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ABSTRACT

In this contribution, we study the characteristics of sound generated

by wind and a signal model for the synthesis of wind noise signals

is derived. An analysis of the statistics of wind noise recorded in a

laboratory setup is carried out with respect to the spectral and tempo-

ral properties of the signals. In particular, an autoregresive model is

developed for the spectral shape description and the temporal statis-

tics are modeled by a Markov chain. These two components are

combined in a model which synthesizes reproducible artificial wind

noise signals. Furthermore, a database of measured wind noise sig-

nals is provided. The aim of this model and the measured audio data

is to provide wind signals for the evaluation of speech enhancement

and noise reduction systems.

Index Terms— Wind noise analysis, wind noise simulation,

communication quality assessment, wind noise database

1. INTRODUCTION

For the development and evaluation of noise reduction algorithms

it is always necessary having defined scenarios to rate the achieved

performance. For the simulation of a certain acoustic scenario, a

variety of databases and methods exist. Reverberation effects can

be simulated, e.g., by the method proposed in [1] or by the im-

pulse responses presented in [2]. Different background noise types

are provided by several noise databases (e.g., [3], [4]). However,

none of these databases includes measurements of wind noise. Wind

noise signals clearly differ from other noise types in terms of spectral

and temporal characteristics. Because of the non-stationary behavior

several methods were especially developed for the reduction of wind

noise (see, e.g., [5], [6], [7] and references therein). To evaluate and

compare these class of algorithms audio samples of wind noise are

required.

This paper starts with a description of the measurement setup in

Sec. 2. A signal analysis with respect to the disturbance to speech

signals is given in Sec. 3. From the temporal and spectral charac-

teristics highlighted in Sec. 4, a model for the signal generation of

wind noise is derived in Sec. 5. In Sec. 6 the provided audio data and

model implemented in MATLAB are described1.

2. MEASUREMENT SETUP

The aim of this contribution is to analyze and provide audio signals

generated by a wind stream. Studies as [8], [9] and [10] measured

the influence on microphones which are not attached to a certain

device. In contrast to that, we investigate wind noise in a scenario

1Matlab code for the model and the wind noise database can be found at
http://www.ind.rwth-aachen.de/˜bib/nelke14a

simulating a mobile phone call. Therefore, a mock-up phone of the

size 12 cm x 6 cm x 3 cm is used which is equipped with two om-

nidirectional Beyerdynamics MM1 microphones. There are two ar-

rangements resulting in microphone distances of 2 cm and 10 cm.

For the examinations in Sec. 3.1 speech samples were played by an

artificial head (HEAD acoustics HMS II.3). For the speech record-

ings both the hand-held position (HHP) and the hands-free position

(HFP) according to [11] were considered. The air stream for the

wind was generated by a compressed air supply. The advantage of

this wind stream is, that there are only marginal background sounds,

which often occurs while generating an air stream (e.g., with a fan).

The measurements were carried out in an acoustic booth with a low

reverberation time (< 100 ms). A comparison with recordings from

outdoor situations showed only marginal differences to the measure-

ments in the audio booth. The drawbacks of outdoor recordings are

that it is obviously not possible to create reproducible situations in

terms of the wind characteristics and there are always background

noise not directly generated by the wind. Therefore, in the following

measured wind noise using the aforementioned setup was used.

3. EVALUATION OF MEASUREMENTS

Typically, acoustical noise is produced by sound sources in back-

ground of the desired sound source. In contrast to that wind noise

is directly generated by turbulences in a boundary layer close to the

microphones. This leads to a more severe situation because the cap-

tured noise might be inaudible to the near-end speaker. The setup

described in Sec. 2 was used to measure wind noise and speech sig-

nals in a realistic scenario. In Sec. 3.1 objective measures are used

to give an insight in the degradations to a speech signal disturbed

by wind noise. Besides, measurements with two microphones were

carried out and Sec. 3.2 shortly explains the spatial correlation prop-

erties of these measurements.

3.1. Influence on Speech Quality

Measurements using an artificial head to simulate the near-end

speaker were carried out considering both the HHP and the HFP.

The speech levels were chosen to 89.3 dB at the mouth reference

point and to 65.3 dB at the HHP and the HFP, respectively, as de-

fined in [11]. Speech samples of female and male speakers from

[12] were randomly taken. The degree of degradation was measured

in terms of the speech quality by the PESQ value [13], [14], [15] and

the intelligibility given by the STOI [16]. The PESQ value ranges

from 1 (poor quality) to 5 (no degradation) and the intelligibility

coefficient estimated by STOI ranges from 0 to 1, where 1 indicates

a perfect intelligibility. Besides the global SNR was calculated

over the whole signal length. For the two positions three scenarios

were investigated: a constant low wind stream (≈ 5 m/s), a constant

2014 14th International Workshop on Acoustic Signal Enhancement (IWAENC)

328



high wind stream (≈ 10 m/s) and a varying wind stream with wind

speeds up to 10 m/s. The latter condition reflects a realistic scenario

in which gusts of the wind leads to fast changes of the wind speed.

The evaluation of all scenarios is given in Tab. 1. Clearly negative

SNR [dB] PESQ STOI

low wind HHP 6.08 1.38 0.93

(≈ 5 m/s) HFP -9.19 1.04 0.79

high wind HHP -5.41 1.09 0.87

(≈ 10 m/s) HFP -20.68 1.02 0.7

wind gusts HHP -2.95 1.09 0.78

(up to 10 m/s) HFP -18.22 1.06 0.52

Table 1. Measures from noisy speech

SNR values can be seen in all cases, except the low wind case in

HHP. This extreme annoying noise impairs the speech quality as

seen by the low PESQ values but has not such a high influence on

the speech intelligibility given by the STOI estimates.

3.2. Coherence Analysis

For measurement setups with two microphones, many algorithms for

speech enhancement exploit the correlation between the two micro-

phone signals ([17], [18], [19]). As frequency dependent correlation

measure the magnitude squared coherence (MSC) can be used

MSC(f) =

∣∣∣∣∣
Φxy(f)√

Φxx(f)Φyy(f)

∣∣∣∣∣

2

(1)

where Φxy and Φxx, Φyy are the cross- and auto PSDs of the micro-

phone signals x and y. Different coherence models exist for several

acoustic environments. E.g., for a single sound source with corre-

lated microphone signals the coherence takes the value 1 and a dif-

fuse noise field leads to a coherence given by a sinc function which

is dependent on the distance between the microphones. In contrast to

that the coherence of wind noise signals is close to 0 over the whole

frequency range. This results from the fact that wind stream gener-

ates sound by turbulences close to the microphone which shows no

or only low spatial correlation [20]. In Fig. 1 the MSC of two differ-

ent microphone arrangements is presented. In the frequency range

which is relevant for the wind noise (0-4000 Hz) the MSC for both

microphone distances takes low values close to zero (≤0.01). This

coherence property can be used for the detection and reduction in

multi microphone recordings (see [21] and references therein).
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Fig. 1. Coherence of wind noise

4. SIGNAL ANALYSIS

In [22], it was shown that the noise field of a wind stream can be

created by an arrangement of elementary emitters with monopole,

dipole and quadrupole characters. The resulting noise is character-

ized by a low-frequency fast changing signal.
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Fig. 2. Spectrogram of speech and wind (top) and corresponding

frame energy (bottom)

4.1. Time Analysis

Examples of wind noise in the measured signals are shown in Fig. 2

in the second and third part of the spectrogram in the upper plot. It

can clearly be seen, that wind noise results in a low-frequency signal

with quickly changing temporal characteristics. The non-stationary

characteristic is evident in the lower part of Fig. 2. This plot shows

the progress of the short-term energy for wind noise over time. For

a comparison a speech sample is also included. The frame size was

chosen to 20 ms with 10 ms overlap as it is commonly used in real-

time audio processing applications. The energy curve shows fast

changing properties which are at least as high as the speech signal

shown in the first two seconds. This nature makes it hardly possible

to enhance speech with state-of-the-art approaches for noise reduc-

tion (e.g., [23] [24]) because they assume that noise signals varies

slower than the speech signal. To quantify the non-stationary char-

acteristic the variance of the short-term energy

σST(λ) =
1

L

(L−1)/2∑

κ=λ−(L−1)/2

(Ex(κ)− Ex)
2

(2)

over L = 5 consecutive frames is measured. The frame index is

given by λ, while κ is the position within the considered range of L
frames which are represented by their energy Ex(κ) and Ex giving

the mean energy of the L frames. Fast changes of the signal within

a short period result in a high variance of the short-term energy. The

averaged values of σST(λ) over 30 seconds audio samples resulting

in σST and are given in Tab. 2. For a comparison three typical noise

types from [4] and 30 seconds of speech from [12] are also consid-

ered. The above mentioned temporal characteristics of wind noise

can be read from the values of σST . Even the time varying Jack-

hammer noise shows a considerably lower variance compared to the

wind signal. Only the speech signal shows a higher variance which

is caused by the high energy differences between speech activity and

speech pause segments.
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Car Pub Jackh. Wind Speech

σST [dB] 4.47 6.4 7.58 13.67 18.28

Table 2. Averaged variance of short-term energy

4.2. Frequency Analysis

The spectral shape can be approximated by an 1/f -shape with the

frequency f . This behavior can be exploited for the estimation of

the wind noise power spectral density (PSD) [5]. Further investiga-

tions were carried out by a linear prediction (LPC) analysis. Here,

the measured wind noise signal is reproduced by an auto-regressive

(AR) model resulting in an IIR filter described by the LPC coeffi-

cients. It turned out, that the LPC analysis provides a compact and

accurate representation of the spectral shape of wind noise. In [25] a

LPC analysis was applied to detect wind noise and speech segments

in noisy signal. A sequential (sample-wise) approach is used for the

determination of the LPC coefficients leading to the normalized least

mean square (NLMS) computation rule (see, e.g., [26]). Consider-

ing the prediction error, it turned out that a prediction order of 5 is

sufficient for modeling the spectral shape of wind noise signals. The

aim of this investigation was to find out whether the LPC coefficients

vary over time or with different energy levels of the wind noise. In

Fig. 3 the progress of LPC coefficients estimation is depicted. A 10

second sample of measured wind noise was considered as shown in

the spectrogram in the upper part. The middle part displays the short

term energy and the lower plot reveals the temporal progress of the 5

LPC coefficients (a1, ..., a5). The 5th coefficient a5 is close to zero

over the whole segment, which proves that the chosen LPC order is

high enough. Although the spectrogram might indicate a changing
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Fig. 3. Variation of LPC coefficients

spectral characteristic and thus variations of the LPC coefficients the

progress of the estimated coefficients reveals a rather constant be-

havior. Hence, in the following the LPC coefficients describing the

wind noise are assumed to be fix.

5. WIND NOISE MODEL

Based on the investigations from the previous section, a model is

proposed which generates an artificial wind noise signal with pre-

defined features. It should be mentioned that the derived model does

not underlie the physics of wind noise generation. Primarily, the

aim is to provide signals with similar statistics and spectral charac-

teristics as recorded wind noise. A block diagram of this model is

depicted in Fig. 4 where the containing blocks and parameters are

described in Sec. 5.1 and 5.2.

Code
book

Noise
generator g(k)

A(z) n(k)
x(k)

α(k)

1− α(k)

Fig. 4. Model for wind noise generation

5.1. Modeling the temporal characteristics

Regarding a wind stream in outdoor situations, the wind speed does

not change abruptly. During a wind gust the wind speed is rising

continuously to a high level and is then falling again. In contrast

to that, the measured signal shows distinct changes. This is exem-

plified in Fig. 2, where the wind signal abruptly rises to a higher

level at t=3.2 s. Thus, the temporal progress of measured wind noise

signals can roughly be divided into two classes. In the first case

the measured noise results from flow sound not directly next to the

microphone (low wind). When wind gusts arise the sound level sud-

denly rises due to turbulences close to the microphone position (high

wind). The two classes can be seen as two discrete states of a Markov

model reflecting different wind speed conditions. Similar models

were derived for the long time behavior of the wind speed ([27],

[28]). Adding a third state when there is no air stream, the 3-state

model depicted in Fig. 5 describes the temporal characteristic and is

used in the following.

No wind Low wind

High wind

p00
p11

p01

p10

p21p02

p12

p22

p20

Fig. 5. 3-state Markov model

The transition probabilities pij from state i to state j determine the
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duration and occurrence rate of the corresponding wind condition.

For the provided model the transition probabilities p02 and p20 were

set to 0, because real measurements always show a transition phase

of lower wind before reaching high wind segments from periods of

still air and vice versa. The remaining transition probabilities can

be trained by wind noise measurements. This is done by first la-

beling ranges of no, low and high wind speed in a given signal and

compute the corresponding probabilities afterwards. The temporal

characteristic in the proposed model is controlled by the gain g(k)
in Fig. 4. Here, the gain is given by a Gaussian distribution where

the energy, i.e. the mean and variance, was set to values gained from

wind measurements. These gains are recursively smoothed over time

according to

g(k) = αg · g(k − 1) + (1− αg) · Xg(μi, σi) (3)

with Xg as normal distributed variable with mean μi and variance σi

of the state i of the Markov model.

5.2. Modelling the spectral characteristics

As mentioned in Sec. 4.1 an AR model is used for the generation

of the synthesized wind signal. The LPC coefficients determine the

LPC synthesis filter A(z) in Fig. 4 and the gain g(k) controls the en-

ergy of the synthesized signal over time. In this way a1...a5 define

the spectral shape of the produced signal n(k). It turned out that for

the two aforementioned classes different input sequences x(k) for

the model must be considered. While for the low wind case a white

noise signal is preferable (Fig. 4: Noise generator), the acoustics of

the high wind case are better reproduced by taking short signal seg-

ments as input (Fig. 4: Code book). The code book was derived

from the LPC analysis carried out in Sec. 4.1 by taking segment of

5-10 ms. In the following a code book size of 140 segments is con-

sidered from which excitation signal segments are randomly taken.

The parameter α(k) determines the power ratio between the two ex-

citation signals and must be adapted according to the current state

(low wind / high wind). For the simulation of the fast changes in the

wind signal α is toggled between 0 (low wind) and 0.5 (high wind).

5.3. Results

For the rectification of the model the averaged spectra of 10 sec-

onds taken from measured and simulated wind noise are compared

in Fig. 6. Both signals show a similar spectral shape of the low

frequency noise. An example of a synthesized wind noise signal is
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which is close to the value of the measured wind signals (13.67 dB)

which confirms a similar temporal behavior. Informal listening tests

showed that the generated noise sounds very similar to measured

wind noise.

6. PROVIDED DATA

Along with this contribution, a database of measured wind noise sig-

nals an MATLAB code for the wind noise model are provided. The

database contains single microphone and multi microphone mea-

surements. For both arrangements the setup was used as described

in Sec. 2. The measurements includes conditions of constant wind

stream and a more realistic scenario where the wind stream was

varied during measurements. The latter signals contain the typical

fluctuations resulting from wind gusts. Regarding the multi micro-

phone measurements two setups were considered with microphone

distances of 2 cm and 10 cm. Because especially for the multi mi-

crophone measurements at least one microphone contains only very

little amount of wind noise in the HHP, all measurements provided

are carried out in the HFP. Besides the MATLAB code for the wind

noise simulator can be downloaded. The parameter pij represent-

ing the transition probabilities of the Markov model are pre-defined

as trained from wind noise measurements. They can be changed to

adjust the behavior of the generated wind noise signal. Further ex-

planations for the execution are given in an included read-me file.

7. CONCLUSIONS

This contribution presents measured and artificially generated sig-

nals aiming for the quality assessment of noise reduction algorithms.

Because in all commonly used noise databases wind noise signals

are not included, it is necessary to provide those kind of signals for

the evaluation of the special class of wind noise reduction methods.

In a second step those signals were investigated with respect to their

spectral and temporal properties. Then a simple model was to de-

rived which generates artificial wind signals with similar character-

istics as measured signals. The transition probabilities of the under-

lying Markov model can be adjusted to generate signals with desired

properties in terms of the duration and occurrence rate of wind gusts.
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