown

in Fig. 4 and ensure less misclassification of speech as wind noise

and thus leads to lower speech distortion. The range of the adap-

tive smoothing factor was set to αmin = 0.1 and αmax = 0.9. The re-

quired PSD of the input signal Φx(λ, μ) was calculated by recursive

smoothing as defined in Eq. 4 with a fixed smoothing factor of 0.5.

For the computation of β and ν the first two local minima greater

than 50 Hz are used. This makes the proposed system robust to-

wards inaccuracy of the measurement hardware such as a highpass

characteristic of the used microphone. Besides, the decay parameter

ν is limited by the aforementioned range between 0.5 and 2.

5.2. Evaluation Results

The performance of the proposed approach is compared with a state-

of-the-art single microphone algorithm based on the speech presence

probability [3] (SPP) which was designed for general noise PSD es-

timation. In addition two methods explicitly designed for the esti-

mation of the wind noise PSD were considered in this comparison:

The authors of [8] propose to estimate the wind noise spectrum by

using templates stored in a codebook (CB). In [9] morphological op-

erations known from image processing are exploited and leads to

estimate the wind noise PSD (MORPH). Therefore the spectrogram

of a noisy signal is considered as an image in the time-frequency

plane where connected regions are determined as signal parts de-

graded by wind noise. In all investigated algorithms the noise reduc-

tion was realized by applying spectral subtraction gain calculation

[15]. The noise reduction performance is determined by means of

the noise attenuation minus speech attenuation (NA-SA) measure

(e.g. [16]), where higher values indicate an improvement and the re-

sults are shown in the left plot in Fig. 6. Besides, the speech intel-

ligibility index (SII) [17] was calculated for the noisy as well as the

enhanced signal. A SII higher than 0.75 indicates a good commu-

nication system and values below 0.45 correspond to a poor system.

The results are shown in the middle plot of Fig. 6 where the dashed

line corresponds to the SII of the noisy unprocessed input signal.

Both measures indicate that the methods designed for wind noise re-

duction outperform the SPP noise estimator. This is caused by the

non-stationary characteristics of wind noise which is not assumed for

general background noise signals. The algorithms designed for wind

noise reduction all provide similar results where the morphological

approach shows the highest improvement especially for low SNR

conditions (< 5 dB). Informal listening tests confirm this results,

though the morphological approach tends to provide a more aggres-

sive noise reduction and induce some speech distortions. The right

plot in Fig. 6 exemplifies the performance of the proposed method

in the shown spectrograms of a noisy signal (SNR = -5 dB) and the

enhanced output signal. It can clearly be seen that the wind noise is

reduced by a great amount in speech pauses as well as during speech

activity. For reasons of clarity, only the 0-4 kHz range is depicted.

5.3. Complexity

As initially mentioned one advantage of the proposed system is the

low computational complexity. The morphological operations in

[9] are used to find connected regions in the time-frequency plane.

Based on their shapes, these regions are then further classified as

voiced speech or wind noise Both the morphological operations and

the classification has a high computational effort. In the method from

[8] the codebook search is rather complex and the algorithm requires

memory for the storage of the codebook entries. In contrast, the op-

erations of our approach are less complex and have only little mem-

ory consumption. In a MATLAB implementation the computation

time of our method is about 5 times lower than for the approaches of

[8] and [9].

6. CONCLUSIONS

In this contribution a system was proposed which exploits the short-

term spectral energy distributions to detect and reduce wind noise in

noisy speech signal. Based on the signal centroids a procedure to

estimate the wind noise PSD in a single microphone signal is pre-

sented. An evaluation with wind noise recordings shows that the

proposed method outperforms the state-of-the-art SPP approach [3]

for background noise estimation and leads to similar results as other

approaches especially designed for wind noise reduction with a sig-

nificantly lower computational complexity.
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