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ABSTRACT

This paper presents a method to enhance a speech signal disturbed
by wind noise. The wind noise is generated by turbulences in an air
stream close to the microphone which picks up the desired speech
signal. As the majority of speech enhancement algorithms works in
the frequency domain, the short term power spectrum (STPS) of the
unwanted noise must be estimated to reduce the wind noise. Con-
ventional algorithms for background noise estimation fail in the case
of wind noise due to its non-stationary characteristics. Hence, it is
necessary to use special methods for the estimation and reduction of
wind noise. The proposed system exploits the spectral characteristics
of speech and noise to estimate the wind noise STPS. The spectral
power distribution of wind noise and the pitch frequency of speech
are used to generate a binary mask for the noise STPS estimation.
This method is dependent on a precise pitch estimation. To reduce
estimation errors a robust pitch estimation method using knowledge
from prior estimates is presented. An evaluation and comparison
with other wind noise reduction techniques shows improved speech
enhancement of the proposed method.

Index Terms— wind noise reduction, single microphone, pitch
adaptive filtering, binary masks, speech enhancement

1. INTRODUCTION

Wind noise can severely degrade the speech quality and intelligibil-
ity as shown, e.g., in [1]. Since it is desired to use communication
devices nearly everywhere, also outdoors, this might extremely dis-
turb a conversation. As the design of mobile devices, such as mobile
phones or hearing aids, is getting smaller and more space saving, the
application of wind shields to prevent the noise generation acousti-
cally is not feasible. This makes it necessary to remove wind noise
in the recorded speech signal by means of signal processing. Most
noise reduction systems work with a spectral weighting in the short-
term DFT domain. For these systems the estimation of the noise is
the most crucial part. In conventional systems, stationary or quasi-
stationary noise signals are assumed and they aim to estimate the
power spectral density (PSD) of the noise which is an averaged or
smoothed version of the noise power in each frame. These algo-
rithms are based on the assumption that stationary noise and speech
can be separated by their temporal statistics (e.g. [2],[3],[4]). Thus
they fail for the estimation of wind noise because of its fast changing
signal level. The proposed method exploits the harmonic structure
in terms of the pitch frequency as side information for the estima-
tion of the wind noise power. Furthermore the characteristic spec-
tral shape of wind noise is taken into account. In Sec. 2 the general
structure of the speech enhancement system is presented. The pro-

posed algorithm for the estimation of the wind noise STPS is ex-
plained in Sec. 3, where a modification for the enhanced pitch esti-
mation (Sec. 3.4) and the concept of inverse binary masks (Sec. 3.1)
are given. The performance of the proposed method is compared
with other wind noise estimation methods using real recordings in
Sec. 4.

1.1. Relation to prior works

For the estimation of the PSD of background noise a variety of al-
gorithms exists. State-of-the-art conventional estimation methods
using a single microphone are [2],[3],[4]. These algorithms all as-
sume a rather stationary or at least slowly changing noise signal. Ap-
proaches especially designed for wind noise are given in [5],[6] and
[7]. In [5] morphological operations are carried out to find connected
areas in the time-frequency plane of the noisy signal to estimate the
wind noise. The method proposed in [6] estimates the wind noise
STPS with the combination of stored wind noise templates and in-
formation from the noisy signal. Our previously presented method
([7]) computes so-called signal centroids which reflects the spectral
center-of-gravity to detect wind noise. An algorithm which also ex-
ploits the harmonic structure of speech to estimate non-stationary
noise signals can be found in [8]. Methods for the reduction of wind
noise using two or more microphones can be found in [9], [10] or
[11]. These methods all take into account the correlation between
the microphone signals.

2. SYSTEM OVERVIEW

The considered noise reduction system is depicted in Fig. 1. The
noisy input signal x(k) which is assumed to be a superposition of
the clean speech s(k) and wind noise n(k) is first segmented and
windowed using a square-root Hann window. Using the FFT, the
short-term frequency representation X(λ, μ) with the frame index λ
and the frequency bin μ is given. A spectral gain G(λ, μ) is applied
to reduce the unwanted noise. As explained in Sec. 1, usually the
PSD of the noise signal is estimated. In the case of wind noise any
smoothing or averaging of the noise power is disadvantageous be-
cause of the fast changing noise signal. Therefore an estimate of the

wind noise short term power spectrum (STPS) Φ̂N (λ, μ) is used for

the computation of the gains G(λ, μ). The estimation of Φ̂N (λ, μ)
from the noisy speech signal is the most crucial part of this system.
Further details on the noise estimation and the determination of the
required pitch frequency f0 are given in Sec. 3.4 and Sec. 3.2. Fi-
nally, the enhanced signal is transformed back into the time domain
and reconstructed via overlap-add using again a square-root Hann
window yielding ŝ(k).
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Fig. 1. Speech enhancement system

3. WIND NOISE ESTIMATION

Wind noise greatly differs from other typical noise signals (car, bab-
ble, traffic) in terms of its temporal and spectral characteristics. The
acoustic signal of wind noise is generated by turbulences in an air
stream close to the microphone and results in a non-stationary low-
frequency noise signal [12]. For the computation of the spectral

gains G(λ, μ) an estimate of the current noise STPS Φ̂n(λ, μ) in
each frame is required. Many conventional algorithms exploit that
the noise signal statistics are changing slower than the desired speech
signal. However, this is often not fulfilled for wind noise. As shown
in [1], wind noise shows similar temporal statistics as speech signals.
Therefore, wind noise reduction methods aim to exploit the spectral
characteristics which greatly differ from speech signals. Due to the
low frequency behaviour of wind noise, the main spectral overlap
and thus the main degradation is given during voiced speech seg-
ments. In contrast to that, unvoiced speech has the main energy
at higher frequencies (> 2000Hz) where wind noise has only a
marginal influence. Thus the main task is to enhance voiced speech
whereas for unvoiced speech a noise suppression with a simple high
pass filter is sufficient as shown in [5]. It is also auxiliary that high-
pass filtered wind noise and unvoiced speech have a similar sound.
In this contribution we use the harmonic structure of voiced seg-
ments for the estimation of the noise STPS. In Sec. 3.1 the concept
of inverse binary masks (IBM) is explained. In Sec. 3.2 and 3.3 the
noise STPS estimation is shown and the necessary pitch estimation
is presented in 3.4.

3.1. Inverse Binary Masks

Binary masks are usually used to separate speech and noise by ap-
plying a spectral gain

GBM(λ, μ) =

{
1, if |S(λ, μ)|2 > LC(μ),

0, otherwise
(1)

to the noisy spectrum X(λ, μ). The resulting output signal only con-
tains parts where the speech power |S(λ, μ)|2 is higher than a cer-
tain local criterion LC(μ). This criterion is usually a certain thresh-
old which might depend on the local SNR. Applying an ideal binary
mask can improve the intelligibility or the performance of an auto-
matic speech recognition system (e.g., [13] and references therein).

Normally, binary masks completely cancel out parts of the unde-
sired noise signal. This leads to a sufficient but also aggressive noise
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Fig. 2. Pitch adaptive inverse binary mask

suppression which may introduce unwanted artefacts to the output
signal. Furthermore, due to the binary gain of the mask based pro-
cessing follows, that the noise is not reduced in time-frequency units
where both speech and noise are active. This residual noise also
results in annoying effects in the output signal.

The task of binary masks in this paper is different to this com-
mon application. As aforementioned, the main objective is to en-
hance voiced speech segments. Therefore, we introduce the pitch
adaptive inverse binary mask (P-IBM) as shown in Fig. 2. The aim
is to cancel out the voiced speech segments in the time-frequency
plane by applying the P-IBM to the noisy signal. This means that
the binary mask is defined as follows

GP-IBM(λ, μ) =

{
0, if μ ∈ M

1, otherwise.
(2)

with

M = {∪κ∈N[κ · μ0 − μΔ, . . . , κ · μ0, . . . κ · μ0 + μΔ]} (3)

and μ0 depicts the discrete frequency bin corresponding to the
pitch frequency f0. μΔ determines a frequency range around the
pitch bin to ensure the cancellation of the speech signal by the P-
IBM. An estimated speech-free spectrum is then given by

X̃(λ, μ) = GP-IBM(λ, μ) ·X(λ, μ) (4)

in which the speech components are set to zero and is used in the
following for the wind noise STPS estimation.

3.2. Noise Estimation

For the required noise STPS of the wind signal, the speech-free spec-
trum X̃(λ, μ) as computed in Eq. 4 is considered. In the frequency
bins which are not set to zero, the noisy speech signal reveals di-
rectly the wind noise spectrum between the multiples of its pitch
frequency. Now the remaining parts κ · μ0 − μΔ . . . κ · μ0 + μΔ

of X̃(λ, μ) which were set to zero by the binary mask are linearly
interpolated according to

|N̂(λ, μ)|2 =

{
|X̃inter(λ, μ)|2 , if μ ∈ M

|X̃(λ, μ)|2 , otherwise
(5)

with linear interpolation X̃inter(λ, μ) between the adjacent spectral

bins X̃(λ, κ·μ0−μΔ−1) and X̃(λ, κ·μ0+μΔ+1). Investigations
with other interpolation types showed no improvements, therefore
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the linear interpolation is used in the following. The P-IBM can
only be applied in frames with voiced speech activity where the pitch
structure defines the binary mask. In unvoiced segments or segments
with no speech activity the wind noise can be directly estimated from
the lower frequency range of the input signal. A detection of wind
and voiced speech segments can be realized by the so-called signal
centroids (SC) measured in Hz

SC(λ) =
fs
N

∑L
μ=1 μ · |X(λ, μ)|2∑L

μ=1 |X(λ, μ)|2 , (6)

where L depicts the frequency range for the computation, fs the
sampling frequency and N the FFT size. The frequency range for
the SC computation was set to 0. . . 2000 Hz, in which voiced speech
is assumed to be active. The SCs are the centres-of-gravity in the
spectrum and thus they depict the spectral power distribution. In [7]
it was shown that the SCs of voiced speech are between 300-800 Hz
and for wind noise clearly below 50 Hz and the SCs were exploited
to estimate the SNR in the current frame. The SC of voiced speech is
dependent on the pitch and the spectral envelope which determines
the spectral power distribution. Here we apply a threshold thSC =
85 Hz to determine segments of pure wind (SC(λ) < thSC). In these

frames the noise estimate is set to the input signal |N̂(λ, μ)|2 =
|X(λ, μ)|2. This also removes the wind noise in unvoiced segments
where no speech power is given in the lower frequency range. The
reliability check proposed in Sec. 3.3 ensures that the higher frequen-
cies are protected. The rather low value of the threshold thSC guar-
antees a low misdetection rate of voiced speech segments in order
to protect the desired speech signal. Many approaches for noise
estimation apply recursive smoothing of the STPS to compute the
required noise PSD estimate (e.g., [4]). Due to the non-stationary
characteristics of wind noise a subsequent smoothing would lower
the adaptation speed of the estimator. Therefore, the STPS estimate

is directly set to Φ̂N (λ, μ) = |N̂(λ, μ)|2.

3.3. Reliability Check

As shown in many publications the wind noise signal is character-
ized by a low frequency energy distribution (e.g., [12] or references
therein). In order to prevent an overestimation of the wind noise
for higher frequencies a reliability check is performed. In [7] it
was shown that the spectrum of wind noise can be approximated by
an 1/f slope over the frequencies f . Therefore, the noise STPS
estimate is limited at higher frequencies (μ > μrel) by an 1/f2

slope starting from the averaged power σ2
N,low(λ) in the lower band

(μ < μrel) of the noise estimate from Eq. 5

Φ̂N (λ, μ) = min
{
Φ̂N (λ, μ), σ2

N,low(λ)/μ
2
}

for μ > μrel. (7)

In addition to this upper limit of the noise estimate, the STPS

Φ̂N (λ, μ) is set to zero in frames where the SC indicates no wind
activity (SC(λ) > 800Hz).

3.4. Improved Harmonic Product Pitch Estimation

For the determination of GP-IBM(λ, μ) the current pitch frequency is
required. Therefore the pitch frequency is estimated in each frame.
In [14] an evaluation of several pitch estimation algorithms in terms
of their robustness to wind noise was carried out. It turned out that
methods working in the cepstral or frequency domain achieve the

best results. For the proposed system the Harmonic Product Spec-
trum (HPS) was chosen as pitch estimator ([15]):

μ̃0(λ) = argmax
μ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

MH∏
l=1

|X(λ, l · μ)|
MH∏
l=1

|X(λ, l · μ+ [μ/2])|

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (8)

where [l] denotes the closest natural number to l and MH is the
number of considered harmonics. In [16] Eq. 8 was used to compute
the pitch frequency of band-limited speech, where the frequencies
below 300 Hz are completely missing. It turned out that in the case
of wind noise, where mainly the lower frequencies are corrupted, the
HPS also gives quite good results for the pitch estimation.

However, in frames where strong wind noise is active the pitch
estimation might fail. Because the noise STPS estimation from
Sec. 3.2 is sensitive to pitch estimation errors, a post-processing
as presented in the following lowers the number of estimation er-
rors. The pitch of human speech is speaker dependent and shows a
strong temporal correlation of adjacent frames (see, e.g., [17]). It is
favourable to use this characteristic for a post-processing of the indi-
vidual pitch estimates. A simple approach would be a smoothing of
the estimates to lower the variance. The special temporal behaviour
of wind noise noise leads to a specific kind of errors. During a
sudden rise of the wind signal power, the pitch estimation mainly
fails in single or only a few consecutive frames. The post-processing
step proposed for our system is implemented as a buffer Bμ0(λ)
storing the last K pitch estimates

Bμ0(λ) = [μ̂0(λ− 1), μ̂0(λ− 2), . . . , μ̂0(λ−K)]. (9)

A low variance of the stored estimates in Bμ0(λ) is given for the
aforementioned strong temporal correlation of the pitch frequency
and thus indicates correct estimates. For the given system a reliable
pitch buffer is assumed if the standard deviation (STD) within the
buffer is smaller than 50% of mean pitch μ̄0 of the buffer which
leads to

STD {Bμ0(λ)}
μ̄0

< 0.5. (10)

In this case the final pitch estimate is given by comparing the esti-
mate from the current frame μ̃0(λ) with the stored values. Here, also
a deviation of 50% to the mean value is tolerated

μ̂0(λ) =

{
μ̃0(λ) , if μ̄0 · 0.5 < μ̃0(λ) < μ̄0/0.5

μ̂0(λ− 1) , otherwise,
(11)

otherwise the last reliable pitch estimate is taken. The buffer pro-
cessing could be tuned to be more aggressive by applying a lower
threshold than 50%, but it turned out that a great amount of pitch
errors can be corrected with this setting. The pitch buffer is updated
only in segments with speech activity and if the first condition of
Eq. 11 is fulfilled. This post-processing also reduces doubling errors
which commonly appear for all pitch estimation methods. Voiced
speech segments in the noisy input signal are given for higher val-
ues of the signal centroid (SC(λ) > thSC) as explained in Sec. 3.2.
In segments with no voiced speech and no reliable pitch estimate
(second case of Eq. 11) the buffer is emptied again to prevent an er-
roneous correction after speech pauses where changes of the pitch
frequency are common. In addition the post-processing is only ap-
plied if the buffer is at least 50% filled.

Due to the limited frequency resolution in the DFT domain the
pitch bin μ0 can only take integer values. Therefore, it is recom-
mended to check for every multiple of the pitch frequency κ · μ0
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Fig. 3. Results: left: segmental noise attenuation - speech attenuation (NA-SA); middle: Speech Intelligibility Index (SII);
right: noisy (SNR = -5 dB, top) and enhanced speech (bottom) by proposed system

in Eq. 3 if it corresponds to a local maximum by comparing it to its
adjacent bins and correct the pitch bin if necessary.

4. EVALUATION

4.1. Experimental Setup

Table 1. Simulation parameters

sampling frequency fs = 16 kHz
frame-length 40 ms

window
√

Hann
overlap 50%
FFT size N = 1024 (incl. zero-padding)

number of pitch harm. MH = 8
pitch search range 80 - 450 Hz
pitch buffer size K = 10 (=̂ 200 ms)

pitch width μΔ=̂ 30 Hz
centroid threshold thSC = 85 Hz
reliabilty check threshold μrel=̂ 500 Hz

The performance of the proposed system was evaluated with
wind noise recordings from [1]. These signals were recorded out-
doors and reflect realistic settings for, e.g., a phone-call scenario.
From both the the strong wind and the normal wind example 240
seconds were taken1 and mixed with random sentences from the
TSP database [18] w.r.t. to realistic SNR scenarios for wind noise.
The proposed system was compared to three other approaches es-
pecially designed for the estimation of wind noise: the codebook
based method (CB) from [6], the morphological approach (MORPH)
from [5] and the simpler centroid based wind estimation (CENTR)
we proposed in [7]. The parameters of the whole noise reduction
framework are given in Tab. 1. For the final reduction fast adapt-
ing spectral gains G(λ, μ) are required which precludes any kind of
smoothing of the gains. For wind noise reduction the spectral sub-
traction gain rule [19] showed the best performance and was used
for all simulations. The estimation of the pitch frequency requires
a larger frame-size than 40 ms for sufficient results (see, e.g., [20]).

1Link for downloading corresponding noise signals provided in [1]

Therefore frames of 90 ms are considered for the used HPS method
using the same frame shift as for the noise reduction (20 ms).

4.2. Results

All algorithms are evaluated in terms of their speech enhancement.
The noise reduction performance is determined by means of the seg-
mental noise attenuation (NA) minus segmental speech attenuation
(SA) measure (e.g., [21]), where an improvement results in higher
values (Fig. 3 left plot). In addition the Speech Intelligibility Index
(SII) [22] is applied as measure (Fig. 3 middle plot). The SII pro-
vides a value between 0 and 1 where a SII higher than 0.75 indicates
a good communication system and values below 0.45 correspond to
a poor system. The results of the simulations are shown in Fig. 3
where the gray dashed line depicts the SII of the noisy unprocessed
signal. It can be seen that over the whole considered SNR range
(-25. . . 15 dB) the proposed system shows the highest performance
for both measures. The utmost right plots of Fig. 3 exemplifies the
performance of the proposed method in the shown spectrograms of
a noisy signal (SNR = -5 dB) and the enhanced output signal of
the proposed system. Informal listening test confirmed the results
whereas all algorithms can produce some high-pass effects to the
speech, in particular in segments with high wind energy. Due to the
pitch adaptive processing, the presented method is capable to pre-
serve more of the desired speech signal. Investigations with conven-
tional noise reduction system including, e.g., [4] showed no or only
marginal improvements in terms of wind noise reduction.

5. CONCLUSIONS

In this contribution a single microphone method for the estimation
of wind noise STPS is presented. Because of the non-stationary tem-
poral behaviour of wind noise, the spectral characteristics of speech
and wind were exploited. Applying an inverse binary masked con-
trolled by the pitch frequency of the speech signal leads to a suf-
ficient noise STPS estimate. In this context a post-processing of
the pitch estimation is given which lowers the number of estima-
tion errors. Evaluation with real wind noise recordings shows that
the proposed system can efficiently remove the noise with a higher
performance than other wind noise reduction schemes.
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