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Abstract

With the technological progress, devices, such as mobile phones, tablet computers
or hearing aids, can be used in a large variety of every-day situations for mobile
communication. Acoustic background noise signals, which are picked up with
the desired speech signal, can impair the signal quality and the intelligibility of
a conversation. A special noise type is generated outdoors, if the microphone
is exposed to a wind stream resulting in strong-rumbling noise, which is highly
non-stationary. As a result, conventional approaches for noise reduction fail in the
case of noise induced by wind turbulences.

This thesis is focused on the development of signal processing concepts, which
reduce the undesired effects of wind noise. The key contributions are:

• Signal analysis of wind noise

• Digital signal model for wind noise generation

• Signal processing algorithms for detection and reduction of wind noise signals.

All these topics are considered with the focus on the development of algorithms for
single and dual microphone systems.

The analysis of recorded wind signals is the first step and gives valuable infor-
mation for the estimation and reduction of wind noise. Furthermore it leads to a
signal model for the generation of reproducible artificial wind noise signals.

For the enhancement of the disturbed speech, an estimate of the underlying wind
noise signal is required. In contrast to state-of-the-art noise estimation algorithms,
the spectral shape and energy distribution is exploited for the distinction between
speech and wind noise components leading to a novel estimation scheme of the
wind noise short-term power spectrum. Considering a system with two microphone
inputs, the complex coherence function of the two recorded signals is exploited
for wind noise estimation. In addition to commonly used noise reduction schemes
by spectral weighting, an innovative concept for speech enhancement is developed
by using techniques known from artificial bandwidth extension. Highly disturbed
speech parts are replaced by corresponding parts from an artificial speech signal.

Objective measures indicate a significant increase of both the signal-to-noise
ratio and the speech intelligibility. Besides, two application examples show that
the proposed methods are very efficient and robust in realistic scenarios.
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Chapter 1

Introduction

Today, a world without mobile communication is inconceivable: everyone is reach-
able almost everywhere. With a nearly complete network coverage of mobile
telephony services, it is possible to make phone calls in almost any environment.
This provides many advantages but also leads to technical challenges to guarantee
high speech quality for all use cases. 25 years ago, when mostly traditional fixed-line
networks were in use, phone calls usually took place inside rooms, where only low
acoustic disturbance could be expected. With the possibility of making a phone call
outdoors, many noise sources picked up by the microphone impair the signal quality.
These noise signals can severely degrade both the speech quality and intelligibility
at the far-end side.

Besides mobile telephony, the appearance of noise can be an even more significant
problem for hearing-impaired listeners using a hearing aid, which also amplifies
the noise signals. This is not only annoying but can also make a conversation
impossible, due to a reduced intelligibility.

The perceived noise can be caused by many acoustic scenarios, such as the sound
inside a car, or close to a highly frequented street, or the voices of surrounding
talkers in a crowd. A special noise type occurs in windy environments, when the air
stream generates a highly non-stationary disturbance in the recorded signal. While
for the reduction of stationary background noise signals many well established
methods can be found in the literature, the suppression of fast varying wind noise
signals is still an open issue. This thesis provides a first complete overview on the
analysis, generation and reduction of wind noise from a digital signal processing
perspective.

1.1 Relation to Prior Work
In the past decades, many approaches have been published dealing with the problem
of reducing the undesired noise components within a speech signal. Early concepts
for noise reduction can be found in [Wie57], [LO79], [Bol79] or [MM80]. They all
rely on a spectral subtraction or a Wiener filter solution. The required estimate of
the noise power spectral density (PSD) is given either by known statistics about
the noise signal or by averaging the signal power in segments of speech absence,
e.g., in speech pauses or at the beginning of the recorded signal. These techniques

1



Chapter 1 – Introduction

assume stationary noise signal characteristics and mostly rely on a voice activity
detector (VAD).

Since a VAD is erroneous in the presence of noise and the scenario of stationary
noise signals is not always given, the techniques of noise PSD estimation were
refined. The first algorithms apply a minima tracking in each frequency band
independently. The most prominent methods in this field are Minimum Statistics
by Martin [Mar01] and the minima controlled recursive averaging by Cohen [Coh03].
Further improvements in terms of estimating time-varying noise were developed by
Hendriks and Gerkmann [HHJ10], [GH11], and Heese [HV15].

All the aforementioned methods have been developed for the estimation and
reduction of background noise in general and show reasonable results in cases for
stationary or only slowly varying noise signals with a signal-to-noise ratio above
0 dB. Because these methods can not guarantee a sufficient noise estimation for all
scenarios, several algorithms can be found dealing with special noise types as:

• keyboard noise [SSA07], [GBS15],

• harmonic car engine noise [CCS+09] [ERHV10],

• multi-talker babble noise [ML13],

• car horn noise [CBK15].

With the increasing computational power of digital signal processors (DSP), more
and more of these specialized algorithms can be integrated into communication
devices.

Wind noise reduction belongs into this class of algorithms dealing with high
non-stationary noise signals. If a mobile communication device is used outdoors
in a windy environment, the air stream of the wind meets an obstacle, e.g., the
housing of a mobile phone, and turbulences are generated. The turbulent air flow
close to a microphone leads to annoying, low frequency, rumbling artifacts in the
recorded signal. In many applications the small dimensions and design constraints
of the devices do not allow the usage of a wind shield. Thus, it is necessary to
reduce the wind noise by means of digital signal processing. Due to its high level of
non-stationarity, conventional noise estimation methods fail at this point. Although
wind noise is a common problem outdoors, only a few contributions can be found,
the most important examples are [KMT+06], [Kat07], [HWB+12], [Elk07], and
[FB10]. Kuroiwa et al. proposed in [KMT+06] to store wind-templates and estimate
the rough spectral shape by a comparison of the stored samples with the observed
noisy signal. A simple high-pass filter approach based on a wind detection was
presented by Kates in [Kat07]. Hofmann et al. developed an algorithm, which
identifies wind presence by applying techniques from image processing on the
observed noisy spectrum for the detection of connected areas [HWB+12]. Dual
microphone concepts were derived by Elko in [Elk07] as well as Franz and Bitzer
in [FB10], where both algorithms exploit the low spatial correlation between wind
noise signals recorded at different microphone positions.

2



1.2 Structure of this Thesis

1.2 Structure of this Thesis

In Chapter 2 the general problem of noise reduction is depicted. The underlying
signal model is presented for the single and multi microphone case. The structure
of noise reduction realized in the discrete Fourier transform (DFT) domain is
explained, introducing the overlap-add framework for speech enhancement. The
procedure of background noise PSD estimation is exemplary demonstrated by
the speech presence probability (SPP) based method [GH11]. Furthermore, the
most common approaches of noise suppression are presented, which are variants of
spectral subtraction by means of a spectral weighting and the Wiener filter realized
in the frequency domain. These state-of-the-art techniques are the starting point
for the following research on wind noise suppression.

Chapter 3 deals with the analysis of wind noise signals, which is fundamental for
the subsequent estimation and reduction concepts. In a first step, the generation
of the acoustic signal is described, which becomes audible in the presence of wind
close to the microphone. Then the characteristics in a digital signal representation
are considered in the time- and frequency-domain. Based on the derived specific
features, several approaches for the detection of wind noise in a noisy speech signal
are discussed and compared. These detection methods are a key element of the
wind noise reduction systems in this work. Finally, a signal model for the generation
of wind noise is proposed including an auto-regressive (AR) process for the spectral
characteristics and a Markov-chain for the temporal characteristics. This model
plays an important role during the development and the reproducible evaluation of
wind noise reduction algorithms within this thesis.

The wind noise reduction task is addressed in Chapter 4, which is the main part
of this work. Novel solutions for the suppression of wind noise and the enhancement
of the desired speech signal are presented. For a single microphone system, two
state-of-the-art methods ([KMT+06], [HWB+12]) are considered as reference for
the wind noise estimation. Since these algorithms can not always guarantee a good
wind noise suppression, new concepts for wind noise estimation are developed. The
innovative approach of the two proposed techniques is that they exploit the different
spectral energy distribution of speech and wind noise.

The system of wind noise reduction is also extended to configurations with two
microphones. Here, a solution is developed, with a coherence based wind noise
estimator. Especially, the use of the phase of the complex coherence leads to good
noise reduction performance. All algorithms are evaluated in competitive studies
with real wind noise recordings using different spectral gain calculation realizations.

A further priority is the development of a new concept for speech enhancement,
which is in general independent of the microphone configuration. In contrast to
the conventional spectral weighting, the alternative approach reconstructs highly
disturbed parts of the speech with an artificial signal, applying the source-filter
model for speech production.

In Chapter 5 two application examples for speech enhancement in a mobile
phone are presented. In addition to the more theoretic algorithmic concepts, also

3



Chapter 1 – Introduction

typical problems that arises from practice have to be considered for a balanced
system design. The issue of combined wind noise and background noise reduction
for the application of a single microphone system is discussed and a solution for a
suppression of both disturbances is proposed. As the task of speech enhancement is
always accompanied with the aspect of background noise estimation, solutions are
developed for a dual microphone mobile phone. Here, the focus was to bypass the
limitation of coherence based estimators for diffuse background noise in realistic
environments.

Parts of the results of this thesis have been pre-published in the following
references: [JSK+10, JNK+11, HJN+11, JNBV11, NNJ+12, JHN+12, JNH+13,
NBV13, HNNV14, NCBV14, NV14a, NV14b, NCBV15, NV15, NNV15, NJV16].

These references are marked by an underlined label, i.e., [ ], throughout the
thesis.

4



Chapter 2

Noise Reduction Techniques

Many approaches for enhancing a speech signal, which is degraded by noise, can
be found in the literature of the last three decades. Different realizations were
proposed depending on the available number of microphones, the noise type, the
application, and the source signal. Further variations are possible regarding the
internal structure of the algorithm. Throughout this thesis, all considerations target
at a real-time processing of the recorded signals, e.g., hearing aid application or
in mobile phones as exemplified in Figure 2.1. With this constraint, only causal
modifications of the signals are possible, i.e., signal properties at the current point
in time and from the past can be taken into account but no information from future
segments is available. Besides, the signal is processed in short time segments, since
most of the considered signals are only stationary within this short duration (see,
e.g., [VM06]). This short-term stationarity is necessary, because the noisy input
signal is modified in a constant manner during one segment, e.g., by filtering with
a fixed but arbitrary set of coefficients.

Figure 2.1: Wind and background noise scenario for a mobile phone with two
microphones.

5



Chapter 2 – Noise Reduction Techniques

In this chapter, the structure of a noise reduction system is described. The aim
is to highlight the aspects, which are important for suppressing background noise
in a conventional structure. These are namely the analysis-synthesis framework
(Section 2.2), the estimation procedure of the noise power spectral density (PSD)
(Section 2.3.1) and the signal-to-noise-ratio (SNR) (Section 2.3.2), and the calcula-
tion of the spectral gain function (Section 2.3.3). The last section of this chapter
gives some insights in the performance of conventional background noise reduction
approaches in the case of wind noise.

2.1 Problem Statement
The general problem of recorded signals in the presence of noise is depicted in
Figure 2.1 for the scenario of a mobile phone equipped with two microphones
(marked in blue). The microphones of the device pick up not only the desired
speech signal s(k) (green) but also a superposition with different noise signals nj(k)
generated somewhere in the surrounding (red). The signal is digitized and fed to
a digital signal processor (DSP), where it is possible to apply modifications. The
recorded noisy signals of the two microphones are given by

x(k) = h1(k) ∗ s(k) +
∑

j

n1,j(k) (2.1)

y(k) = h2(k) ∗ s(k) +
∑

j

n2,j(k), (2.2)

where k is the discrete time index and the index j represents the noise sources.
The convolution operation ∗ models the impulse responses h1,2(k) from the speech
source to the microphones. Their influence is mainly the reverberation due to the
room acoustics, which can also impair the speech quality [JSK+10]. However, this
problem is not a focus of this work, corresponding approaches can be found, e.g., in
[Jeu12] or [NG10]. The general aim is to obtain a good estimate ŝ(k) of the clean
speech signal and to transmit an enhanced signal to the far-end speaker.

In this work different representations are used for the description of signals in
the frequency-domain. Considering an analog signal x(t) over the continuous time
t, the Fourier transform (FT) reads

X(f) =
∞∫

−∞

x(t)e−j2πftdt. (2.3)

For a digital signal x(k) either the Fourier transform of discrete signals (FTDS)
with the continuous normalized radiant frequency Ω = 2πf/fs

X(Ω) =
∞∑

k=−∞
x(k)e−jΩk (2.4)

6



2.2 Speech Processing System

or the discrete Fourier transform (DFT) over an finite number of M signal samples

X(λ, µ) =
M−1∑

κ=0

xλ(κ)e−j
2πµκ
M , with µ = 0, . . . ,M − 1. (2.5)

with the discrete frequency bin µ and the sample position κ in the frame λ. The
relevant representation is apparent from the context of the used signals in this
work.

2.2 Speech Processing System
All approaches considered in this work can be described by the structure shown in
Figure 2.2. Single or multi microphone inputs (usingK microphones) are considered,
which cover many applications. The latest generation of mobile phones are equipped
with two or more microphones and hearing aids exploit the advantage of using
more than one microphone, too. As initially mentioned, short-term processing is
applied by segmenting the input signals into frames, which may overlap. Typical
values for speech processing are a frame size of 10-30ms and an overlap of half
the frame-size (see, e.g., [Loi13]). If not otherwise stated a frame size of 20ms is
applied in this work.
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Figure 2.2: Structure of speech processing systems for noise reduction.

After the segmentation, the frames of length LF samples are multiplied with
a window function, in order to counteract the spectral leakage effect [VM06]. Fre-
quently used window functions are, e.g., the Hann window, the Hamming window
or the Blackmann window [OSB+89]. Because the window function is applied twice
(in the analysis as well as in the synthesis stage), a square-root Hann window of
length LF is used in this work as

w(k) =
√

1
2

(
1− cos

( 2πk
LF − 1

))
, (2.6)

with

k = 0 . . . LF − 1, (2.7)
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Chapter 2 – Noise Reduction Techniques

which multiplies after analysis and synthesis to a conventional Hann window.
Applying the window twice in the analysis and synthesis, lowers also the negative
effects of changing spectral modifications by interpolation of the overlapping parts
of successive frames [MHA11]. These changing modifications are necessary for the
noise reduction task for non-stationary signals. Besides, the prerequisite is fulfilled
that with an overlap of half of the frame-size the windows of successive frames add
up to one. This behavior is depicted in Figure 2.3 by the dashed line, where the
frame index is denoted by λ.

After windowing, the frames are transformed into the frequency-domain by a
discrete Fourier transform (DFT)1 of sizeM . The corresponding short-term Fourier
spectrum of a signal x(k) in frame λ is given by

X(λ, µ) = DFTM{xλ(κ)} = DFTM{w(κ) · x(λ · LF/2 + κ)}, (2.8)
with κ = 0, . . . , LF − 1 and µ = 0, . . . ,M − 1,

where µ is the discrete frequency bin and κ is the sample position within one signal
frame. The subscript M indicates the length of the DFT, where zero-padding of
M − LF samples is applied if M > LF.

The noise reduction is applied in the frequency-domain and can roughly be
separated into the two stages of detection and enhancement. The detection may
comprise the identification of noise and speech in the input signal and also the
measurement of the degree of degradation, e.g., given by the spectral SNR. Based on
the results of the detection stage the enhancement is applied. Different realizations
will be considered for these stages and will be discussed in Chapter 4. After these
modifications, the signal frames must be reconstructed resulting in a time-domain
signal ŝ(k). This is realized by first applying an inverse fast Fourier transform
(IFFT) and again a windowing. In a last step, the time-domain frames are added

0 100 200 300 400 5000

0.5

1

· · · · · ·
LF

λ λ+ 1
LF/2

k/samples

M
ag

ni
tu

de

Hann windows
Sum of windows

Figure 2.3: Sequence of Hann window functions with LF = 320 samples and
an overlap of LF/2 for two frames λ and λ+ 1.

1The fast Fourier transform (FFT) is used throughout this work as an efficient implemen-
tation of the DFT.
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2.3 Conventional Noise Reduction

with the same overlap as in the analysis stage. The IFFT, the second windowing
procedure, and the overlap-add step are widely known as the synthesis stage of the
described structure.

Both the analysis and the synthesis stage are not subject of this work and are
mostly used in the implementation described above. Different implementations can
be found for the analysis-synthesis framework, e.g., by a filter-bank structure (see
[Löl11] and references therein). The focus of this work are the two highlighted mod-
ification blocks in Figure 2.2, i.e., the detection of wind noise and the enhancement
of the degraded speech signal.

2.3 Conventional Noise Reduction
Most state-of-the-art noise reduction systems for background noise reduction are
realized in a framework as described in the previous section. A scalable solution
for one or two microphone input signals is shown in Figure 2.4. A common way
to suppress noise is given by first estimating2 the short-term PSD of the noise
Φ̂nn(λ, µ) and subsequently applying a spectral weighting. Usually, the weighting
gains are computed based on the noise PSD estimate and optionally an estimate
of the current SNR(λ, µ) given by the a priori SNR ξ̂(λ, µ) or the a posteriori

x(k)

y(k)

A
na

ly
sis

A
na

ly
sis

Sy
n t

he
sis

Noise
Estimation

SNR
Estimation

Gain
Calculation

ŝ(k)×
X(λ, µ) Ŝ(λ, µ)

Y (λ, µ)

ξ̂(λ, µ),γ̂(λ, µ)

G(λ, µ)

Φ̂nn(λ, µ)

Figure 2.4: Scalable noise reduction system working in the short-term Fourier-
domain (dashed lines correspond to the optional second micro-
phone signal).

2In this thesis, the ̂ symbol depicts the estimate of a signal or parameter.
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Chapter 2 – Noise Reduction Techniques

SNR γ̂(λ, µ). Multiplying the noisy input spectrum X(λ, µ) with the spectral gain
G(λ, µ) results into an estimate Ŝ(λ, µ) of the clean speech spectrum. The synthesis
stage produces the corresponding time-domain representation ŝ(k) as output of the
noise reduction system. If a second microphone signal y(k) is available, the SNR
and noise estimation as well as the spectral gain calculation can exploit information
from this signal. For both microphone signals, it is assumed that the desired speech
signal S(λ, µ) and the noise signals N1,2(λ, µ) superpose to the input signals, as
defined in Equations 2.1 and 2.2. Then the following short-term frequency-domain
model is used

X(λ, µ) = S1(λ, µ) +N1(λ, µ), (2.9)
Y (λ, µ) = S2(λ, µ) +N2(λ, µ), (2.10)

where the spectra S1(λ, µ) and S2(λ, µ) are the short-term frequency-domain
representations of the filtered speech components

s1(k) = h1(k) ∗ s(k), (2.11)
s2(k) = h2(k) ∗ s(k). (2.12)

2.3.1 Noise PSD Estimation
Several algorithms were proposed in the past for the estimation of the noise PSD
in speech signals. Usually, they are based on the assumption that the desired
speech signal and the unwanted noise signal can be separated by their temporal
statistics. A simple way to estimate the noise PSD is given by a voice activity
detector (VAD). The noise PSD can be updated in speech pauses using a first-order
recursive smoothing with 0 < α < 1,

Φ̂nn(λ, µ) = α · Φ̂nn(λ− 1, µ) + (1− α) · |X(λ, µ)|2 (2.13)

assuming that the input X(λ, µ) only contains noise, and kept constant during
speech activity (α = 1) [VM06]. In the last years more sophisticated approaches were
proposed. Most prominent examples are Minimum Statistics by Martin [Mar01],
the MMSE Noise PSD Tracker by Hendriks e.a. [HHJ10] and the approach based
on the speech presence probability (SPP) proposed by Gerkmann and Hendriks
[GH11]. Investigating the capability of estimating the PSD of time-varying noise
signals, the SPP based method showed the highest accuracy (see results in [GH11]).
Because wind noise is characterized by a high level of non-stationarity, this method
will used in the following as state-of-the-art method for conventional background
noise estimation.

SPP Based Noise Estimation

The aforementioned VAD yields a hard decision for a given signal segment, if
speech is present or not. In contrast to that, the speech presence probability (SPP)
measure is a time and frequency dependent value between zero and one for the
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2.3 Conventional Noise Reduction

speech activity. For a Gaussian distribution of the real and imaginary parts of
speech and noise spectral coefficients, a mathematical expression can be derived for
the SPP. Using Bayes’ theorem, the probability p of speech presence H1 [CB01],
given a noisy spectrum observation X(λ, µ) and a noise PSD estimate Φ̂nn(λ, µ)
can be expressed as3

p(H1|X(λ, µ)) =
(

1 + (1 + ξopt) exp
(
−|X(λ, µ)|2

Φ̂nn(λ, µ)
ξopt

ξopt + 1

))−1

. (2.14)

Furthermore, it was assumed in Equation 2.14 that the absence of speech H0 and
the presence of speech H1 are equally probable, i.e.,

p(H0) = p(H1) = 0.5. (2.15)

A post-processing of p(H1|X(λ, µ)) is applied to avoid a stagnation at high values
close to one in terms of a recursive smoothing and an upper limit of the smoothed
SPP. In [GH11] it was proposed that the SPP measure can be used as a soft VAD
to control the update of the noise periodogram estimate as follows

|N̂(λ, µ)|2 = p(H0|X(λ, µ)) · |X(λ, µ)|2 + p(H1|X(λ, µ)) · Φ̂nn(λ, µ) (2.16)

with the probability of speech absence

p(H0|X(λ, µ)) = 1− p(H1|X(λ, µ)). (2.17)

It must be noted, that the noise PSD estimate from the previous frame Φ̂nn(λ−1, µ)
is used in Equation 2.14 to compute the SPP value. Finally, recursive smoothing
of the periodogram results in the short-term estimate of the noise PSD

Φ̂nn(λ, µ) = 0.8 · Φ̂nn(λ− 1, µ) + 0.2 · |N̂(λ, µ)|2. (2.18)

Simulations carried out in [GH11] showed that this approach for noise PSD es-
timation is capable of tracking noise signals even in the case of at least slowly
time-varying noise.

2.3.2 Signal-to-Noise-Ratio Estimation
Many algorithms for the gain calculation require an estimate of the signal-to-noise-
ratio. Namely these are the a priori SNR ξ and the a posteriori SNR γ and their
estimates are defined by [MM80]

ξ̂(λ, µ) = Φ̂s(λ, µ)
Φ̂n(λ, µ)

= Ê{|S(λ, µ)|2}
Ê{|N(λ, µ)|2}

(2.19)

3According to [GH11], the fixed optimal a priori SNR ξopt should be chosen to
10 log10(ξopt) = 15 dB, if the true a priori SNR lies between −∞ and 20 dB.
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Chapter 2 – Noise Reduction Techniques

and

γ̂(λ, µ) = |X(λ, µ)|2

Φ̂n(λ, µ)
= |X(λ, µ)|2

Ê{|N(λ, µ)|2}
, (2.20)

where Ê{ } represents the short-term average of its argument. For a given estimate
of the noise PSD estimate Φ̂nn, the a posteriori SNR is easily measurable and the
a priori SNR can be expressed as

ξ̂(λ, µ) = Φ̂s(λ, µ)
Φ̂nn(λ, µ)

= |X(λ, µ)|2

Φ̂nn(λ, µ)
− 1 = γ̂(λ, µ)− 1. (2.21)

Again it is assumed that speech and noise are uncorrelated leading to the cross
PSD estimates

Φ̂sn(λ, µ) = Φ̂ns(λ, µ) = 0. (2.22)

2.3.3 Spectral Gain Calculation
For the suppression of the unwanted noise in the input signal, the noisy spectrum
X(λ, µ) is multiplied with the spectral gain G(λ, µ) (see Figure 2.4). The resulting
estimate of the clean speech DFT coefficients are given by

Ŝ(λ, µ) = G(λ, µ) ·X(λ, µ) = G(λ, µ) ·R(λ, µ)e jη(λ, µ), (2.23)

where R(λ,µ) and η(λ,µ) are the magnitude and phase of the noisy signal X(λ, µ).
Usually, the spectral gain G(λ, µ) is real-valued in the range between zero and one.
Consequently, only the magnitudes of the noisy DFT coefficients are modified. The
influence of the phase can be neglected in most of the cases because the human
auditory system is rather insensitive w.r.t. phase distortions [WL82].

A widely used rule for the calculation of the spectral gains is represented by
the Wiener filter GW(λ, µ) [LO79], which minimizes the mean square error

Ê{|S(λ, µ)− Ŝ(λ, µ)|2} = Ê{|S(λ, µ)−GW(λ, µ)(S(λ, µ)+N(λ, µ))|2} (2.24)

between the clean speech and its estimate independently for each frequency bin µ.
By partial derivation to the real and imaginary part of GW(λ, µ) it can be shown
that

Im{GW(λ, µ)} = 0 (2.25)

and

Re{GW(λ, µ)} = Ê{|S(λ, µ)|2}
Ê{|S(λ, µ)|2}+ Ê{|N(λ, µ)|2}

= Φ̂s(λ, µ)
Φ̂s(λ, µ) + Φ̂n(λ, µ)

(2.26)

or expressed by the a priori SNR ξ̂(λ, µ) estimate as

GW(λ, µ) = ξ̂(λ, µ)
ξ̂(λ, µ) + 1

. (2.27)
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2.4 Conventional Noise Reduction Applied to Wind Noise Signals

A further approach which is often used is represented by Boll’s idea of spectral
subtraction [Bol79], which tries to reconstruct the speech spectrum by subtracting
an estimate of the noise magnitude from the noisy speech spectrum as

|Ŝ(λ, µ)| = |X(λ, µ)| − Ê{|N(λ, µ)|}. (2.28)

This leads to the gain computation rule

G(λ, µ) = 1− Ê{|N(λ, µ)|}
|X(λ, µ)| . (2.29)

A generalized version of the initial function by Boll was proposed by Hansen in
[Han91] incorporating the two parameters αS and βS, and using the noise estimate
N̂(λ, µ)

GS(λ, µ) =

√√√√
[

1−
(
|N̂(λ, µ)|2
|X(λ, µ)|2

)βS
]αS

. (2.30)

Different parameter settings provoke different realizations of the spectral subtraction
gain. E.g., αS = 2 and βS = 0.5 yields the magnitude subtraction proposed by Boll,
power subtraction is given for αS = βS = 1, and αS = 2 and βS = 1 leads to the
Wiener filter (c.f., Equation 2.26).

2.4 Conventional Noise Reduction Applied to Wind
Noise Signals

In this section, an experiment is carried out by applying a conventional background
noise reduction technique to a speech signal disturbed by wind noise. Here, the SPP
based method [GH11] estimates the noise PSD, and the spectral gain is computed
using the general spectral subtraction method as defined in Equation 2.30 with
αS = 0.5 and βS = 2.

Figure 2.5 shows different signals of the noise reduction task. In Figure 2.5a the
spectrogram of the desired clean speech signal is represented, which is not known
in a real scenario. The noisy input and output signals of the system are depicted
by the spectrograms in Figures 2.5b and 2.5c, respectively. The low-frequency wind
gusts are still clearly visible in the output spectrogram, e.g., at t = 10 s. A more
precise insight on the performance of the noise reduction is given by the segmental
SNR (segSNR) and is presented in Figure 2.5d. This widely used measure for
the speech quality computes the SNR in each frame [QB88], where a high value
indicates a good signal quality. Usually, the averaged value for a signal is computed
in order to rate the performance of the noise reduction system under test by a
single score.4

4Further information on the evaluation of noise reduction systems using instrumental
measures is given in Appendix A.1.
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Figure 2.5: Wind noise reduction using SPP based noise estimation [GH11]
and spectral subtraction [Han91].
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2.4 Conventional Noise Reduction Applied to Wind Noise Signals

Here, the time-dependent values are presented by the red curve (input signal)
and the black curve (output signal) in each frame. It can be seen, that over the
whole signal length no or only a marginal improvement is visible. This holds for
segments containing speech and noise (e.g., t = 4 . . . 5 s) as well as segments with
pure wind noise (e.g., around t = 11 s).

This experiment illustrates that conventional noise reduction systems fail in
the case of wind noise. The poor results motivate the development of algorithms
especially designed for the estimation and reduction of wind noise.
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Chapter 3

Signal Analysis

All investigations in this work are aimed towards the enhancement of speech signals
disturbed by wind noise. The first step towards this goal is an analysis of the
disturbance. Therefore, it is necessary to investigate the recorded signals and derive
characteristic properties to distinguish between speech and wind noise.

In general, noise reduction concerns the problem of suppressing sound sources,
which are not the desired speech signal. Here, often the term background noise is
used, which implies, that the source of the desired speech signal is closer to the used
microphones than the unwanted noise sources as depicted in Figure 2.1. In contrast
to that, wind noise is locally generated by an air stream around the device, which
picks up the sound. In some publications wind noise is named “sensor artifacts”
(e.g., in [SF12]), because it can not be related to a real sound source. In order to
distinguish between wind noise and noise signals generated by sound sources in the
ambience the term background noise will be used in the following for the latter.

Many publications are dealing with aero-acoustics, which describes the sound
generation by air flows. Most of these investigations are carried out in the field
of aerospace and automotive engineering (e.g. [Geo89], [Cro07], [MM09]). These
studies consider artificially generated wind during the flight with an airplane or
the car while driving. In contrast to that, this thesis takes into account the wind
stream, which arises naturally in an outdoor environment caused by meteorologic
phenomena. The main difference between these two scenarios is the range of the
expected wind speed. While in the case of a driving car or an airplane wind speeds
between 10 up to 300m/s are considered, typically the wind speed takes values
between between 0 and 20m/s in an outdoor scenario.

Since this work deals with the processing of a digitized signal, only a short
introduction in the generation of wind noise is given in Section 3.1. The used
measurement setup is presented in Section 3.2. For the detection and reduction of
the recorded noise it is more important to investigate the statistics of the recorded
signals. This is carried out in Section 3.3 and emphasizes the difference between
wind noise signals and background noise signals. The impact of wind noise on the
speech quality in a communication system is evaluated in Section 3.4. Different
approaches for a wind detection in short signal segments are presented in Section 3.5.
Based on the signal statistics a model is derived in Section 3.6, for the simulation
of the influence of wind noise in a recorded signal the generation of a reproducible
artificial wind noise signal.
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Chapter 3 – Signal Analysis

3.1 Wind Noise Generation
As aforementioned, wind noise in an outdoor environment is considered, where the
flow velocity usually exhibits frequent changes. The variations of the velocity often
described as wind gusts are provoked by large structures or natural objects such
as buildings, cars, or trees in the vicinity. These obstacles in the air flow generate
turbulences on a large scale, which are noticed as gusts. Due to the chaotic behavior
of these turbulences, an exact information on the wind speed as well as the wind
direction is not available.

A closer investigation is necessary to understand the acoustics, which are
responsible for the generated sound. Figure 3.1 illustrates the scenario of the
example of a mobile phone. Even if the wind direction and speed of the wind
are known, the mobile phone or the head of the talker influence the air stream
locally by a great amount. This effect can be transferred to any device equipped
with microphones without a wind shield such as hearing aids, headsets or laptops.
Consequently, the wind direction and speed close to the microphone can not be
predicted and are assumed to be random variables.

Many publications are dealing with the sound generated aerodynamically. They
all have in common, that turbulences in the air stream are responsible for the
sound. Lighthill presented a general theory for the generation of the sound,
where he explained the mechanics of the conversion from kinetic energy in an air
stream to acoustic energy ([Lig52], [Lig54]). Furthermore, Lighthill mentioned, that
“frequencies in the flow are identical with those of the sound produced”, which leads
to a high correlation between the wind speed and the measurable acoustic signal.
The air flow around a solid surface is depicted in Figure 3.2 for two different wind
speeds.

Because of friction losses the velocity of the flow is decreasing from the free-
field velocity u∞ towards the surface of the object. For a low free-field velocity
a laminar flow profile is generated, which is shown in Figure 3.2a. The stream

Figure 3.1: Wind stream around head and mobile phone.
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layer

(a) Laminar flow

free-field velocity u∞

vorticesturbulent
boundary layer

(b) Turbulent flow

Figure 3.2: Airflow around a solid object with increasing free-field velocity
from 3.2a to 3.2b.

consists of parallel layers with different velocities and the range of the flow stream,
where the velocity is less than 99% of the free-field velocity is defined as boundary
layer. As the wind speed U increases, the air stream will develop into a turbulent
flow (Figure 3.2b). The threshold between a laminar and a turbulent stream is
determined by the Reynolds number (e.g. [MM09])

Re = ρUDc

ν
, (3.1)

as a function of the wind speed, where ρ and ν are the density and the viscosity
of air, respectively. Dc is called the characteristic linear dimension and describes
the size and geometric shape of the object in the air stream. In addition to the
turbulent layer, vortices are shed at edges of the object. Bradley et al. focused on
the investigation of effects of wind on hand-held communication devices [BWHB03].
They stated that the acoustic signal generation in a turbulent air flow can be
decomposed into two main components.

• Trailing edge vortex shedding: On trailing edges in the air flow vortices
are periodically generated. Depending on the velocity and the geometry of
the surface, the periodical vortices lead to a tone at a defined frequency.
Considering a constant air flow this will lead to a measurable peak in the
spectrum [BWHB03], which is well below 50Hz for normal outdoor wind
conditions and dimensions of mobile communication devices.
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• Boundary layer turbulences: As depicted in Figure 3.2b, turbulences occur
within the boundary layer. They generate sound with a broader spectrum
with main energy at lower frequencies.

Because in outdoor environments the wind is not a constant air stream, the
vortex shedding frequency varies permanently and will not result in an isolated
spectral peak, as shown in [BWHB03]. For realistic scenarios, the boundary layer
turbulences are the main origin for the audible wind noise.

A mathematical description of the measured spectra of wind noise was developed
by Strasberg ([Str88]). He stated that the logarithmic spectrum level Llog of the
wind noise signal may be written as

Llog(f) = 67 + 63 log10(U)− 33 log10(f)− 23 log10(Dc), (3.2)

with the frequency f . The loudness level Llog is computed to a reference sound
pressure of 20µPa. Transforming Equation (3.2) into a linear representation the
sound pressure spectrum is given by

P (f) = 20µPa · 103.35 · U3.15

f1.65 ·D1.15c
. (3.3)

The relation shown in Equations 3.2 and 3.3 were derived empirically from several
measurements, so an exact prediction of the relation between the sound and the wind
speed or frequency is not possible. However, two important relations are given by
Equation (3.3). The sound pressure rises with increasing wind speed (P (f) ∼ U3.15)
and the sound pressure decreases with increasing frequency (P (f) ∼ 1/f1.65).
Especially, the latter dependency is significant to explain the low-frequency energy
distribution of wind noise, which will examined more detailed in Section 3.3.3.

3.2 Wind Noise Measurements
For the investigations in this work, several measurements were carried out, where
mainly two scenarios were considered. For the investigation of wind noise under
realistic conditions, outdoor recordings are the most appropriate way to obtain
relevant wind noise data. The drawback of these measurements is, that it is hardly
possible to avoid additional background noises such as movement in trees, passing
cars or other noises generated by the wind in the surrounding of the recording
set-up. For a precise analysis of a signal, it is required, that the considered signal is
stored separately. Therefore, additional measurements under laboratory conditions
can be helpful using an artificially generated air stream. This set-up can be realized
in an audio lab, which provides a low-reverberant room with a reverberation time
T60< 100ms and an acoustic decoupling from other background noises. Here,
a compressed air connection generates an adjustable air stream without further
background noise sources.

Measurements using an artificial head to simulate the near-end speaker were
carried out considering both the hand-held position (HHP) and the hands-free
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3.3 Signal Statistics

position (HFP) according to the European Telecommunications Standards Institute
(ETSI) standard ETSI EG 201 377-2 ([ETS04]). More details and audio samples
can be found in [NV14b].

3.3 Signal Statistics
The methods presented in this work all aim to reduce the effect of wind noise in
recorded signals, which are available as digitized data. Acoustic countermeasures
such as wind shields or wind insensitive microphone positions are not considered and
their operating principle is only shortly explained in Section 4.1. For the reduction
of wind noise by means of digital signal processing it is necessary to examine the
statistics and spectral characteristics of wind noise in the recorded signal. The
aim of this analysis is to identify characteristics, which provide a differentiation
between the desired speech signal and the unwanted wind noise. First, a short
description of the sound of wind noise is given in Section 3.3.1. In Section 3.3.2
and Section 3.3.3 the temporal and spectral features of wind noise are analyzed.
For devices equipped with more than one microphone, the spatial characteristics of
the recorded signals are of interest, which are investigated in Section 3.3.4. For the
reduction methods presented in Chapter 4, it is assumed that the noisy input signal
is a linear combination of the speech signal and wind noise. This is however not
true in all cases. Therefore possible non-linear effects are discussed in Section 3.3.5.

3.3.1 Acoustics of Wind Noise
Wind noise generates a distinct sound in a recorded signal, which is normally
immediately recognized by a listener. It is characterized by a low-frequency rumbling
sound, which is closely related to the wind conditions of the near-end speaker.
Figure 3.3 shows a sample of a typical wind noise recording taken outdoors. The
spectrogram is given at the top and the corresponding time-domain signal is plotted
at the bottom1.

The spectrogram view clearly exhibits the low-frequency characteristic of wind
noise with a spectrum, which exceeds the frequency range greater than 1 kHz only
in segments with high wind noise levels, e.g., around t = 2 s. But even in these parts
of the signal the main energy is located at lower frequencies. The fluctuations in
the rumbling sound can also be seen in Figure 3.3 in both the spectrogram and the
time-domain representation. Fast fluctuations in the noise signal are not only more
annoying than a constant noise floor, but also reduce the intelligibility of speech,
see, e.g., [FP90], [RV05] or [BG09]. The authors of these publications compared
the recognition rate of speech in presence of constant noise and fluctuating noise
signals. They found out, that for equal SNR values fluctuating noise signals always
lead to significantly lower intelligibility results.

1Unless otherwise noted, all signals throughout this thesis are sampled with a sampling
frequency of fs = 16 kHz
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Figure 3.3: Typical wind noise sample from an outdoor recording [NV14b].

3.3.2 Temporal Characteristics
For the estimation and reduction of background noise in a speech signal, usually the
temporal statistics are exploited as described in Chapter 2. This section investigates
the characteristics of wind noise in a time-domain representation and compare
them with speech signals and other noise signals. Since realistic scenarios are of
interest for the reduction of wind noise, outdoor recordings are considered.

To reflect the temporal properties, in Figure 3.4 the progress of the frame energy
EST(λ) of different signals is depicted2, which is given for a signal x(k) as

EST(λ) =
λ·(LF+1)∑

k=λ·LF+1

x2(k), (3.4)

where LF is the frame length of 320 samples ( =̂ 20ms) in which the signal is
assumed to be stationary.

From the ETSI background noise database [ETS09], three typical background
noise types Inside Train Noise1, Work Noise Jackhammer and Pub Noise are chosen
for the investigations. In Figure 3.4, five seconds of the wind noise from the signal

2The frame energy is depicted in the unit dBFS referring to full-scale signal, i.e., the
maximum scale is xmax = ±1.
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Figure 3.4: Frame energy of different noise signals and a speech signal.

given in Figure 3.3 is also shown and the bottom plot shows a sentence of female
speech taken from the TIMIT database [LKS89]. As explained in Chapter 2 the
degree of stationarity is deciding for the success of conventional noise reduction
techniques. The temporal progress of the energy of the noise signals in Figure 3.4
shows an increasing degree of non-stationarity from Inside Train Noise1 to Pub
Noise and even more variations over time for the wind noise signal. For the speech
signal, the frame energy suddenly rises after speech pauses and decreases in the
same way at the end of speech activity. This behavior and the assumed constant
noise level usually suffices to separate speech and noise signals. In the case of wind
noise the sudden changes of the signal level during a wind gust does not fulfill this
assumption. To quantify the degree of non-stationarity the short-term variance
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σ2
E,ST(λ) of the frame energy

σ2
E,ST(λ) = 1

L

λ+(L−1)/2∑

l=λ−(L−1)/2

(EST(l)− EST(λ))2, (3.5)

is computed, where L is the number of consecutive frames considered for the
computation and depicts the mean value over L frames. For investigating the
stationarity, the variance over a duration of 100ms (L = 5 frames of 20ms) is taken
into account. In Table 3.1 the averaged values of the variance σ2

E,ST over signals
of 20 seconds are depicted.

Train noise Jackhammer noise Pub noise Wind noise

σ2
E,ST/dBFS 2.09 2.55 3.79 12.23

Table 3.1: Variance of short-term energy for different noise types.

It can be seen that the jack-hammer and the pub noise show a slightly higher
variation than the train noise. But in contrast to the three background noise types,
the variance of wind noise is significantly higher with a value over 12 dBFS. Besides
the described fast variation of the wind signal level, also the signal energy varies over
longer time intervals of several seconds (see Figure 3.3). In realistic scenarios, there
are also periods of still air, which might occur between two wind gusts. These silent
parts of the wind noise signal can further increase the variance, but are not taken
into account for a better comparability with the other noise types. The temporal
characteristics of wind noise illustrated in this section differ significantly from noise
signals usually considered in typical speech enhancement problems. Especially, the
high short-term variance is responsible for the low performance of conventional
noise reduction schemes and motivates the development of techniques designed for
wind noise reduction.

3.3.3 Spectral Characteristics
As for the temporal analysis, the investigation of the spectral properties of a signal
in the discrete Fourier transform (DFT) domain can be carried out in a short-term
(ST) and long-term (LT) consideration. Firstly, a general representation of the LT
spectrum is given in Figure 3.5. For the depicted curves 60 seconds of wind noise
from [NV14b] are taken. The LT spectrum in Figure 3.5a is given by the solid
black line, and the dotted gray curve illustrates the general characteristic given by
a smoothing over frequencies. Furthermore, the dashed gray line shows the decay
related to 1/f1.65 as defined in Equation 3.3. It can be seen, that this mathematical
definition does not perfectly fit the LT spectrum, but gives a good approximation
of the rough spectral distribution of wind noise. As mentioned in Section 3.1, this
description was derived from measurements with several microphones and might
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Figure 3.5: Spectral energy distribution of wind noise.

be adapted to one certain microphone type. An easy way to adjust the spectral
decay of the approximation can be realized by choosing different exponents ν of
the frequency f as

Ñ(f) = 1
fν

, with ν > 0. (3.6)

A different representation of the spectral energy is presented in Figure 3.5b.
The cumulative energy distribution beginning from low frequencies shows that most
of the energy (99.5%) is below 1 kHz. This is important with regard to which parts
of the speech is distorted. Speech only partly covers this frequency range. Mostly
voiced speech segments are present in these frequencies (0-3000Hz), while unvoiced
speech can be expected at higher frequencies. A more detailed investigation on the
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influence on speech signals follows in Section 3.4.
The short-term (ST) spectral characteristics are shown in Figure 3.6 using three

segments of 20ms from the wind signal depicted in Figure 3.3. The segments are
chosen from parts representing different wind levels of the signal. In addition two
variants of the approximations from Equation 3.6 (ν = 1.65 and ν = 1) are given.
Differences between spectral shapes of the wind noise segments are visible, which
do not strictly follow the relation of the 1/f1.65 shape. But with the introduction of
the parameter ν the magnitude of the ST wind spectrum can adopted for a better
approximation.
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Figure 3.6: Short-term spectra of wind noise segments of different wind inten-
sity. The corresponding temporal positions of the signal depicted
in Figure 3.3 are given in brackets.

3.3.4 Multi Microphone Properties
In the current generation of smartphones, commonly the devices are equipped with
more than one microphone. Many mobile phones have a primary microphone at
the bottom of the device and at least one additional microphone at the top and/or
the back of the housing. The additional microphone signals are usually exploited
for background noise estimation and reduction. Hearing aids might also use two
microphones at each device to apply a spatial filtering to the captured signals. The
main difference between the two applications is the distance dm between the two
microphones. For mobile phones, a distance of 10 cm is quite common, whereas
the microphones of hearing aids are closely spaced with a distance of about 1 cm.
Figure 3.7 shows the general set-up of a dual microphone system recording a sound
signal arriving from the angle θ.
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Figure 3.7: Dual microphone setup.

For the processing of multi microphone signals, often the spatial correlation
is exploited to distinguish between different acoustic scenarios or sound fields.
Considering the time-domain representation the cross-correlation of the signals can
be investigated. A more useful analysis provides a frequency dependent correlation
measure given by the coherence function between two signals x(k) and y(k) with
limited energy (e.g., signals segments)

Γxy(Ω) = Φxy(Ω)√
Φxx(Ω) · Φyy(Ω)

, (3.7)

with the auto- and cross-PSDs Φxx(Ω), Φyy(Ω) and Φxy(Ω) of the microphone
signals x(k) and y(k). In general, the coherence function is complex-valued with
a magnitude less than or equal to one. Often the so called magnitude squared
coherence (MSC)

Cxy(Ω) = |Φxy(Ω)|2
Φxx(Ω) · Φyy(Ω) (3.8)

is used instead, yielding real values between zero and one, where a high correlation
leads to values close to one.

Different sound fields can be distinguished by their coherence properties. There
is a variety of different coherence models, which can be mathematically derived
for several acoustic scenarios (see, e.g., [Bit02]). Here, the most prominent three
coherence models are relevant and will be explained in the following.

Coherent Sound Field

In a scenario depicted in Figure 3.7, a coherent sound field is generated by a single
sound source. The corresponding complex coherence is given by

ΓCoh
xy (Ω) = cos(Ωfsdm cos(θ)/c)− j sin(Ωfsdm cos(θ)/c), (3.9)
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where c is the speed of sound3 [Kut09]. The MSC for this sound field is Cxy(Ω) = 1
for all frequencies and independent of the angle of arrival θ. Extensions to this
model for more than one sound source can be found in [Bit02]. Results from
experiments with two microphone setups are shown in Figure 3.8a, where for both
configurations (2 and 10 cm microphone distance) the expected high value of the
MSC can be measured over the complete frequency range.

Diffuse Sound Field

A more complex scenario is described by the so-called diffuse sound field. In
that case, the sound is generated by numerous independent sound sources equally
distributed around the microphone array. For this sound field, the frequency
dependent real-valued coherence function becomes [Kut09]

ΓDif
xy (Ω) = sinc(Ωfsdm/c). (3.10)

Dependent on the microphone distance the lower frequencies show a higher
coherence, while for higher frequencies the coherence decreases. This characteristic
is depicted by the dashed curves in Figure 3.8b. Many background noise situations
reflects a diffuse sound field, where the noise sources are distributed around the
microphones, e.g., babble noise from a crowd or street noise from many cars in
the background. Therefore often a diffuse noise field is assumed, when a dual
microphone set-up is examined.

Again measurements were carried out, while a diffuse sound field was generated
according to ETSI standard 202 396-1 [ETS09]. The measured MSC curves are
shown by the solid curves in Figure 3.8b. Especially for the microphone distance of
10 cm depicted by the gray line, the low MSC values for frequencies higher than
1000Hz are clearly visible while for the smaller distance of 2 cm (black lines) the
MSC descends only slowly over frequency.

Incoherent Sound Field

As mentioned at the beginning of this chapter, the generation of wind noise differs
significantly from other sound signals. Because the turbulences in the boundary
layer are responsible for the generated noise signals, the sound sources are located
in the direct proximity to the microphones themselves. Thus, the sound generation
mechanisms can be seen as independent acoustic sources close to the microphone
positions, which leads to a low spatial correlation for recorded wind noise signals
in multi microphone scenarios. In literature different mathematical expressions
can be found to describe the coherence in a boundary layer turbulence field. The
authors in [Cor64] and [Elk07] assume that the coherence can be formulated as an
exponential decay

ΓWind
xy (Ω) = exp

(
−αDΩfsdm

0.8U

)
(3.11)

3c = 343m/s is considered in this thesis, which is given at an air temperature of 20° C.
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Figure 3.8: Magnitude squared coherence (MSC) of different sound fields dis-
played by measured values (solid) and theoretical curves (dashed).
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over frequency and microphone distance dm with an empirically determined decay
constant αD. The relation in Equation 3.11 would introduce some high coherent
parts at lower frequencies (ΓWind

xy (0) = 1). A coherence function

ΓWind
xy (Ω) = 0 (3.12)

over the complete frequency range is assumed in [SF12], which implies that the
wind noise components in each microphone signal are completely uncorrelated.
Measurements support the latter assumption as depicted by the curves in Figure 3.8c
for both microphone distances. Thus, in the following a zero coherence property is
assumed for wind noise signals.

3.3.5 Non-linear Effects
Usually, noise in a speech signal is described as an additive component, which
presents the noisy microphone signal as a linear combination of the clean speech
signal and the pure noise signal. However, wind noise exhibits partially very high
signal levels, which might lead to non-linear effects. Consequently, two types of
non-linear effects are worth to be investigated in more detail.

High levels of the input signal can lead to amplitudes in the captured signal,
which are higher than the dynamic range of components of the recording device.
This might be the microphone itself or limits of the signal amplifier and/or the
analog-digital converter. Such a violation is called clipping and results in samples
in the recorded signal, which are limited to the maximum signal level. An example
is given in Figure 3.9 showing the spectrogram and the time-domain representation
of a recorded speech signal in a windy situation4. Both the low frequency wind
noise and the harmonic structure of the speech signal are clearly visible in the
spectrogram. The samples, which are clipped, are marked with red rectangles in
the lower plot of Figure 3.9. As a result, in the spectrogram the clipped areas of the
noise reveals also high frequency components, which can be clearly seen in speech
pauses around t = 0.3 s or t = 2.8 s (marked by the arrows below the spectrogram in
Figure 3.9). Short segments with clipped samples can be seen as nearly ideal Dirac
impulses, as they reach the maximum amplitude for a short durationa of only a few
samples. In the short-time frequency-domain, a single Dirac impulse results in the
broad spectral representation, which is visible in the depicted spectrogram. Besides
the clipped segments, the higher frequencies seem to be unaffected by the wind
noise. Several approaches can be found for the de-clipping of audio signals (see, e.g.,
[AEJ+12] and references therein). But all these algorithms presume that high-level
segments of desired signal are responsible for the limitation of the recorded signal.
In the described case in Figure 3.9 the clipping is caused by the noise signal. Thus,
a restoration of the clipped signal parts is not desired, because this mainly restores
the wind noise portions in the signal. A better treatment would be an attenuation
or suppression of the signal segments clipped by wind noise.

4The noisy speech signal was directly recorded, using a loudspeaker-microphone setup in
an outdoor environment.
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Figure 3.9: Noisy speech clipped due to high wind levels.

Apart from clipping, the high pressure level by the wind noise might lead to
a displaced operating point of the recording hardware due to a mechanical offset
introduced by the wind stream. This may result into different impacts, e.g., an
extreme excursion of the microphone membrane and also saturation effects from
the amplifiers. Both incidents might lead to a non-linear behavior of the recording
chain. Non-linear distortions of audio hardware can be determined by the total
harmonic distortion (THD), which is given by the power response P (f) of the
test device to a sine wave at frequency f . Any non-linear behavior will generate
additional signal components at multiples of the excitation frequency. Therefore,
the THD in the discrete frequency representation

THD(µ) =
√
P (2 · µ) + P (3 · µ) + . . . P (N · µ)

P (µ) (3.13)

can be inspected to investigate any non-linear behavior. Usually, a THD up to 0.5%
to 1% is tolerated for high quality audio recordings. In this work, only the influence
of wind noise on the used microphone is examined. The power response P (µ) is
given by the squared magnitude of the discrete spectrum of the measured signal.
In the experiments the used microphones (Sennheiser ME 2) are exposed to a great
amount of wind while simultaneously sine signals are played by a loudspeaker as
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excitation signals for the THD measurement. It is ensured for all measurements that
no signal parts are clipped, because only the influence of high wind noise levels to
the microphone characteristics is investigated. As stated in Section 3.3.3 most of the
wind noise energy is located well below 1 kHz. Here, an additional safety bandwidth
of 1 kHz is taken in order to not influence the THD measurements beginning from
2 kHz. It turned out that taking the first 5 harmonics of the excitation sine signal
are sufficient to measure the THD. With these two aforementioned constraints and
a sampling frequency of 48 kHz, only a small frequency range between 2 kHz and
3.5 kHz can be investigated, which is depicted in Figure 3.10.

For the investigations two different wind speeds were considered (dotted and solid
curves) and a reference measurement with no wind is also depicted in Figure 3.10
by the dashed line. A small increase of the THD can be seen for the measurements
with wind noise. But the absolute THD value is still quite low (<0.3%), which
indicates that the non-linear steady state distortions induced by wind noise are not
crucial and will be neglected in the following. A more crucial problem might be
the aforementioned clipping in segments with high wind levels.
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Figure 3.10: Total harmonic distortion (THD) at different wind speeds.

3.4 Influence on Speech Communication Systems
This section investigates the effect of wind noise on the quality and intelligibility of
a speech signal. Therefore speech was recorded with an artificial head simulating
the near-end speaker. The speech levels were chosen to 89.3 dBSPL at the mouth
reference point and to 65.3 dBSPL at the hand-held position (HHP) and the hands-
free position (HFP), respectively, as defined in [ETS04]. The HHP represents the
normal position of mobile phone during a telephone conversation close to the head
(c.f. Figure 3.1). Using the phone in the speakerphone mode, the HFP defines a
position of the phone 50 cm in front of the head of the speaker. Speech samples
of female and male speakers from [Kab02] were randomly taken. The degree
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of degradation was measured in terms of the speech quality by the perceptual
evaluation of speech quality (PESQ) value, see [RBHH01], [IT01], [IT07] and the
intelligibility given by the short-time objective intelligibility (STOI) [THHJ10].

The PESQ value in the used implementation ranges from 1 (poor quality) to
4.5 (no degradation) and the intelligibility coefficient estimated by STOI ranges
from 0 to 1, where 1 indicates a perfect intelligibility. Besides, the global SNR
was calculated over the whole signal length. For the two positions three scenarios
were investigated: a constant slow wind stream (≈ 5m/s), a constant fast wind
stream (≈ 10m/s) and a varying wind stream with wind speeds up to 10m/s. The
latter condition reflects a realistic scenario in which gusts of the wind leads to fast
changes of the wind speed. The evaluation of all scenarios is given in Table 3.2.

SNR/dB PESQ STOI

slow wind HHP 6.08 1.38 0.93
(≈ 5m/s) HFP -9.19 1.04 0.79
fast wind HHP -5.41 1.09 0.87
(≈ 10m/s) HFP -20.68 1.02 0.7
wind gusts HHP -2.95 1.09 0.78
(up to 10m/s) HFP -18.22 1.06 0.52

Table 3.2: Quality measures from noisy speech in hand-held position (HHP)
and hands-free position (HFP).

Clearly negative SNR values can be seen in almost all cases, except the slow
wind case in HHP. This extreme annoying noise impairs the speech quality as seen
by the very low PESQ values. Furthermore, the wind has influence on the speech
intelligibility given by the decreased STOI measures. This is especially true for the
last considered scenario, the varying wind stream which reflects the most realistic
condition. Here even higher SNR values in the wind gust scenario show a lower
speech intelligibility for both the HHP and the HFP.

The results of the presented investigations shows that wind noise can be a severe
problem for many communication devices in terms of the perceived speech quality
and the intelligibility. Hence, it is necessary to develop algorithms for the detection
and reduction of wind noise.

3.5 Wind Noise Detection
In this section a frame-wise detection of wind noise is considered, which can be
realized either in the time- or frequency-domain. Several algorithms for wind noise
detection can be found in the field of signal processing for hearing aids (see, e.g.,
[Kat08] for an overview). A good detection of wind noise is the first step towards a
suppression of distortion in the captured signals. Furthermore, a detection method
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for wind noise is very helpful for outdoor recordings and videos, where a degradation
of the recorded signal by wind might not be noticed during the recording process.
In this case a warning for the user could be displayed to indicate the presence of
wind noise. In the following, the most promising approaches for the detection of
wind noise in a single microphone signal are presented and compared in terms of
their accuracy, which were also presented in [NJV16].

3.5.1 Time Domain Approaches
Methods for wind noise detection in the time-domain use the input signal xλ(κ),
where κ = 0 . . . LF − 1 states the sample position within the frame λ. The frames
are available as 20ms segments with an overlap of half frame-size and windowed
with a square-root Hann window, which is the standard configuration of the analysis
block in the considered noise reduction system.

3.5.1.1 Zero Crossing Rate

The zero crossing rate (ZCR) is defined as the number of sign-changes of a given
signal within a fix duration, i.e., the rate at which the signal changes from positive
to negative magnitudes or back and is defined as

ZCR(λ) = 1
LF − 1

LF−1∑

κ=1

I{xλ(κ) · xλ(κ− 1) < 0} ∈ [0, 1] (3.14)

where LF is the frame-size and the indicator function I{A} is 1 if its argument
A is true and 0 otherwise. The ZCR is dependent on the frequency components
and is a well known feature in the field of voice activity detectors (VAD). Low
frequency signals result in slow changes of the time signal and thus a low number
of sign-changes is generated resulting in a ZCR close to zero. Higher frequencies in
the considered signal will produce more sign-changes, which leads to ZCR-values
closer to one. Because each signal can be seen as a sum of sine waves representing
the different frequency components, the frequency component with the highest
amplitude will mainly affect the ZCR. To detect wind segments, it is proposed in
[NLZIT10] to measure the ZCR in each signal frame, as the high amplitudes at
low frequencies will also generate a low ZCR. For the wind noise detection, it is
preferable to have a soft decision in terms of an indicator in the range between zero
and one for the two conditions wind inactive and wind active, respectively. Thus
the wind noise indicator based on the ZCR is simply defined as

IZCR(λ) = 1− ZCR(λ). (3.15)

3.5.1.2 Short-Term Mean

A further result of the low frequency characteristic of wind noise can be investigated
by the normalized short-term mean (NSTM) of the signal. Usually, the digital
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representation of an acoustic signal can be assumed to be zero-mean (see, e.g.,
[WMG79], [Mar05]). Besides, almost every recording equipment shows a certain
high-pass characteristic, e.g., with a cut-off frequency at 5-10Hz. This is necessary
to remove the direct component (DC) in the complete signal, which impairs the
further processing of the signal such as the quantization. The zero-mean property
is only valid in a long-term sense, while shorter signal segments can show a DC
depending on its frequency components. The DC or mean value of short segments
can be used to detect low frequency parts in a signal and is here defined in a
normalized way as

INSTM(λ) =

∣∣∣∣∣∣∣∣

LF−1∑
κ=0

xλ(κ)

LF−1∑
κ=0
|xλ(κ)|

∣∣∣∣∣∣∣∣
. (3.16)

Because the sign of the DC provides no information, the absolute value is taken
and the normalization with the sum of the absolute values of xλ(κ) leads to values
close to zero for high frequency components. For a signal containing only a DC,
the two sums in Equation 3.16 will have the same amplitude and thus the NSTM
will be one. An analysis of the NSTM is carried out to investigate the influence
of different frequency components in a considered signal. It is assumed that the a
signal can be decomposed into its frequency components each represented by a sine
or cosine wave according to:

xλ(κ) =
N∑

µ=1

aλ(µ) cos(2π · (fµ/fsκ+ φλ(µ))), (3.17)

which can be seen as discrete cosine transformation (DCT) (see [ANR74]) of a
signal. The index µ describes the discrete frequency fµ of each cosine component,
which is weighted by aλ(µ) ≥ 0 and delayed by the phase term φλ(µ). Equation 3.16
can now be rewritten to

INSTM(λ) =

∣∣∣∣∣∣∣∣∣

N∑
µ=1

aλ(µ)
LF−1∑
κ=0

cos(2π · (fµ/fsκ+ φλ(µ)))

LF−1∑
κ=0
|xλ(κ)|

∣∣∣∣∣∣∣∣∣
(3.18)

= 1
LF−1∑
κ=0
|xλ(κ)|

·
∣∣∣∣∣
N∑

µ=1

aλ(µ)ĨNSTM,µ

∣∣∣∣∣ , (3.19)

where

ĨNSTM,µ =
LF−1∑

κ=0

cos(2π · (fµ/fsκ+ φλ(µ))) (3.20)
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is the non-normalized NSTM of one cosine component at frequency fµ. From
Equation 3.19 follows that INSTM is the weighted sum of the NSTM of each
frequency component µ. An experiment for each cosine component is carried out,
where the normalized NSTM INSTM,µ for each frequency fµ is calculated separately.
For the simulation the usual frame-size of 20ms is used. It is assumed that in
natural signals the phase of each frequency component is randomly distributed, thus
every possible value for φµ is considered5 and the values were averaged afterwards.

The resulting curve is plotted in Figure 3.11 for the frequency range of fµ
between 0 and 2000Hz. It is obvious that a for

fµ = m · 1/LF · fs = m · 50Hz, m ∈ N+ (3.21)

the NSTM takes the value 0, because in these cases one or multiples of the cosine
period length are equal to the frame size LF and the resulting sum in Equation 3.20
over a whole cosine period is zero. Besides, the general behavior of the depicted
curve shows, as expected, high NSTM-values for low frequencies and vice versa.
As shown in Equation 3.19 the complete NSTM based wind indicator INSTM is
represented by the weighted sum of its frequency components given by ĨNSTM,µ.
Of special interest are frequencies below 50Hz (marked by the gray dashed line
in Figure 3.11), where a great amount of the energy of wind noise is located. The
higher frequencies between 100-2000Hz, where the main speech energy is distributed
(see, e.g., [BDT+94]), show a clearly lower NSTM value.
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Figure 3.11: Theoretical NSTM values of single cosine components from Equa-
tion 3.20 for 20ms frames. The dashed line represents the fre-
quency with a period length equal to the considered frame-size.

5Usually, the phase term φµ is a continuous variable. For the experiment only discrete
values are considered in the range φµ = 0, τs, 2 · τs . . . , b1/fµc. This reflects a cyclic sample-
wise shift (τs = 1/fs) of each frame over the whole period of the cosine at the considered
frequency fµ.
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A further experiment with real wind noise signals and speech signals is carried
out to confirm the considerations previously made. Both, a clean speech signal and a
pure wind noise signal are segmented and windowed as described in Section 2.2. The
NSTM is calculated for each frame according to Equation 3.16 and the experiment
is repeated for different frame sizes between 5 and 100ms.

The results are given in Figure 3.12, where the averaged values of all frames are
represented by the black and gray curve for wind noise and speech, respectively. It
can be seen that the zero-mean property is valid for speech for frame sizes greater
than 20ms and a clear distinction between speech and wind noise is possible for all
considered frame sizes. Thus, the NSTM can be used to detect wind noise without
a great influence of speech signals, which might be active at the same time.
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Figure 3.12: Measurement of NSTM for speech and wind noise signals.

3.5.2 Frequency Domain Approaches
For a wind noise detection in the frequency-domain the DFT representation of the
input signal spectrum as X(λ, µ) with frame-index λ and discrete frequency bin µ
is considered. In this section, the vector notation of X(λ, µ) will be used as

X(λ) = [|X(λ, 0)|, |X(λ, 2)|, . . . , |X(λ,M/2)|]T , (3.22)

containing the magnitudes of the complex DFT coefficients for euch frequency bin.
As the DFT provides a symmetric spectrum, only the first M/2 + 1 has to be
observed. All presented methods have in common that they exploit the decreasing
spectral characteristic of wind noise over frequency.

3.5.2.1 Negative Slope Fit

One detector presented in [NLZIT10] is based on the idea that the magnitude of
the spectrum of wind noise can be roughly approximated by a linear decay over
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the frequency, which can be expressed as

X̂(λ) = a1 · µ+ a0 (3.23)

with the frequency vector

µ = [0, 1, . . . ,M/2]T (3.24)

The parameters a0 and a1 control the DC and the slope of the approximation and
will be denoted by

a = [a0, a1]T . (3.25)

Combining the frequency vector with a vector 1 = [1, 1, . . . , 1]T containing M/2+1
ones as a 2×(M/2+1), matrix

M = [1,µ] (3.26)

Equation 3.23 can be written as

X̂(λ) = M · a. (3.27)

Because for wind noise a negative slope is expected, the approach is named negative
slope fit (NSF). A least square analysis can be applied to compute the optimal
parameters for a given spectrum X̂(λ) minimizing the squared error

e(λ) = ||X(λ)− X̂(λ)||2 != min . (3.28)

Setting the derivation with respect to the parameter vector a to zero leads to the
optimal solution

aopt(λ) = (MTM)−1 ·MT ·X(λ). (3.29)

According to [NLZIT10], two conditions must be fulfilled to classify the current
frame as wind noise. Firstly, the slope of the approximated spectrum must be
negative (a1 < 0) and secondly the squared error e(λ) must be smaller than a
certain threshold. Normalizing the error to the energy of the observed spectrum
the two conditions can be combined to the wind indicator

INSF(λ) =





1−
e(λ)
||X(λ)||2 , for a1 < 0,

0 , otherwise.
(3.30)

in the range between zero and one. A closer investigation of this algorithm has
shown that an increased performance can be achieved by applying the indicator
only on a limited frequency range between 0 and 1000Hz, where most wind energy
is expected.

38



3.5 Wind Noise Detection

3.5.2.2 Signal Sub-band Centroids

In [NCBV14] and [NV15] a method is proposed that investigates the energy distribu-
tion of a given spectrum. There are many ways to describe the energy distribution,
e.g., by the spectral envelope or spectral flatness measures. A feature known from
automatic speech recognition (ASR) systems are the so-called sub-band signal
centroids (SSC) (see, e.g., [Pal98]). They depict the center-of-gravity in a given
sub-band range from f1 to f2 and are defined for a signal x by

Ξf1,f2 =

f2∫
f1

Φxx(f) · fdf

f2∫
f1

Φxx(f)df
(3.31)

For a theoretical investigation of the sub-band signal centroid (SSC), this
continuous frequency-domain representation is considered. It is assumed that the
wind noise magnitude spectrum can be approximated by an 1/f slope, which yields
in the wind noise PSD approximation

Φnn(f) ≈ β

f2 . (3.32)

The parameter β scales the total signal energy of the wind noise PSD. Inserting
Equation 3.32 in Equation 3.31, β cancels out and the integrals can be solved,
giving the following expression for the definition of the wind SSC

Ξf1,f2,wind = f1 · f2 ·
(

ln(f2)− ln(f1)
f2 − f1

)
(3.33)

as a function of the frequency limits f1 and f2. An interesting feature is that
Ξf1,f2,wind tends towards zero, if f1 → 0, i.e., the considered sub-band begins at
f = 0Hz.

Similar to the 1/f -approximation of the wind noise a description of the speech
spectrum is required to investigate the behavior of the SSC for speech signals. Here,
the so-called long-term average speech spectrum (LTASS) is used as it is defined in
the ITU-T P.50 standard for the generation of an artificial voice signal [IP99]. The
LTASS Υ(f) is a mathematical description of the spectral characteristic of speech
and defines the logarithmic spectrum density in dB relative to 1 pW/m2 [IP99] as

Υlog(f) = −376.44+465.44 · log10(f)−157.75 · log10(f)2 +16.71 · log10(f)3 (3.34)

and is depicted in Figure 3.13.
Although, the LTASS also exhibits a low-frequency characteristic, where most

of the energy is located between 200 and 500Hz, the spectral energy distribution
measured by the SSCs will depict a clear distinction between speech and noise.
An important adjustment for the SSC determination is the choice of the sub-band
range f1 . . . f2 (or µ1 . . . µ2 in the discrete case, respectively).
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Figure 3.13: Long-term average speech spectrum according to [IP99].

Using the definition of the wind noise SSC from Equation 3.33 and the measured
SSC of the LTASS representing the speech, different parametrization of f1 and f2
are compared in Figure 3.14. While on the x-axis different f1-values are considered,
each color of the depicted curves represents one choice of f2. The curves only show
values for f1 < f2, because this condition must be fulfilled for the computation
of the SSCs. For most of the displayed values of f1, no distinct difference can be
observed between the dashed lines representing the speech SSC and the solid lines
representing the noise SSC. But as expected, if the lower frequency limit f1 tends
towards 0Hz the wind noise SSC also converges towards zero, while the speech
SSCs takes a value of approximately 500Hz as shown in the magnified view in
Figure 3.14. As a result, f1 = 0Hz is a good choice for the SSC computation while
different f2 values only show a minor influence.

For the implementation in a digital signal processing system, the discrete
frequency-domain representation from Equation 3.35 is used beginning at low
frequencies (µ1 = 0) up to the discrete frequency bin µ2 corresponding to f2.

Ξµ1,µ2 (λ) = fs
M

µ2∑
µ=µ1

Φ̂xx(λ, µ) · µ
µ2∑

µ=µ1

Φ̂xx(λ, µ)
, (3.35)

The factor fs/M causes a conversion of the SSC from the discrete frequency-domain
to a representation in Hz. The power spectral density (PSD) of a signal is defined
as long-term expectation over all frames λ

Φxx(µ) = E
λ
{|X(λ, µ)|2}. (3.36)

As for real-time applications it is not possible to compute the expectation over the
whole signal length (i.e., all frames), an alternative approach for the estimation
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Figure 3.14: Signal centroids for theoretical energy distribution of speech
(dashed lines) and wind noise (solid lines).

of the time-varying PSD in Equation 3.35 is given by the recursive smoothing
approach

Φ̂xx(λ, µ) = α · Φ̂xx(λ− 1, µ) + (1− α) · |X(λ, µ)|2, (3.37)

where the smoothing constant α must be chosen in the range between 0 and 1 and
controls the adaptation speed of the estimate.

A study of measured wind noise and speech SSCs for the frequency range
up to f2 = 4000Hz is given in Figure 3.15 using speech data from the TIMIT
database [LKS89]. Here, 6 minutes of voiced speech segments are taken into account.
Unvoiced speech segments are omitted, because they show only low energy in the
considered frequency range, where wind noise is active (see, e.g., Figure 3.9) and
would be treated as a speech pause for SSC computation in the described frequency
range. To investigate the influence of wind, 6 minutes of recorded wind noise from
[NV14b] are analyzed. Both signals are segmented into frames of 20ms and the
signal centroids are computed for every frame resulting in the depicted distributions.
The wind noise as well as the speech SSCs show slightly higher values than the
theoretically determined curves in Figure 3.14. These deviations can be explained
by the non-continuous frequency resolution, which is necessary for the behavior
derived from Equation 3.33. Nonetheless, a clear difference is visible between the
speech and wind noise SSCs showing only a small overlap. Again, a wind indicator
is desired, which takes only values in the range between 0 and 1. Setting f1 = 0Hz
leads to SSC values close to zero for wind noise, whereas speech will generate higher
values with a theoretical maximum of f2. The SSC-based wind indicator is finally
defined as

ISSC(λ) = f2 − Ξµ1,µ2 (λ)
f2

∈ [0, 1], (3.38)
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Figure 3.15: Distribution of speech and wind noise centroids.

using the discrete frequency computation of Equation 3.35.

3.5.2.3 Template Spectrum Combination

A different approach for the detection of wind noise is derived from a concept for
noise estimation using codebooks with pre-trained speech and noise entries (see,
e.g., [HNNV14]). The basic idea is that the noisy spectral magnitude |X(λ, µ)|
can be decomposed into the speech template |S̃i(µ)| with the index i from a speech
codebook and a noise template |Ñj(µ)| with index j from a noise codebook. Then,
the template spectrum combination (TSC) of the noisy magnitude spectrum is
approximated by

|X̂(λ, µ)| = σTSC(λ) · |S̃i(µ)|+ (1− σTSC(λ)) · |Ñj(µ)|. (3.39)

Because all signals in Equation 3.39 tagged with the ˜-operator are normalized to
a frame-energy of 1, the codebook weight σTSC(λ) takes values between 0 and 1.
An extensive search is applied using all combination of codebook entries S̃i(µ) and
Ñj(µ) and discrete values for the codebook weight σTSC for an estimation of the
noise spectrum in [SSK07] or [HNNV14]. Here, a simplified procedure is applied to
detect wind noise by using only a single representative for the speech and wind noise
component. For the speech component S̃(µ) the previously introduced long-term
average speech spectrum (LTASS) of Equation 3.34 is used in a linear description,
while the 1/f -approximation represents the wind noise component Ñ(µ). As in
Equation 3.22, a vector notation X(λ), X̂(λ), S̃(λ), Ñ(λ) is employed to describe
the magnitudes of the DFT coefficients in each frame λ. By minimizing the mean
square error between a given input signal X(λ) and the estimate X̂(λ) defined in

42



3.5 Wind Noise Detection

Equation 3.39

||X(λ)−X̂(λ)||2 = ||X(λ)−σTSC(λ)·S̃(λ)−(1−σTSC(λ))·Ñ(λ)||2 != min (3.40)

an optimal template weight σTSC,opt can be derived by taking the derivative with
respect to σTSC and setting the result to zero yielding in

σTSC,opt = ÑT Ñ− S̃T Ñ + XT · (S̃− Ñ)
||S̃− Ñ||2

, (3.41)

where the frame index λ is omitted for the sake of clarity. Since all quantities in
Equation 3.39 are normalized to a frame-energy of 1, the template gain σTSC,opt
indicates the amount of the speech component and 1− σTSC,opt the amount of the
wind noise component. Thus, the template weight can be used as wind detector
according to:

ITSC(λ) = 1− σTSC,opt(λ). (3.42)

3.5.3 Performance of Single Microphone Wind Detection
For evaluation, noisy speech signals are first manually labeled to determine per-
formance of the detection methods. Two sets of signal frames are defined asMs
for frames containing only clean speech andMw including all frames with wind
noise activity. These sets are displayed exemplary in Figure 3.16. Here, the speech
and wind signals are depicted separately to clarify the beginnings and endings of
the respective activity. In the evaluation process, only the superposition of both
signals is considered.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Mw

Ms

Time/s

Speech
Wind Noise

Figure 3.16: Example of speech and wind noise signals for the definition of
the setsMs andMw.
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All described algorithms for the detection of wind noise are compared in the
following by means of two measures. Firstly, the accuracy of the wind noise
detection is measured by the wind detection rate

Pw(ζ) = #{I(λ) > ζ}
#{Mw}

, λ ∈Mw (3.43)

where #{·} denotes the cardinality, i.e. for the numerator in Equation 3.43 the
number of elements in the considered set of frames in which the wind indicator
I(λ) is greater than a threshold ζ. In a similar way the speech misdetection rate is
defined by

Ps̄(ζ) = #{I(λ) > ζ}
#{Ms}

, λ ∈Ms, (3.44)

and counts the amount of clean speech, which is erroneously detected as wind
noise. Both measures describes important performance properties of the wind
detection. On the one hand, a high detection rate of wind noise is desired for a
sufficient removal of the distortion in a subsequent step. But on the other hand, no
clean speech segments should be detected as wind, which results in a low speech
misdetection rate.

Both rates defined in Equations 3.43 and 3.44 are dependent on a threshold ζ,
which is applied to the wind indicator. Since all wind detection methods result in an
indicator between 0 (no wind) and 1 (wind active), a good comparison between the
algorithms is given by passing through values between 0 and 1 and measuring the
resulting detection rates. Taking both the speech misdetection rate and the wind
detection rate at different thresholds into account, the so-called receiver operating
characteristic (ROC) can be generated as depicted in Figure 3.17.

An evaluation was carried out taking randomly chosen speech sentences from
the TSP database [Kab02]. The clean speech is mixed with wind noise segments
from [NV14b] with duration between 0.3 and 3 s. The corresponding noisy speech
signal is segmented into frames of 20ms with an overlap of 10ms, where in 70% of
the frames wind is active and in 50% of the frames speech is active. Both speech
and wind are active in about 30% of the frames. The speech and wind activity
is manually labeled based on the clean speech and the pure wind noise signals to
determine the setsMs andMw, which are required for Equations 3.43 and 3.44.
The global signal-to-noise-ratio (SNR) of the signal was -5 dB, which reflects a
realistic situation (c.f., [NV14b]).

For each algorithm, a curve displays different operating points, which belong to
certain values of the threshold ζ applied to the corresponding wind indicator. A
good detection results in a high Pw value and a low Ps̄ value, as indicated by the
arrows. The upper right corner of Figure 3.17 represents thresholds close to zero,
while the lower left corner depicts thresholds close to one. Because some of the
above mentioned approaches only take discrete values, e.g., a discrete frequency bin
or a discrete number of zero-crossings, some of the curves show partially large gaps
between the working points. The ROC can be roughly separated into two parts:
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Figure 3.17: Receiver operating characteristic of single microphone various
wind noise detection methods.

• The fast ascending section, where all algorithms show a low misdetection
rate. Here, the centroid based method (SSC) and the template spectrum
combination (TSC) show the best results.

• A section, where the detection rate rises slowly, but the misdetection increases.
In this range, the detector resulting from the normalized short-term mean
(NSTM) and the TSC method gives the best results.

The remaining two methods, zero crossing rate (ZCR) and negative slope fit (NSF),
give only very inaccurate findings for all operating points.

In conclusion, the NSTM and the TSC methods presents the best trade-off
between a low misdetection rate of speech and a high wind noise detection rate.
If a really low misdetection rate is required the SSC concept outperforms the two
aforementioned methods in some regions.

3.5.4 Dual Microphone Wind Noise Detection

Considering a system with two microphone signals as depicted in Figure 3.7, the
correlation between the signals can be exploited for the detection of wind. The
acoustic generation process of wind noise is given by turbulences, which are close
to the microphones and can be seen as a vast number of independent sound sources
for each microphone (cf. Section 3.3.4). Thus, a low correlation is assumed for
wind noise. A speech signal is usually represented by a point source (neglecting
reverberation effects), resulting in a high correlation.
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3.5.4.1 Average Short-Term Coherence

Exploiting the correlation properties of speech and wind noise, the magnitude
squared coherence (MSC) C(λ,µ), introduced in Section 3.3.4, is applied and is
defined as frame and frequency dependent quantity

C(λ, µ) = |Φ̂xy(λ, µ)|2

Φ̂xx(λ, µ)Φ̂yy(λ, µ)
. (3.45)

The required short-term estimates of the auto- and cross-PSDs Φ̂xx(λ, µ), Φ̂yy(λ, µ)
and Φ̂xy(λ, µ) are computed via recursive smoothing as

Φ̂xx(λ, µ) = α · Φ̂xx(λ− 1, µ) + (1− α) ·X(λ, µ) ·X∗(λ, µ), (3.46)

and

Φ̂xy(λ, µ) = α · Φ̂xy(λ− 1, µ) + (1− α) ·X(λ, µ) · Y ∗(λ, µ), (3.47)

where {∗} denotes the complex conjugate and α = 0.5 is chosen. As depicted in
Figures 3.8a and 3.8c speech shows a value close to one, while wind noise takes
values close to zero. For the wind detection, only a single score in each frame is
desired. Hence, the MSC C(λ, µ) can be averaged over a specific frequency range
to lower the variance. Using a frequency range in which mainly wind is assumed
to be active, e.g., 0-500Hz, the mean MSC value in this range C̄0−500Hz is used as
wind noise indicator

IMSC(λ) = 1− C̄0−500Hz(λ) = 1−

µ=µ500∑
µ=1

C(λ, µ)

µ500
, (3.48)

where µ500 is the frequency bin corresponding to a frequency of 500Hz.

3.5.5 Performance of Dual Microphone Wind Detection
To evaluate the performance of the dual microphone wind noise detection, the
experiment explained in Section 3.5.3 is carried out using a dual microphone
recording of wind noise from [NV14b]. Again the wind detection rate Pw and speech
misdetection Ps̄ rate are taken into account. For decreasing microphone distance
the MSC of wind noise might show higher values, as indicated by Equation 3.11.
Thus a smaller microphone distances exhibit the crucial scenarios for the dual
microphone wind noise detection task. Therefore, a small microphone distance of
2 cm is considered here as test case. For the coverage and length of the speech and
wind signal, the same parameters were chosen as for the single microphone case in
Section 3.5. The results are again presented as ROC curves in Figure 3.18.

The dual microphone MSC based approach presented in Equation 3.48 is
compared with the three single microphone methods, which gave the best results.
It can be seen that the MSC method shows similar results with the best single
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microphone algorithm in each working point but does not lead to an increased
performance. Only if a really high detection rate is required (Pw>0.99), the MSC
method yields a slightly better performance. The expected gain of exploiting the low
spectral correlation of two microphone signals is compensated by an effect from the
calculation of the coherence. For the recursive smoothing defined in Equation 3.47,
the fast changing characteristics of the wind noise signals are spread over time and
thus a fast tracking of wind noise onsets and offsets in not guaranteed.
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Figure 3.18: Receiver operating characteristic of wind noise detectors: 1)single
microphone, 2)dual microphone.

3.6 Model for Wind Noise Generation
For the development and evaluation of algorithms that suppress wind noise, audio
data of the noise signal is required. Because reproducible measurements of wind
noise are difficult and costly, an approach is presented for simulating wind noise
signals under precisely defined conditions. Considering simulations of windmill-
powered plants or hazard assessment of wind sensitive structures, models were
proposed, which predict time series of the wind speed. The derived models are
based on measurement data and presented, e.g., in [JL86] and [SS01]. They consider
a coarse temporal resolution of hourly wind speed data. In the case of audio signal
processing, a considerably finer temporal resolution of the wind noise model is
required, which will be derived in this section.

Based on the investigations from the previous sections, a model is proposed,
which generates an artificial wind noise signal with pre-defined features [NV14b].
It should be mentioned that the derived model does not reflect the physics of wind
noise generation. Primarily, the aim is to provide signals with similar statistics and
spectral characteristics as recorded wind noise. A block diagram of this model is
depicted in Figure 3.19 and can be divided into three stages:
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1. generation of an excitation signal e(k),

2. weighting with a time-dependent gain g(k) yielding the weighted excitation
ẽ(k),

3. filtering with A(z), which adapts the spectral shape of the synthesized wind
noise signal nsyn(k).

The explanation of all three stages follows in Sections 3.6.1 - 3.6.3.

Excitation
Codebook

Noise
generator

×

×

+ × A(z)

⇓

nsyn(k)

αe(k)

1 − αe(k)
g(k)

e(k) ẽ(k)

Figure 3.19: Wind noise model proposed in [NV14b].

3.6.1 Modeling the Temporal Characteristics
Regarding the acoustic signal, which is generated by wind in a device equipped
with one microphone, a two-sided consideration of the temporal characteristics
is necessary. In a long-term sense of several seconds, the noise is determined by
the current wind speed in close proximity to the device. Due to shadowing effects,
the local wind speed is not always equal to the global wind speed in a free-field
scenario but both wind speeds are usually highly correlated. A closer look provides
the short-term behavior of the wind noise signal considered in 20ms frames, where
the sound is dominated by the turbulences in the air stream. The turbulences can
be close to the microphone, resulting in the low-frequency rumbling sound or in
further distance yielding in more constant noise level.

Both aspects are illustrated in Figure 3.20 in terms of the (short-term) frame
energy and the (long-term) smoothed version of the frame energy of a measured
wind noise signal. The gain g(k) in the proposed model shown in Figure 3.19
controls the temporal characteristics of the generated wind noise signal with respect
to both the long-term and the short-term behavior. In [NV14b], it was proposed
to determine one gain, which models both the long-term and the short-term. An
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Figure 3.20: Classification of wind noise signal.

advanced way in modeling both characteristics is given by a decomposition of the
gain into a product

g(k) = gST(k) · gLT(k) (3.49)

of a short-term gain gST(k), which is combined with the long-term gain gLT(k) by
multiplication.

Long-term Gain

The long-term energy is determined by the current wind speed generating the
acoustic signal. Usually, the wind speed is rising during a wind gust continuously to
a high level and is then falling again. A wind gust may last a time span below one
second, but usually takes several seconds. The long-term behavior is exemplified
by the smoothed frame energy shown by the dashed gray line in Figure 3.20. It is
calculated by a recursive smoothing of the frame energy with a smoothing constant
of α = 0.99.

The temporal progress of the LT energy of measured wind noise in Figure 3.20
can roughly be divided into three classes. In the first case the measured noise
results from flow sound not generated in the vicinity of the microphone (low wind).
When a wind gust arises, the sound level suddenly rises due to turbulences close to
the microphone position (high wind). A third case is given in the absence of wind
(no wind). The three classes can be seen as three discrete states of a Markov model
reflecting different wind conditions. Similar models were derived for the long-term
behavior of the wind speed in [JL86] or [SS01]. The 3-state model depicted in
Figure 3.21 is used in the following to model the long-term temporal characteristics
of wind noise.

49



Chapter 3 – Signal Analysis

State 0
no

wind

State 2
high
wind

State 1
low

wind

p01
p00 p11

p10

p12

p21

p22

Figure 3.21: 3-state Markov model.

The transition probabilities of the model are given by pij from state i to
state j. The probabilities pii determine the duration and occurrence rate of the
corresponding wind condition in state i. For the provided model it was assumed
that state 1 (low wind) is always the transition between no wind and high wind.
Therefore, the transition probabilities p02 and p20 were set to zero and are not
depicted in Figure 3.21. The remaining transition probabilities can be trained by
wind noise measurements. This is done by first labeling ranges of no, low and high
wind in a given signal as exemplified in Figure 3.20 and compute the corresponding
probabilities afterwards. The thresholds defining the ranges of the wind noise
activity must be chosen manually and are -60 dBFS and -75 dBFS for the considered
wind recordings as depicted in Figure 3.20.

The gain gLT(k) for the long-term behavior is then calculated by using the
trained Markov model, which produces a sequence of states sseq(λ) to control the
wind noise activity in each frame λ. Based on this sequence a gain value is assigned
to each state si, which is previously determined by the mean values gained from
the corresponding states of the wind noise measurements. The resulting values
only consist of three discrete values (s0, s1, s2). In order to smooth the sudden
changes of the gain values, the gain sequence is calculated by convolution with a
Hann window hsmooth(λ) creating the frame dependent long-term gain

gLT(λ) =
M∑

κ=0

hsmooth(κ) · sseq(λ− (κ−M/2)), (3.50)

where the length M of hsmooth(κ) corresponds to 0.5 seconds. The values of the
gain sequence sseq(λ) must reflect the average energy relation between the different
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states defined for the Markov model. Therefore, the for the three states the values
s0 = 0, s1 = 0.1 =̂ −20 dB, and s2 = 1 =̂ 0 dB. This also reflects the different levels
of the long-term energy depicted in the wind noise segment in Figure 3.20. The
sample-wise long-term gain gLT (k) takes the constant value during each frame,
which is determined by Equation 3.50.

Short-term Gain

While the long-term gain primarily controls the presence and absence of wind
noise, the instantaneous signal level is simulated by the short-term gain gST(k).
As explained in Section 3.3.2 the short-term energy EST(λ) of one frame shows
high variation over time, which is characteristic for wind noise. This behavior is
modeled by the short-term gain gST(k).

First, the statistics of EST(λ) are analyzed. For the long-term measurement of
wind speed, statistical models were derived in [SL00] and [LL00], which assume that
the wind speed data can be approximated by a Weibull distribution [Wei51]. The
corresponding probability density function (PDF) of the wind speed U is expressed
as

pW(U) =

{(
κW
λW

)(
U
λW

)κW−1
exp
[
−
(

U
λW

)κW]
, if U ≥ 0

0 , else
(3.51)

with the shape parameter κW and the scale parameter λW. A maximum
likelihood estimation of the two parameters is given using the following equations
[SL00]:

κW(m+ 1) =

(∑N

i=1(Ui)κW(m) log(Ui)∑N

i=1(Ui)κW(m)
−
∑N

i=1 log(Ui)
N

)−1

, (3.52)

λW =

(
1
N

N∑

i=1

(Ui)κW

)1/κW

, (3.53)

where Ui is the observed wind speed in time step i of N non-zero data points.
Equation 3.52 must be solved iteratively and κW = 2 is proposed in [SL00] as a
suitable initialization for the first iteration m = 0. Thereafter, Equation 3.53 can
be solved explicitly by inserting the found κW. All the aforementioned models are
based on n long-term wind observations such as hourly averaged measurements
(e.g., 72 measurements in [SL00]). For the proposed approach clearly, a shorter
time duration is of interest such as the frame energy EST(λ) of 20ms segments as
investigated in Equation 3.4 in Section 3.3.2 as the set of N data points.

As mentioned in the beginning of this chapter, the acoustic sound levels generated
by wind are related to its speed. For the purpose of modeling the short-term
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characteristics, the distribution of the short-term gain gST is of interest, which is
related to the frame energy EST(λ) of the excitation signal ẽ(k) as

gST(λ) =
√√√√√

EST(λ)
LF−1∑
k=0

e2(k)
, (3.54)

where LF is the frame length. With the assumption of an energy normalized
excitation signal e(k), the significant relation is given by gST ∼

√
EST. Due to the

known quadratic relation between wind speed and energy, i.e., EST ∼ U2, it can
be concluded, that the the short-term gain gST is linearly depending on the wind
speed U and

√
EST. A histogram of measured

√
EST values is given in Figure 3.22.

For the detected distribution, signal segments with no signal energy, i.e., in
wind pauses, are excluded. These conditions are modeled by the long-term gain
regarding the no wind case. Additionally, the PDF of a Weibull distribution is
displayed by the dashed black curve. The parameters λW and κW were computed
using the calculation instructions from Equations 3.52 and 3.53. Comparing the
histogram data and the Weibull distribution, it is evident, that the PDF provides
a sufficient approximation of the wind noise energy even on shorter time scale than
in [SL00] and [LL00].

For the generation of the short-term gain gST in each frame the so-called inverse
transform technique is applied, which adapts a uniform distributed variable to a
given PDF, if the inverse of the cumulative distribution function (CDF) exists, see
[Dev86]. The CDF of the Weibull distribution reads

PW(U) =

{
1− e−(U/λW)κW

, if U ≥ 0,
0 , else,

(3.55)
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Figure 3.22: Distribution of wind noise energy
√
EST.
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which is invertible and can be applied to produce a random variable with a Weibull
distribution.

An example of the temporal progress of simulated gains is depicted in Figure 3.23.
The black curve represents the long-term behavior while the modulated version
of the short-term gain gLT(k) · gST(k) is shown by the thinner gray curve. The
parameters from Figure 3.22 for the Weibull distribution are applied and the used
transition probabilities of the Markov model are given later in the evaluation of
the in Section 3.6.4.
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Figure 3.23: Simulated long-term and short-term gain.

3.6.2 Modelling the Spectral Characteristics
A common description for correlated time series, such as digitized audio signals,
is given by an auto-regressive (AR) process (see, e.g., [Dur60]). For the proposed
realization of the wind noise, an AR model is applied in terms of the all-pole filter
A(z). This filter controls the spectral envelope of the generated noise signal nsyn(k).
The basic structure of an AR process of order lLP is shown in Figure 3.24a, where
the excitation signal ẽ(k) is recursively filtered by the coefficients of a1 . . . an. The
value of the coefficients defines the spectral behaviour of the synthesized noise
signal nsyn(k). E.g., in the case of linear predictive coding (LPC) the coefficients
determine the position and shape of the formants of a coded speech signal (see,
e.g., [VM06]).

In general, there are multiple approaches to estimate the coefficients ai of
the filter A(z). All these methods are based on the analysis structure given in
Figure 3.24b. The optimal coefficients ai are chosen, such that the power of the
error signal e(k) between the given signal n(k) and the estimated version n̂(k) is
minimized. In speech coding usually a block-wise adaptation of usual frame-sizes
between 10 and 30ms is applied using the auto-correlation method or the covariance
method [VM06]. Because of the fast changing signal characteristics of wind noise,
an estimation method with a finer temporal resolution is chosen here, which is
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Figure 3.24: Filter structures for linear predictive coding.

given by a sequential adaptation using the normalized least-mean-square (NLMS)
algorithm [Hay96]. With the notation of the signal vector

n(k − 1) = [n(k − 1), n(k − 2), . . . , n(k − lLP)]T (3.56)

and the coefficient vector

a(k) = [a1(k), a2(k), . . . , alLP (k)]T , (3.57)

this method provides a sample-wise calculation of ai using the following update
rule:

a(k + 1) = a(k) + 2 · ϑe(k)n(k − 1)
||n(k − 1)||2 , (3.58)

where the error signal is calculated as

e(k) = n(k)− aT(k)n(k − 1). (3.59)

The adaptation speed is controlled by the step-size constant ϑ, which must be
limited to the range

0 < ϑ < 1 (3.60)
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3.6 Model for Wind Noise Generation

for stability reasons.
The NLMS algorithm is applied to estimate the coefficients describing the

spectral shape of wind noise using wind noise recordings as input signal n(k). To
prevent a wrong adaptation in periods without any wind noise in the recordings,
Equation 3.58 is modified to

a(k + 1) = a(k) + 2 · ϑ e(k)n(k − 1)
||n(k − 1)||2 + ε

, (3.61)

where ε avoids a division by zero in case of absence of wind in the considered
signal samples. As investigated in Section 3.3.3, wind noise is identified as a low
frequency signal with a distinct spectral shape, which is similar to a 1/f -slope
(see Equation 3.3). If the spectral characteristics of the simulated wind noise are
determined by an AR filter, two steps are necessary:

• choice of sufficiently high order lLP of A(z) and

• determination of the values of the coefficients ai.

A measure for the quality of the analysis structure in Figure 3.24b is given by
the prediction gain, which is determined by the relation between the input signal
power and the error signal power

GP = 10 log10
E{n2(k)}
E{e2(k)} . (3.62)

The higher the prediction gain the better the AR filter approximates the input
signal n(k). Results from experiments with different orders of the filter in the
analysis structure are presented in Figure 3.25 for both, the speech signals and the
recorded wind noise signals. Most striking is the extensively higher gain for wind
noise signals. This property can be explained by the high energy at low frequencies
for wind, which might lead to a distinct DC in short signal segments. Such DC can
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Figure 3.25: Prediction gain of LPC analysis.
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already be removed by LP filter of order 1, which is evident by the prediction gain
of over 40 dB for wind noise. This feature is implicitly exploited for the NSTM
wind noise detector.

Furthermore, a saturation of the gain is reached for filter orders lLP > 4 for both
signals with the considered sampling frequency of 16 kHz. Hence, no improvement
in approximating the spectral shape of wind noise with the filter A(z) can be
expected by choosing a higher prediction order than 5. In the case of wind noise
for prediction orders greater than 10, the prediction gain even slightly decreases
again. It is assumed that fast changes in the wind noise contradict with a longer
constraint length of the analysis filter. Thus, a higher order leads to erroneous
prediction and a lower prediction gain.

After setting the prediction order to 5 the values of the coefficients ai have to
be determined. The results of a sequential LP analysis of 50 seconds of recorded
wind noise with ϑ = 0.1 and ε = 10−5 are shown in Figure 3.26. After a short
settling process in the beginning the coefficients show only small variations over
time. Besides periods without or with low wind noise (t = 8 s), the coefficients take
almost constant values for long periods with wind activity. Considering the curves
depicting the coefficients of highest order a4 and a5, it is evident that they only
take small values close to zero. This observation supports the assumption that a
low model order of 5 is sufficiently high as a representation.

The most simple way to realize A(z) for the proposed model, is to use a fixed
set of prototypical coefficients, which results in a constant shape of the spectral
envelope, which could be measured in Figure 3.26. This concept is applied in the
following and small variations of the spectral characteristics, as usually observed in
wind noise signals, can also be generated by the excitation signal, which will be
described in the following section in more detail.

3.6.3 Excitation Generation

The linear prediction (LP) coefficients determine the filter A(z) in Figure 3.19 and
the gain g(k) controls the energy of the synthesized signal over time. In this way
a1...a5 define the spectral shape of the produced signal nsyn(k). An easy way to
produce the synthetic wind noise would be to use a white noise process as excitation
e(k). After filtering with the AR filter and weighting with the gain function the
resulting signal has the same spectral and temporal characteristics as measured
wind noise. But the synthetic noise does not reflect the characteristic listening
impression of a real wind noise signal, especially in the high wind segments. For an
entirely theoretical examination this property would not constitute a problem as
long as the statistical characteristics are modeled, e.g., to test the performance of a
speech enhancement system by objective quality measures.

As the generated signal should also be usable for human listeners, e.g., in a
listening test, a natural sound of the synthetic wind signal is desired. For the
proposed system the natural sound is realized by choosing excitation sequences
from real recordings. These are also approximately spectrally flat and thus do not
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Figure 3.26: Sequentially estimated predictor coefficients of wind noise using
an AR process of 5th order.

influence the spectral characteristics of the generated signal. For the proposed
model, the error signal e(k), which emerges during the sequential estimation process
of the LP coefficients (see Figure 3.24b) is segmented and stored in a codebook as
depicted in Figure 3.19. From this pre-trained codebook sequences are randomly
chosen.

While for the high wind case the aforementioned excitation signal leads to a
realistic sound, the low wind case is characterized by a rather noise-like signal
as it is given by a spectral shaping of a white noise signal. This behavior is
controlled by the parameter αe(k) dependent on the current state of the Markov
model in Section 3.6.1. In the high wind case a value close to one is favorable
(e.g., αe(k) = 0.9) while in the low wind case a lower value should be chosen (e.g.,
αe(k) = 0.1). By this process for the excitation signal generation a more natural
sound is produced with a very similar listening impression of the synthetic wind
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noise as recorded wind noise signals.

3.6.4 Validation of the Model
In this section an investigation of the simulated wind noise signal of the proposed
model is carried out. Therefore, the temporal and spectral characteristics are
compared to the results investigated in Sections 3.3.2 and 3.3.3. The model is
implemented as proposed in Sections 3.6.1-3.6.3 using a model order of 5 for the
AR filter and a fixed set of coefficients. The coefficients set was chosen to the
values given in Table 3.3. These values are determined by averaging6 the estimated
coefficients in signal segments with wind activity.

a1 a2 a3 a4 a5

2.24 -1.81 0.72 -0.131 -0.03

Table 3.3: Fixed LP coefficients for the wind noise synthesis.

The codebook is derived by taking segments of 5-10ms from the error signal.
As proposed in [NV14b] a codebook size of 140 sequences is sufficient to generate a
wind noise signal with a natural sound. The transition probabilities of the Markov
model pij are trained from manually labeled wind noise signals in terms of their long
term energy. The values applied in the considered implementation are presented in
Table 3.4.

i→
pij 0 1 2

j

↓
0 0.99991 8.0037 · 10−5 0

1 3.36740 · 10−5 0.99974 2.26097 · 10−4

2 0 2.08928 · 10−4 0.99979

Table 3.4: Transition probabilities pij between the states of the Markov model.

An example of a synthesized wind noise signal is presented in the spectrogram
in Figure 3.27. Comparing it with measured wind noise (e.g., Figure 3.26a), similar
characteristics are clearly visible. This applies for the non-stationary behavior as
well as the low-frequency nature of the signal.

An experiment is carried out measuring the short-term variance σ2
E,ST as

proposed in Section 3.3.2. The model is used to create 200 synthetic wind noise
signals with a length of 50 seconds. For each sample signal the σ2

E,ST is measured
in segments with wind activity as proposed in Equation 3.5. The measured σ2

E,ST

6Since the averaging process of LPC coefficients can lead to unstable filter structures, the
averaging is carried out in the line spectral frequency (LSF) domain.
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Figure 3.27: Spectrogram of synthesized wind noise.

values range approximately between 10 and 14 dB as shown in Figure 3.28. The
mean σ2

E,ST of the synthetic wind noise is 12.41 dB, which is consistent with
the mean σ2

E,ST of 12.23 dB measured for real wind noise signals. This measure
indicates that the short-term variations over time of the simulated noise is similar
to the measured wind noise.

A closer look at the spectral energy distribution is given by Figure 3.29, where
the long-term spectrum of both measured and simulated wind noise is depicted.
The black curves correspond to the simulated wind noise while the gray curves show
the measured wind noise. Besides the spectra given by the solid lines, the smoothed
spectra are also depicted by the dashed lines. These two curves bear a high amount
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Figure 3.28: Distribution of the short-term variance σ2
E,ST.

59



Chapter 3 – Signal Analysis

0 1000 2000 3000 4000 5000 6000 7000 8000
−50

0

50

Freqency/Hz

M
ag

ni
tu

de
/d

B
Synthetic wind
Measured wind

Figure 3.29: Spectral energy distribution of measured and simulated wind
noise (dashed curves show smoothed progress of solid curves and
are shifted on the y-axis for a better clarity).

of resemblance. This is especially true for frequencies below 1000Hz, where most
of the noise energy is distributed (see Figure 3.5b). For a better comparability, the
curves shown in the figure are shifted with respect to their magnitude on the y-axis.

The investigation of the proposed wind noise model showed that the temporal
and spectral characteristics of measured wind noise can be well approximated by a
synthetic signal. The main parameters of the model determine the distribution of
the short-term energy, the transition probabilities of the states of the Markov model
and the coefficients controlling the spectral shape. These quantities are trained
using recordings and can be adopted. For different use-cases, it can be useful to
adjust the model to other applications by re-training the parameters based on
different recordings. From informal listening tests the synthetic wind noise signal
manifests a natural sound similar to wind noise recordings. This is achieved by
applying excitation segments from the LPC analysis of real wind noise signals.

3.7 Conclusions
This chapter introduces the special characteristics of wind noise signals. The target
is to point out significant differences between wind noise and other background
noise types, which are usually assumed in the context of speech enhancement. First,
the single microphone statistics in time- and frequency-domain representations
of the signal are investigated. It turns out that the low-frequency shape of the
spectrum can be roughly described by an 1/f -decay over frequency f or more
precisely by 1/fν with the shape parameter ν. The temporal progress of the signal
energy shows a considerably higher variation than other background noise types.

The next sections deals with detection of short segments in speech signal, which
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are degraded by wind noise. Different methods from literature are investigated
and novel algorithms are proposed for both the single and dual microphone case.
Two newly developed methods achieves similar high detection rates with ensuring
a low false alarm rate for speech signals. These are the approaches, which exploit
the normalized short-term mean (NSTM), and the technique based on separation
of the noisy spectrum by a speech and wind template spectrum TSC, where the
NSTM method is distinguished by its simplicity.

Based on the results from the wind noise analysis, a model is proposed for the
generation of a synthetic wind noise signal. The temporal properties are separated
into a long-term and a short-term gain controlling the energy of the generated
signal. For the long-term gain, a Markov model with three states is applied. This
long-term gain is mainly responsible for the absence or presence of wind noise. The
typical fast variations of the signal are generated by the short-term gain. It has
been shown that a random process following a Weibull distribution yields in a
good emulation of the temporal progress of the signal. An auto-regressive filter is
used to adjust the spectral energy distribution of the wind noise signal. For the
proposed model a fixed choice of linear prediction coefficients shows a sufficient
approximation of the distinct spectral shape. All parameters can be adapted to fit
the synthesized signal to a given application, e.g., a certain microphone type or
recording device. This model presents a valuable tool in the development process
of wind noise reduction systems, as it provides precisely defined and repeatable test
conditions.
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Chapter 4

Wind Noise Reduction

This chapter deals with the reduction of wind noise in a captured speech signal.
As discussed in Section 2.4, algorithms for background noise reduction, which are
stated in this work as “conventional” methods, can not provide a sufficient wind
noise reduction, if the speech signal is recorded in the presence of wind. Because
wind noise is a severe problem, when mobile phones, microphones or hearing aids
are used outdoors, special algorithms must be developed to combat the annoying
disturbance of wind noise in the recorded signal.

As presented in Chapter 2, all considered methods for real-time noise suppression
can be described by an analysis-synthesis structure. The modification and thus
the enhancement of the speech signal is realized in the short-term discrete Fourier
transform (DFT) domain. The most crucial part of the wind noise reduction is the
detection step in Figure 2.2, which is usually realized as estimation of the current
noise spectrum or short-term power spectral density (PSD). Several algorithms
were presented in the past to estimate the background noise. Most prominent are
the Minimum Statistics approach by Martin [Mar01], the minimum mean square
error (MMSE) based noise PSD tracker by Hendriks et al. [HHJ10] and the SPP
based noise estimator proposed by Gerkman and Hendriks [GH11]. In the last
years particular algorithms were developed for the estimation of wind. In single
microphone systems [KMT+06], [HWB+12] will be set as state-of-the-art methods.
Considering devices equipped with more than one microphone, solutions can be
found in [Elk07] and [FB10]. For both microphone configurations, more advanced
methods are derived and will be presented in this thesis. The relevant publications
can be found in [NCBV14, NV14a, NV15].

A widely used approach applies a time-varying spectral gain to the input spec-
trum to reduce the noise. Early solutions were proposed by Lim and Oppenheimer
in terms of the well-known Wiener filter [LO79] and by Boll in terms of the spectral
subtraction [Bol79] as explained in Section 2.3.3. Several publications can be
found, which take into account a priori knowledge about speech and noise statistics.
Exploiting the spectral statistics within a single frame, assumptions about the
distribution of noise and speech discrete Fourier transform (DFT) coefficients can
be made (see, e.g., [Lot04] or [Mar05]). A further improvement can be made by
exploiting the temporal correlation between successive frame as it was shown by
Esch in [Esc12]. Because these modifications to the spectral gain computation are
based on stationary statistics of general background noise signals, it is not reason-
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able to apply them for the reduction of non-stationary wind noise. In this thesis
well approved gain calculation rules given by the Wiener filter and the spectral
subtraction and modified versions of these are applied for wind noise reduction.

Furthermore, an innovative approach for speech enhancement is presented in
this work. Instead of a spectral weighting of the input signal, the clean speech is
estimated using a model for synthesizing speech components. A widely known model
for the process of speech generation is the so-called source-filter model ([RS78],
[VM06]). The basic idea is to divide a speech signal into an excitation signal and a
digital filter simulating the influence of the vocal tract. Many applications of this
model can be found in the context of speech enhancement and most of the current
and past speech codecs are based on this model (see, e.g., [Chu04], [VM06]). It will
be shown that especially in the case of wind noise this model can be helpful for
improving the processed speech [NNJ+12], [NNV15].

The remainder of this chapter is organized as follows. First, a short overview over
acoustical countermeasures against the formation of wind noise before degrading
the recorded signal will be given in Section 4.1. Because the focus of this work is
the enhancement of speech signals by means of digital signal processing, this section
gives only a brief insight in the mechanisms of wind shields. Considering a digital
representation of the input signals, the following sections deal with the estimation
and reduction of wind noise in a noisy speech signal. In Section 4.2, procedures
for the estimation of the wind noise short-term power spectrum (STPS) using a
single microphone are presented. A review on existing methods is given followed by
the presentation of two advanced new concepts. Based on the wind noise estimate
the subsequent spectral weighting is explained in Section 4.3. A dual microphone
configuration is considered in Section 4.4 for the estimation and reduction of wind
noise. In Section 4.5 the new concept for wind noise reduction incorporating a
speech synthesis module is presented. Finally, conclusions are drawn at the end of
this chapter.

4.1 Acoustical Countermeasures
Besides techniques introduced in this thesis, which try to reduce the effect of wind
noise by means of signal processing, many acoustical countermeasures exist to
overcome the problem of wind for outdoor recordings. Mostly, this is realized by
windscreens, where two types exist (see, e.g., [Wut92]):

(a) basket-style windscreens,

(b) foam windscreens.

The two concepts are shown in Figure 4.1 and their basic goal is to prevent the full
velocity and the produced turbulences of the wind stream to reach the microphone.
For both constructions the shape should be aerodynamically, because the windscreen
itself should not introduce any further turbulences.

The concept of the basket-style version is, that an open frame is mounted around
the microphone, which is covered with one or more layers of cotton, fine-mesh
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(a) Basket-style windscreen [Wik06a] (b) Foam windscreen [Wik06b]

Figure 4.1: Different designs of windscreens.

fabric or fur (see Figure 4.1a). This frame encloses a volume of air around the
microphone, which should be effected by the wind only to a little amount. The
trapped air volume inside the basket-style windscreen can influence the frequency
response especially at higher frequencies, where standing waves might affect the
transfer behavior and directivity of the enclosed microphone.

The second type, represented by solid foam wind screens are much cheaper to
produce and more robust (see Figure 4.1b). The use of porous material reduces the
wind speed and also the generation of turbulences around the microphone. Since they
have no frame to cause reflections, scattering or diffraction have, these windshields
have only minor effects on the recorded sound field. Their main drawback is that
they act as an acoustic low-pass filter, which can be easily compensated.

Measurements by Wuttke in [Wut92] showed that both types of windscreens can
attenuate the wind induced noise up to almost 40 dB depending on the microphone
type and wind condition. In general, the performance of the windscreens scales
with their size. Thus, in many mobile applications the use of windscreens is not
feasible or will lead only to an negligible amount of wind noise reduction.

4.2 Wind Noise Estimation
The input of the noise reduction system is a segmented version of the noisy input
signal x(k) (c.f. Figure 2.4) given in either a time-domain representation xλ(k) or
a short-term spectral representation X(λ, µ). The crucial aspect of every noise
reduction is the detection of the portion of speech and noise in each frame λ. If
the noise is not detected or underestimated, annoying residual noise will appear in
the output signal, while a false positive detection or an overestimation of the noise
might result in an unwanted degradation of the speech signal. For conventional
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background noise signals, a rather stationary noise floor is assumed in the input
signal. Thus, an explicit noise detection is not necessary and the noise can be
separated from the speech by a temporal analysis in the short-term Fourier domain.
This can be carried out by taking the minimum over a certain search window
[Mar01] or by updating the noise estimate only when the probability of speech
presence is assumed to be low [GH11]. For non-steady noise signals as wind noise,
a frame-wise detection and estimation of noise activity is required for an efficient
reduction. While the detection was discussed in Section 3.5, this section describes
the process of wind noise estimation.

4.2.1 Review on Single Microphone Wind Noise Estimation
Figure 4.2 depicts the long-term power spectral density (PSD) of speech and wind
noise computed by averaging the STPS of a complete signal. All depicted values
are normalized with respect to a maximum value of each curve at 0 dB. The speech
is separated into voiced (red) and unvoiced (blue) segments and the spectra are
calculated from 60 seconds of randomly chosen speakers from the TIMIT database
[LKS89], while the wind noise spectrum is gained from 60 seconds of wind recordings
from [NV14b]. The main spectral overlap is given for voiced speech and wind noise
and thus the main task is the enhancement of the frequency range in which both
voiced speech and wind noise are active. The distorted segments with no spectral
overlap of wind noise and unvoiced speech or no speech activity can be enhanced
by a simple high-pass filter. A further positive effect is that unvoiced speech and
high-pass filtered wind noise both have similar acoustic properties, which leads to
a lower perceptual distortion. Thus, the main problem of wind noise reduction can
be specified to the enhancement of voiced speech components.

The reduction of noise in a speech signal, as represented by the general structure
in Figure 2.4, requires an estimate of the noise spectrum or noise short-term PSD.
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Figure 4.2: Power spectral density of wind noise and speech signals.
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The latter is usually computed by the expectation of the signal spectrum over a
certain time period, e.g., by a first-order recursive smoothing (c.f., Equation 3.37).
For stationary signals this can efficiently reduce estimation errors but for fast
varying signals, such as wind noise, any procedure of averaging or smoothing must
be applied carefully, because this can reduce the accuracy to a great amount.
Therefore, in the case of wind signals the quantity, which is required for the
reduction is called short-term power spectrum (STPS)1 of the wind noise and will
be denoted by |N (λ, µ)|2 or |N̂ (λ, µ)|2 for its estimate, respectively.

In the past, only a few proposals can be found for the estimation and reduction
of wind noise. In the following, two methods from literature for the estimation of
wind noise STPS will be introduced, which operate on a single microphone input
signal and represent the most promising approaches.

4.2.1.1 Morphological Approach for Wind Noise Estimation

The approach in [HWB+12] by Hofmann et al. regards the spectrogram of the
noisy signal in the time-frequency plane as a two dimensional image. Considering
a spectrogram, as presented in Figure 2.5b, parts affected by wind noise can be
seen as connected areas in the time-frequency plane, while voiced speech shows
the typical harmonic structure with high amplitudes at the fundamental frequency
and its multiples. A separation of the connected areas is obtained by so-called
morphological operations. These operations are usually applied in image processing
tasks to detect connected areas (see, e.g., [FP03]). In the following, this algorithm
will be denoted as morphological approach (MORPH).

The aim of the wind noise estimator of Hofmann is to determine areas in the
time-frequency plane as a mask, which labels the appearance of wind buffets. A
similar concept is known from many blind source separation algorithms, see, e.g.,
[YR04]. First, the high-energy components XHE(λ, µ) of the signal are exposed
by comparing each frequency bin to a certain threshold or to a background noise
estimate. The latter option is applied in the case that additional stationary noise
sources also exist in the recorded signal. The steps for this procedure of computing
the wind noise mask from the high-energy components are exemplary pictured in
Figure 4.3 in the time-frequency plane. In Figure 4.3a a noisy voiced speech segment
is given as input signal, where black and gray areas denote speech and wind noise,
respectively. The first stage of the processing is given by a derivative m′(λ, µ) of
the high-energy components XHE(λ, µ) with respect to the time, realized by the
difference between successive frames as

∂

∂t
|XHE(λ, µ)| ≈ |XHE(λ, µ)| − |XHE(λ− 1, µ)| = m′(λ, µ). (4.1)

The high-energy components are computed in [HWB+12] by comparing the estimate
1The computation of the STPS should be normalized to the frame-size for a correct

physical definition but will be omitted as it is usually done in literature. As the STPSs are
always used in relation to each other (e.g., SNR) the dependency on the frame-size will be
canceled out.
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Figure 4.3: Steps towards the computation of the wind noise mask mN (λ, µ).

of a conventional noise estimator for constant noise to the noisy wind noise signal.
By this procedure only speech and wind noise is assumed to stand out yielding
XHE(λ, µ). From Equation 4.1 rising edges m↑(λ, µ) in the input signal can be
detected by comparing the result with a threshold θon

m↑(λ, µ) =

{
1, if m′(λ, µ) > θon

0, else.
(4.2)

resulting in the labeled areas in Figure 4.3b. In the next step, a processing as
shown in Figure 4.3c along the frequency axis is applied to find the onsets of the
wind noise signal. An onset is defined by the two-dimensional non-linear recursive
filter as

mon(λ, µ) := (m↑(λ, µ) ∧mon(λ, µ− 1))︸ ︷︷ ︸
spectral connection

∨ (m↑(λ, µ) ∧mon(λ− 1, µ))︸ ︷︷ ︸
temporal connection

∨

(m↑(λ, µ) ∧ µ ≤ µlow,max)︸ ︷︷ ︸
lowest-frequency edges

, (4.3)
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where ∧ and ∨ are logical conjunction and disjunction, respectively. The detection
of the wind noise area starts from the low frequency bins below µlow,max, where
only wind noise is assumed to be active. From this anchor, spectral and temporal
connections are identified. By this processing isolated active frequency bins remain-
ing from the harmonic pitch structure (e.g., in the upper left corner of Figures 4.3b
and 4.3c) are removed resulting in the area, which is displayed in Figure 4.3d. A
comparison of the observed signal energy of the unterminated wind mask mon(λ, µ)
in these bins with a heuristically chosen threshold identifies the complete shape
of the wind noise mN (λ, µ) as depicted in Figure 4.3e. Applying the mask to the
noisy input spectrum

|N̂MORPH(λ, µ)|2 = mN (λ, µ) · |X(λ, µ)|2, with mN (λ, µ) ∈ {0, 1}. (4.4)

results into the wind noise STPS estimate. In [HWB+12] post processing is
applied to remove isolated spectral notches by smoothing of the estimated mask in
Equation 4.4 over frequency. This approach nicely estimates wind noise but has
the drawback that low-frequency parts of the speech signal might also be included
in the wind mask and thus be labeled as noise. More details on the implementation
and choice of parameters can be found in [HWB+12].

4.2.1.2 Wind Noise Estimation Using Noise Templates

The idea of Kuroiwa et al. is based on a decomposition of the spectral shape
of wind noise into its rough spectral structure, i.e., the spectral envelope, and
the spectral fine structure [KMT+06]. This separation is realized in the cepstral
domain, whereas the real cepstrum is defined as the inverse Fourier transform of
the logarithmic spectrum

cλ(q) = 1
N

N−1∑

µ=0

log10(|X(λ, µ)|)ej
2πµq
M , q = 0, 1, . . . ,M − 1 (4.5)

with the cepstral coefficients cλ(q). This representation can be used to decompose a
signal into “slow frequency” variations also referred to as the spectral envelope and
the spectral fine structure represented by the lower and higher cepstral coefficients,
respectively (see, e.g., [GM10]). The method presented by Kuroiwa is shown in
a simplified version in Figure 4.4. In the sequel, this second reference method is
denoted by cepstral wind reference (CWR) approach.

After a cepstral analysis of each noisy input frame, the cepstral coefficients
are split up into the higher coefficients cλ(qth + 1) . . . cλ(M − 1) and the lower
coefficients cλ(0) . . . cλ(qth). While the higher coefficients are kept untouched, the
lower coefficients are processed, which are mainly responsible for the spectral energy
distribution and thus the accuracy of the wind noise estimate. The computation
of the lower coefficients is carried out by using reference envelopes of wind noise.
These references are trained in a separate step before the wind noise reduction
is applied, using the lower cepstral coefficients of pure wind noise recordings. A
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Figure 4.4: Template based wind noise estimation.

subsequent vector quantization of the coefficients guarantees a limited number of
references representing different wind noise conditions. In [KMT+06] the LBG
algorithm [LBG80] was proposed for the vector quantization and is also used in
the investigated implementation.

During the noise estimation process, the lower cepstral coefficients c(1) . . . c(qth)
of the observed signal are transformed back into the DFT domain again yielding
the logarithmic spectral envelope

log10 |E(λ, µ)| = DFT{c(0), .., c(qth)}. (4.6)

From the stored reference envelopes Ẽi(µ) the optimal candidate iopt is taken,
which minimizes squared error as

iopt(λ) = argmin
i

{
µth∑

µ=0

(log10 |E(λ, µ)| − log10 |Ẽi(µ)|)2

}
(4.7)

in a lower frequency range limited by µth (e.g., up to 100Hz as proposed in
[KMT+06]). To avoid the influence of the signal energy in the candidate search in
Equation 4.7, both the reference envelopes and the observed envelope’s energy are
normalized to a constant value, e.g., one.

The cepstral coefficients c̃i,opt(q) corresponding to the optimal envelope Ẽi,opt(µ)
now replace the cepstral coefficients of the observed spectrum as depicted in the
lower branch in Figure 4.4. Combining them with the higher cepstral bins from the
input spectrum the complete spectrum is constructed. After the inverse cepstral
transformation of the combined coefficients and an energy correction of the resulting
spectrum an estimate |N̂ (λ, µ)|2 of the wind noise STPS in the current frame is
given.

4.2.2 Centroid Based Wind Noise Estimation
The new concepts proposed in the following are based on a classification of the
current signal frame and subsequent estimation of the wind noise STPS. The
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classification aims to detect segments in the recorded signal, which contain pure
wind noise, clean speech or a mixture of speech and and wind. In contrast to the
pure detection described in Section 3.5, the classification must also give evidence
about speech activity. As shown in Figure 4.2, wind noise mainly affects voiced
speech. Thus, the classification aims to distinguish between voiced speech and wind
noise.

The feature used for the classification is given by the sub-band signal centroid
(SSC) Ξ(λ), which were already defined in Section 3.5.2.2 for the wind detection as

Ξµ1,µ2 (λ) = fs
M

∑µ2
µ=µ1

Φ̂xx(λ, µ) · µ
∑µ2

µ=µ1
Φ̂xx(λ, µ)

(4.8)

and reflects the energy distribution of an observed short-term PSD Φ̂xx(λ, µ).
Assuming that speech and wind noise signals are uncorrelated, the PSD of the
noisy signal is given by the sum of the speech short-term PSD Φ̂ss(λ, µ) and wind
short-term PSD Φ̂nn(λ, µ) as

Φ̂xx(λ, µ) = Φ̂ss(λ, µ) + Φ̂nn(λ, µ). (4.9)

With the definition of the short-term a posteriori SNR

γ̂(λ, µ) = Φ̂xx(λ, µ)
Φ̂nn(λ, µ)

(4.10)

the definition of the SSC of the input signal x(k) in Equation 4.8 can be rewritten
as

Ξ(λ) = fs
M

( ∑
Φ̂ss(λ, µ)∑

Φ̂ss(λ, µ) + Φ̂nn(λ, µ)

∑
Φ̂ss(λ, µ) · µ∑

Φ̂ss(λ, µ)

+
∑

Φ̂nn(λ, µ)∑
Φ̂ss(λ, µ) + Φ̂nn(λ, µ)

∑
Φ̂nn(λ, µ) · µ∑

Φ̂nn(λ, µ)

)

= Ξs ·
(

1− 1
γ(λ)

)
+ Ξn · 1

γ(λ) , (4.11)

where the indices of the sums in Equation 4.11 are defined over the frequency range
between µ1 and µ2 as in Equation 4.8, but are omitted here for the sake of clarity.
The centroids of clean speech and pure wind noise are presented by Ξs and Ξn,
and γ(λ) is the mean short-term a posteriori SNR in one frame, i.e. averaged over
the frequency range µ1 . . . µ2. Now, a prediction of the SNR can be made from the
measured SSC value, if Ξs and Ξn are known by rearranging Equation 4.11 to

γ(λ) = Ξs − Ξn
Ξs − Ξ(λ) . (4.12)

To illustrate this relation, an experiment is carried out measuring the SNR and the
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corresponding centroid frequency Ξ(λ), in each frame for a speech signal disturbed
by wind noise using the frequency range from 0 to 3000Hz for µ1 and µ2. For
the speech data, 3 minutes of randomly chosen speaker from the TIMIT database
[LKS89] are taken and 3 minutes from the database in [NV14b] represents the wind
noise. The measured data is sorted according to the SNR values and the resulting
values averaged for all frames are depicted in Figure 4.5 by the black solid curve.
Furthermore, it is assumed that the centroid frequency of wind noise and speech
are Ξs = 100Hz and Ξn = 700Hz, respectively. These prior conditions are taken,
as the measurements in Figure 3.15 indicate these as realistic values. Inserting the
aforementioned centroids Ξs and Ξn into Equation 4.11, the dashed gray curve
follows from the considered SNR range. For both curves in Figure 3.15 the a priori
SNR

ξ(λ) = γ(λ)− 1 (4.13)

is considered for reasons of clarity. It can be seen, that there are no big deviations
between the measured and theoretical relation for the signal centroids and the a
priori SNR. From the SNR-dependent behaviour in Figure 4.5, three classes can be
defined:

• A pure wind noise (Ξ < 200Hz)

• B both voiced speech and wind noise are active (200Hz < Ξ < 550Hz)

• C clean voiced speech (Ξ > 550Hz).

This classification will be used for the following two wind noise estimation
approaches as shown in the decision diagram in Figure 4.6. In a first step a binary
decision for each frame is made, if wind is active. The normalized short-term mean
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Figure 4.5: Signal centroid of voiced speech disturbed by wind noise.

72



4.2 Wind Noise Estimation

X(λ, µ) Detect
Wind

|N̂ (λ, µ)|2 = 0

Compute
Centroid

Estimate
STPS

|N̂ (λ, µ)|2 = |X(λ, µ)|2

|N̂ (λ, µ)|2

ISTM
(λ)
>
ζ

ISTM (λ) <
ζ

∨ Ξ(λ) ∈ C

Ξ(
λ)

∈ B

Ξ(λ) ∈ A

Figure 4.6: Decision diagram for wind noise estimation.

(NSTM) approach proposed in Section 3.5 showed the best detection rate (c.f.,
Figure 3.17) giving the wind indicator INSTM(λ). The binary decision for wind
activity is given by a comparison of the indicator with a threshold ζ. In the case of
no wind activity (INSTM(λ) < ζ) the noise estimate can be set to

|N̂ (λ, µ)|2 = 0, if INSTM(λ) < ζ ∨ Ξ(λ) ∈ C. (4.14)

In addition, the SSC in the current frame is checked for clean speech activity
(Ξ(λ) ∈ C) to ensure that wind noise reduction systems leave these parts untouched.
Based on the measured centroid a further classification is possible between frames
containing noisy speech or pure wind noise. In the case of pure wind noise (A), the
wind noise STPS estimation |N̂ (λ, µ)|2 can easily be realized by taking the input
spectrum

|N̂ (λ, µ)|2 = |X(λ, µ)|2, if Ξ(λ) ∈ A. (4.15)

With a given Ξ(λ) value in each frame, an estimate of the SNR condition is
possible as shown in Equation 4.12. But so far no frequency dependent estimate
of the wind noise is realized for condition B, which is required for the subsequent
speech enhancement. For the most challenging case B, two strategies will be
presented, which exploit the distinguishable structures of speech and wind to
estimate the wind noise STPS, when both speech and wind are present.

4.2.2.1 Minima Fitting Approach For Wind Noise Estimation

Because only voiced speech is expected in the lower frequency range, where the
wind noise signal is active, the harmonic structure of this speech segments can
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be exploited. This means that the speech energy is located at the fundamental
frequency and multiples of it. In between, i.e., at local minima of the magnitude
spectrum, the noise spectrum is assumed to be detectable.

The short-term spectral characteristics of voiced speech and wind noise are
demonstrated in Figure 4.7, where the noisy speech spectrum and the underlying
wind noise are depicted by the black and gray curves, respectively. Furthermore
two local minima X1(λ, µ), X2(λ, µ) of the noisy speech spectrum are marked by
the black circles for frequencies above 100Hz, where voiced speech is expected (see,
e.g., [VM06]).

The task of estimating the wind noise STPS during voiced speech activity can
be realized by exploiting the local minima. Those points of the noisy spectrum can
be used to fit an approximation of the wind noise spectrum. Different concepts
for the approximation can be applied. If all local minima are taken into account
a least square regression is possible. Since in the higher frequency range only a
negligible amount of wind noise is expected, this approximation will overemphasize
the high frequencies.

Based on the spectral shapes of voiced speech and wind noise, the method
presented in [NCBV14] and [NCBV15] approximates the wind noise spectrum as
an 1/fν-decay over the frequency, which was introduced as the distinct spectral
shape of wind in Section 3.3.3. The expression

Ñ1/f (λ, µ) = β(λ) · µ−ν(λ) (4.16)

is introduced to describe the spectral shape of the wind noise signal in each frame.
The parameter β(λ) and ν(λ) control the noise power and the spectral slope of

the approximation, respectively. Both parameters has to be determined in every
frame. The curve-fitting concept is illustrated in Figure 4.7, where the dashed gray
curve represents the 1/fν decay for this example. The noisy speech and the wind
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Figure 4.7: Wind noise estimation by approximation of local minima (method
Min-Fit [NCBV14]).
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noise spectrum are shown by the solid black and gray curves, respectively, and the
used data points X1(λ, µ), X2(λ, µ) are marked by the black circles.

For the calculation of the β(λ) and ν(λ) the amplitudes of at least two measured
points X1(λ, µ) = X(λ, µ1), X2(λ, µ) = X(λ, µ2) from the observed spectrum
X(λ, µ) are necessary leading to

ν(λ) =
log
(∣∣∣X(λ,µ1)

X(λ,µ2)

∣∣∣
)

log
(
µ2
µ1

) (4.17)

and

β(λ) = µ1
ν(λ) · |X(λ, µ1)|. (4.18)

In the example in Figure 4.7 the first two local minima at µ1 and µ2 above 100Hz
are taken, which are identified by a simple comparison with their neighbouring
values. To ensure that the considered local minima are between the multiples of
the fundamental frequency they must fulfill the two conditions:

1. The distance between two adjacent minima must be at least 50Hz, as this is
lowest expected fundamental frequency and thus smallest distance between
two valleys of the harmonic structure of speech.

2. The negative peaks representing the local minima must show a negative peak
prominence2 of at last 1 dB to ensure that the considered minima correspond
to a harmonic valley.

Alternatively, one or more measurement points, which are not local minima, can
be chosen directly from the spectrum below 100Hz, where no speech energy is
expected. In this range many microphones show a certain high-pass characteristic,
which influences the approximation and thus the noise estimate. Therefore, the
frequency range above 100Hz is used in the following. Considering the observations
from Section 3.3.3 the parameter ν(λ) controlling the spectral slope is bounded to
the range between 1 and 2. This lowers the amount of over and under estimation
of the wind noise spectrum, which might lead to severe artifacts during the speech
enhancement process. As seen in Figure 4.7, the noise approximation can exceed
the current noisy signal frame for low frequencies (< 200Hz), therefore the estimate
defined by Equation 4.16 is limited by the noisy signal X(λ, µ) in the current frame
as

|N̂1/f (λ, µ)|2 = min
{
Ñ2

1/f (λ, µ), |X(λ, µ)|2
}
. (4.19)

Experiments using a curve fitting approach using more than two local minima does
not improve the approximation accuracy. This arises from the fact that the minima

2The prominence of a peak is defined by the minimum amount that the signal must
descend on either side of the peak before either climbing back to a level higher than the peak
or reaching an endpoint of the signal.
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at higher frequencies are often not only related to the wind noise spectrum but
to other portions in the captured signals, e.g. sensor noise or further background
noise.

The only necessary steps for this wind noise estimation are the determination
of the local minima and the computation of the parameter β and ν for the spec-
trum approximation, which makes this algorithm to a solution featured by a low
computational complexity.

4.2.2.2 Pitch Adaptive Wind Noise Estimation

The technique proposed in [NV15] for the estimation of the wind noise STPS is
proposed, which takes into account a parameter describing the harmonic structure
of voiced speech signals given by the fundamental frequency f0. The fundamental
frequency is the inverse of the pitch cycle, which determines the periodicity of the
speech signal.

There exists a variety of algorithms, for estimating the fundamental frequency
f0 or its discrete representation µ0 in short segments of a speech signal (see, e.g.,
[Hes83] for an overview). They can be roughly divided into methods working in
the time-domain and methods working in a transform domain, mostly the DFT
domain. It turned out that frequency-domain approaches showed the most robust
results towards wind noise, because only a narrow spectral region of voiced speech
is influenced by the wind signal. For the proposed system the harmonic product
spectrum (HPS) was chosen as pitch estimator ([Nol70]):

µ̂0(λ) = arg max
µ





MH∏
l=1
|X(λ, l · µ)|

MH∏
l=1
|X(λ, l · µ+ dµ/2c)|




, (4.20)

where dxc denotes the closest natural number to x and MH is the number of consid-
ered harmonics. In [ISM08] Equation 4.20 was used to compute the pitch frequency
of band-limited speech, where the frequencies below 300Hz are completely missing.
It turned out that in the case of wind noise, where mainly the lower frequencies are
corrupted, the HPS also gives quite good results for the pitch estimation. It must
be mentioned, that pitch estimation in general requires larger frame-sizes than the
20ms usually applied in this work to detect also low fundamental frequencies to
50Hz. Therefore, the HPS method is carried out on frames of 50ms length.

The idea of the method presented in [NV15] is to use the knowledge of the
energy distribution of the speech spectrum for a given fundamental frequency. By
eliminating the harmonic speech components in the noisy spectrum, i.e., by setting
the corresponding frequency bins to zero, the remaining parts of the spectrum are
assumed to belong to the wind noise spectrum. This is realized by using a so-called
pitch adaptive inverse binary mask (P-IBM).

Binary masks are usually used to separate speech and noise by multiplying a
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spectral gain

GBM(λ, µ) =

{
1, if |S(λ, µ)|2 > LC(µ),
0, otherwise

(4.21)

to the noisy spectrum X(λ, µ). The resulting output signal only contains parts,
where the speech power |S(λ, µ)|2 is higher than a certain local criterion LC(µ). This
criterion is usually a threshold, which might depend on the local SNR. Applying an
ideal binary mask can improve the intelligibility or the performance of an automatic
speech recognition system (see, e.g., [GB14] and references therein). Normally,
binary masks completely cancel out parts of the undesired noise signal. This leads
to a sufficient but also aggressive noise suppression, which may introduce unwanted
artifacts to the output signal. Furthermore, due to the binary gain of the mask
based processing it follows, that the noise is not reduced in time-frequency units,
where both speech and noise are active. This residual noise also results in annoying
effects in the output signal.

Here, the aim is to cancel out the harmonic components of voiced speech
segments in the time-frequency plane by applying the P-IBM to the noisy signal.
For this purpose, the binary mask is defined as follows

GP-IBM(λ, µ) =

{
0, if µ ∈ M0(λ)
1, else,

(4.22)

with the set M0(λ) of frequency bins belonging to speech activity

M0(λ) = {κ · µ̂0(λ)− µ∆, . . . , κ · µ̂0(λ), . . . κ · µ̂0(λ) + µ∆} , ∀κ ∈ N (4.23)

and µ̂0(λ) depicts the discrete frequency bin corresponding to the fundamental
frequency estimate. The parameter µ∆ determines a frequency range around the
pitch bin to ensure the cancellation of the speech signal by the P-IBM. The concept
is displayed in Figure 4.8. The harmonic structure of the speech in the noisy signal
is clearly visible by the peaks at multiples of f0 in the black curve, which is removed
by the binary mask GP-IBM(f) shown as the dashed gray curve. An estimate of
the speech-free amplitude spectrum is then given by

AnoSp(λ, µ) = GP-IBM(λ, µ) · |X(λ, µ)| (4.24)

in which the speech components are set to zero.
An important parameter for the determination of the binary mask in Equa-

tions 4.22-4.23 is the width of zero-segments µ∆. On the one hand, if µ∆ is too
small residual parts of the speech spectrum will be identified as noise resulting into
unwanted attenuation of the desired speech signal in the further steps of the noise
reduction process. On the other hand, too wide zero-segments leads to smaller
remaining parts of the spectrum and thus a less accurate STPS estimate of the
wind noise.
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Figure 4.8: Pitch adaptive masking with µ∆ =̂ 50Hz, M = 512, fs = 16 kHz
(method P-IBM [NV15]).

Due to the segmentation and windowing of the signal in the noise reduction
framework (see Figure 2.2) the considered spectrum X(λ, µ) has a limited frequency
resolution and the so-called leakage effect causes a spreading of the spectrum (see
[OSB+89]). Because of the latter effect discrete frequency components, such as the
harmonic structure of voiced speech, are spread to a broader range. Mathematically
this can be described by a convolution of the spectrum with the spectrum of the
window function resulting from the multiplication of the window function in the
time-domain. The spectrum of the used square-root Hann window is depicted in
Figure 4.9 for the considered frame-size of 20ms. The dashed line marks the point,
where the spectrum decreases by 10 dB. The 10 dB decrease from a single harmonic
of the speech spectrum turned out to be a good trade-off between a low leakage
effect of the speech harmonics and a broad width of the zero-segments. Therefore,
this frequency range of approximately 50Hz is used to define the width µ∆ of the
zero-segments in the binary mask definition in Equation 4.23.

Since only wind noise is assumed to occupy the non-zero parts of AnoSp(λ, µ),
this spectrum is taken as the starting point for the STPS estimation. The parts
around multiples of f0, which are set to zero, are linearly interpolated using the
known adjacent non-zero frequency bins at µ = κ · µ0 ± (µ∆ + 1), resulting into the
noise STPS estimate

|N̂P-IBM(λ, µ)|2 =

{
A2
noSp(λ, µ) , if µ ∈ M

A2
lin(λ, µ) , else,

(4.25)

where Alin(λ, µ) is the interpolated wind noise spectrum.
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Figure 4.9: Spectrum of a 20ms square-root Hann window.

Limitation of Wind Noise Over-estimation

Because wind noise only shows very low energy at higher frequencies, the aforemen-
tioned method can over-estimate the wind spectrum in this range, if the binary gain
does not cancel out the complete speech spectrum. To prevent an over-estimation,
a reliability check is performed exploiting the curve-fitting concept already used in
Section 4.2.2.1. It was shown that the spectrum of wind noise can be approximated
by an 1/f slope over the frequencies f . Therefore, the noise STPS estimate is
limited at higher frequencies (µ > µlow) by an 1/f2 curve starting from the av-
eraged power σ2

N,low(λ) in the lower band (µ < µlow) of the noise estimate from
Equation 4.25

|N̂P-IBM(λ, µ)|2 = min
{
|N̂P-IBM(λ, µ)|2, σ2

N,low(λ)/µ2
}
for µ > µlow. (4.26)

The frequency limit corresponding to µlow is set to the limit 2000Hz for the
reliability check. Below this frequency, most of the wind noise energy is located
(see Figure 4.2) and thus this range covers the most relevant part of the wind noise
spectrum.

4.2.3 Effects of Recursive Smoothing
Many noise estimators apply a first-order recursive smoothing to either the input
signals as in [Mar01] or to both the input and to the estimated noise PSD as in
[HHJ10] or [GH11]. The aim is to reduce the variance and improve the accuracy
of the estimate. For background noise, which is assumed to be stationary or only
slowly varying over time, this procedure might be helpful to reduce the impact of
outliers in the estimation process. For highly non-stationary noise signals, such as
wind noise, this smoothing conflicts with a sufficient high tracking speed of the
noise estimate.
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An experiment is carried out in the following, which shows the influence of
recursive smoothing on the noise estimate accuracy. The noise signal in each frame
is assumed to be known as N(λ, µ) and the smoothed version yielding to the
short-term noise PSD estimate is given by

Φ̂nn(λ, µ) = α · Φ̂nn(λ− 1, µ) + (1− α) · |N(λ, µ)|2. (4.27)

The smoothing constant α determines the trade-off between good variance reduction
(α → 1) and a high tracking speed (α → 0). The accuracy of the noise estimate
in each frame is essential for the performance of the complete noise reduction
system. A measure, which is often used to quantify the accuracy, is the logarithmic
error3 elog between the noise PSD estimate and the real noise, where a lower error
indicates a more accurate estimate (see Equation A.4). Usually, the noise PSD
estimate is compared to a smoothed version of the real noise, e.g., with a smoothing
constant α = 0.8 ([HHJ10], [GH11], [TTM+11]).

To obtain information about the influence of the recursive smoothing, the
error between the short-term PSD estimate Φ̂nn(λ, µ) obtained by smoothing
described in Equation 4.27 and the true squared magnitude of the noise |N(λ, µ)|2
is investigated.

Three typical background noise signals (car, babble and jackhammer) from
[ETS09] and a recorded wind signal from [NV14b] are considered. The results are
shown in Figure 4.10 using smoothing constants 0 < α < 0.995. It can be seen, that
for the three background noise signals the smoothing only introduces a moderate
error up to a maximum below 5dB even in the case of smoothing factor close to
one and the rather non-stationary noise types babble and jackhammer noise. For
the dashed gray curve, presenting the logarithmic error of wind noise, the values
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Figure 4.10: Logarithmic error elog between squared magnitude |N(λ, µ)|2 of
noise spectrum and its short-term PSD estimate Φ̂nn(λ, µ).

3Appendix A.2 gives a detailed description of the computation of the logarithmic error.
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are significantly higher. Especially for α > 0.9, which is a commonly chosen value
for conventional noise estimation algorithms, the error increases dramatically. This
simulation shows that only a light smoothing of the wind noise should be applied,
which in turn provides a smaller variance reduction of the estimate. Thus, in the
following the STPS estimate of the noise signal in each frame is directly employed
for the speech enhancement process, i.e., α = 0.

4.2.4 Evaluation of Wind Noise Estimation
In the considered speech enhancement system as shown in Figure 2.4 different
components influence the performance of the noise reduction. A crucial role is
played by the accuracy of the estimated wind noise STPS on which the subsequent
spectral weighting is computed. The presented algorithms in Section 4.2.1.1-4.2.2.2
will be compared in terms to their accuracy for noisy speech signals with different
input SNR scenarios. Again, the logarithmic error elog is used as the quality
measure. Speech sentences from male and female talkers are randomly taken from
the TIMIT database [LKS89] and mixed with wind noise recordings from [NV14b]
corresponding to SNR scenarios from -15 to 15 dB. Realistic wind noise conditions
are mostly in the SNR range between -5 and 5 dB. The length of the signals are
60 seconds, where 3 different shifts of the noise signal are considered resulting in
signals with a length of 3 minutes for each SNR scenario.

The results of the logarithmic error are shown in Figure 4.11 comparing the
different wind noise estimation algorithms. The cepstral reference based method
CWR from Section 4.2.1.2 shows the largest error in the lower SNR range. Only
for high SNR values (> 10dB) this method outperforms the other considered
approaches. Considering the proposed methods, the Min-Fit approach from Section
4.2.2.1 show similar results as the morphological algorithm (MORPH) from Section
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Figure 4.11: Estimation accuracy in terms of the logarithmic error.
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4.2.1.1, while the pitch adaptive inverse binary mask (P-IBM) (Section 4.2.2.2)
method outperforms the three other approaches. Especially in the SNR range
-5 to 5 dB, which reflects realistic scenarios, the noise estimation by the P-IBM
procedure shows the lowest error and thus the highest accuracy.

4.3 Wind Noise Reduction Based on Spectral Filtering
In the previous section only the estimation of the wind noise was discussed and
evaluated. For the application in a communication application obviously the
performance of the complete system as depicted in Figure 2.4 in terms of noise
reduction or speech enhancement is deciding. Thus, the second crucial part of
the speech enhancement, the computation of the spectral gain, is investigated and
evaluated in this section.

In the past, a variety of rules for the gain calculation were developed (see, e.g.,
[Esc12] and references therein). Because the focus of this work is the detection and
estimation of wind noise, only the most common algorithms already introduced in
Section 2.3.3 are considered here, which is the Wiener filter

GW(λ, µ) = ξ̂(λ, µ)
ξ̂(λ, µ) + 1

(4.28)

and can also described in form of the generalized spectral subtraction

GS(λ, µ) =

√√√√
[

1−
(
|N̂ (λ, µ)|2
|X(λ, µ)|2

)βS
]αS

(4.29)

with the parameter αS = 2 and βS = 1. Since in a real scenario the required SNRs
ξ(λ,µ) or noise power spectra |N (λ, µ)|2 are only available as estimates, usually
estimation errors arise for all noise estimation methods as shown in Section 4.2.4.
Especially, short segments in which the noise estimate is inaccurate can lead to
severe artifacts in the output signal. An underestimation of the noise leads to short
residual noise segments also known as “musical tones” while an overestimation
might lead to an undesired cancellation of parts of the speech signal. To overcome
these problems different strategies were proposed in the past. Two of those will be
investigated and also taken into the evaluation process at the end of this section.

4.3.1 Decision Directed SNR Estimation
Ephraim and Malah proposed the so-called “decision-directed” approach (DDA)
presented in [EM84] to update the a priori SNR ξ̂(λ, µ) with the smoothing
constant αξ

ξ̂(λ, µ) = αξ · |Ŝ(λ− 1, µ)|2

|N̂ (λ− 1, µ)|2
+ (1− αξ) ·max{γ̂(λ, µ)− 1, 0}, (4.30)
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where αξ is typically in the range 0.9 < αξ < 0.99 and Ŝ(λ− 1, µ) is the spectrum
of the enhanced previous frame. Usually, this procedure contributes to higher
subjective quality of the enhanced speech, especially to attenuate “musical tones”.
In terms of transient or fast changing signal characteristics the “decision-directed”
approach might lead to a reduced performance due the smoothing over consecutive
signal frames. In [EM84] a high smoothing constant of αξ = 0.98 is proposed for
the SNR computation to reduce variations of the spectral gains. For the considered
wind noise reduction system the a posteriori SNR estimate γ̂(λ, µ) in Equation 4.30
is computed from the STPS in each frame as

γ̂(λ, µ) = |X(λ, µ)|2

|N̂ (λ, µ)2
(4.31)

for the Wiener filter using the presented wind noise estimators for the STPS
estimation.

4.3.2 Spectral Subtraction with Recursive Gain Curves
A different approach for the gain calculation was proposed by Linhard and Haulick
in [LH99] using also the spectral subtraction method as shown in the general form
in Equation 4.29. Their gain calculation rule was also proposed by Hofmann e.a.
for wind noise suppression in [HWB+12].

The motivation was to avoid single outliers during the gain calculation process,
which result from estimation errors of the wind noise STPS. Therefore, a recursive
calculation rule was proposed using the gain function from the previous frame
GRSS(λ− 1, µ) for the computation of the gain in the current frame GRSS(λ, µ).
In the Wiener filter realization of Equation 4.29 (αS = 2, βS = 1), the recursive
computation rule is given by

GRSS(λ, µ) = max
{

1− a

γ̂(λ, µ)((1− c) + c(GRSS(λ− 1, µ)−Gmin)) , Gmin

}
.

(4.32)

The important part of the gain calculation is the weighting of the a posteriori
SNR γ̂(λ, µ) = |X(λ, µ)|2/|N̂ (λ, µ)|2 with a factor depending on the previous gain
GRSS(λ − 1, µ). This relation introduces a hysteresis into the gain rule leading
to different curves for increasing and decreasing SNR values. The position and
width of the hysteresis range is controlled by the parameters a and c, respectively.
Exemplary curves are shown in Figure 4.12. The solid and dashed lines present the
progress for rising and decreasing SNR values, respectively.

In Fig 4.12a the position of the hysteresis range is shifted by the choice of a. A
greater value of a results into an earlier decrease of the gain for higher SNR values,
which leads to a more aggressive noise suppression. The effect of the parameter
c is depicted in Figure 4.12b controlling the width of the hysteresis range. The
aim of the hysteresis during the gain calculation is, that the gain function remains

83



Chapter 4 – Wind Noise Reduction

0 5 10 15 20

−10

−5

0

a = 0.5

a = 1

SNR/dB

G
R

SS
/d

B

(a) Varying hysteresis position
c = 0.8, Gmin = 0.25

0 5 10 15 20

−10

−5

0

c = 0.6

c = 0.9

SNR/dB

G
R

SS
/d

B
(b) Varying hysteresis width

a = 1, Gmin = 0.25

Figure 4.12: Recursive spectral subtraction gain curves for increasing ( )
and decreasing (- - -) SNR values.

longer in the state of a strong noise reduction (for increasing low SNR values) or
low noise reduction (for decreasing high SNR values). Using this technique should
reduce the effect of single outliers during the noise estimation procedure and the
associated artifacts in the output signal such as musical tones.

4.3.3 Evaluation of the Wind Noise Reduction Performance
In this section an evaluation of the complete noise reduction system containing
the single microphone wind noise estimators introduced in Section 4.2.1 and using
the previously presented gain calculation rules. Different measures were proposed
in the past to rate the quality of a speech enhancement system. Many can be
related to the desired signal-to-interference ratios (see, e.g., [QB88]). The segmental
attenuation of both, the desired speech signal (speech attenuation (SA)), and the
noise signal (noise attenuation (NA)) are calculated. These are a commonly used
methods for the evaluation of the performance of noise reduction systems (see, e.g.,
[Esc12], [Jeu12]). As a low SA and at the same time a high NA is desired, the
difference NA-SA is an indicator for an improvement of the processed signal and
will be used in the following to compare the investigated algorithms.4

The improvement in terms of the SNR or NA-SA is highly correlated with
the subjective listening impression of the quality of speech signals but gives no
information about the intelligibility of the speech signal. There are many discussions,
whether a single microphone approach can enhance the intelligibility of speech in

4The computation of the SA and NA measure is explained in Appendix A.1.
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general (see, e.g., [HL07]). The outcome is that for most algorithms and noise
scenarios the intelligibility can not be increased and is not related to the experienced
speech quality. However, in some cases an improvement of the intelligibility is
measurable also by listening tests, especially for noise signals, which seems to be
sparse with regard to their spectral energy distribution such as low frequency car
noise [HL07]. If no improvements of the intelligibility are measurable, the applied
signal processing should at least not decrease the intelligibility.

A measure for the intelligibility of noisy speech is the speech intelligibility
index (SII) standardized by the American National Standards Institute (ANSI) in
[ANS97]. The calculation is based on the speech level distortion in different sub-
bands considering psycho-acoustic effects such as masking, perception thresholds
and a non-uniform frequency resolution. The SII is used as a second quality measure
for the evaluation of the algorithms always comparing the processed signals with the
noisy input signals. The SII takes values between zero and one values higher than
0.75 indicates a good communication system while values below 0.45 correspond to
a poor system.

For the evaluation, clean speech randomly chosen from the TIMIT database
[LKS89] is mixed with wind noise recordings from [NV14b] according to different
SNR scenarios between 15 and 15 dB. Again, the SNR range of -5 . . . 5dB depicts
the most realistic conditions for outdoor recordings but also for very low SNR
ranges and almost clean speech scenarios the performance of the algorithms is of
interest. Therefore, the above mentioned SNR range is considered.

Figure 4.13 shows the results in terms of the NA-SA measure for the four
wind noise estimation approaches presented in Section 4.2.1. Over the complete
SNR range all algorithms provide a positive NA-SA value, which demonstrates an
improvement. Up to 5 dB, the approach using the pitch adaptive inverse binary
mask (P-IBM) indicates the highest quality enhancement with NA-SA values of
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Figure 4.13: Noise attenuation - speech attenuation (NA-SA) using different
noise estimators and general Wiener filter rule.
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Figure 4.14: Speech intelligibility using different noise estimators and general
Wiener filter rule.

over 15 dB. For higher SNR values the morphological approach (MORPH) gives
a slightly better results, where in total this algorithm shows a relative constant
improvement of approximately 14 dB. The minima-fitting (Min-Fit) method and
the method based on the cepstral codebooks (CCB) show the smallest improvement,
which are, however, not much lower than the other two noise estimators.

Considering the SII, the results of the experiments using the different wind
noise estimators are shown in Figure 4.14 together with the SII of the noisy input
signal represented by the dashed gray line. As for the NA-SA measure, the SII
investigations confirm an improvement for all algorithms. For the complete SNR
range a fixed ranking can be observed. Again the P-IBM approach shows the
highest values followed by the morphological method, the Min-Fit method and the
cepstral codebook algorithm. All algorithm achieve an SII value representing a
good intelligibility for input SNR values greater than -7 dB, for the P-IBM method
even for SNR values greater than -13 dB.

The small divergence between the ranking of the algorithms with respect to
the considered measures can be explained by the fact that the audible speech
quality is not always correlated with the intelligibility. A rather aggressive noise
reduction can lead to lower noise attenuation - speech attenuation (NA-SA) values
because of the introduced speech attenuation, but might be beneficial for the speech
intelligibility. In conclusion, all noise estimators showed an improvement in terms
of the quality and the intelligibility. For the most realistic wind noise scenarios the
P-IBM method results in the highest improvements.

In the second part of this evaluation section, the three different approaches for
gain computation are compared:

1. the recursive spectral subtraction (RSS) computation rule described in (Sec-
tion 4.3.2) with the parameter a = 0.3 and c = 0.75,
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2. Wiener filter using the decision directed approach (DDA) for SNR estimation
(Section 4.3.1),

3. the original spectral subtraction from Equation 4.29.

The calculated spectral gains of the three algorithm are limited to the minimum
gain Gmin =̂ −40 dB.

As only the influence of the gain computation is of interest, the best wind
wind noise estimator from the previous results, the P-IBM method, is applied.
The results are shown in Figures 4.15 for the NA-SA and 4.16 for the SII and
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Figure 4.15: Noise attenuation - speech attenuation (NA-SA) of different gain
computation rules using the P-IBM wind noise estimator.
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Figure 4.16: Speech intelligibility of different gain computation rules using
the P-IBM wind noise estimator.
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the same wind noise conditions as used before. It can be seen, that the recursive
approach results in small but consistent improvements for both measures compared
to the original spectral subtraction. In contrast to that, the DDA method for SNR
estimation tends to slightly decrease the performance of the noise reduction system.
This is a result of the smoothing of the SNR over time which lower the effect of
outliers in the noise estimation procedure but leads to an inaccurate tracking speed
of the fast variations of the wind noise as it was shown in Section 4.2.3.

The results of the simulations show that the combination of the pitch adaptive
wind noise estimator P-IBM and the recursive spectral subtraction approach for the
spectral gain calculation RSS achieves the highest noise reduction and intelligibility
improvements.

4.4 Dual Microphone Wind Noise Reduction
State-of-the-art smartphones and digital hearing aids use two or more microphones
for the signal acquisition and use characteristics from both recorded signals also for
noise reduction purposes. For a directional processing, beamforming techniques
may be used, e.g., [BW01] or [BCH08]. Because the speech signal and the wind
noise signal can not be separated due to their directional properties, dual channel
wind noise reduction algorithms usually exploit the correlation or more specific the
differing coherence properties of speech and wind noise. The methods proposed
in the past are all based on directly computing a spectral gain for the removal of
wind noise without the intermediate step of a wind noise estimation. Two methods
from literature will be introduced in Section 4.4.1 and 4.4.2. A novel coherence
based method to estimate the wind noise STPS will be discussed in Section 4.4.3
([NV14a]).

The angle of arrival of the desired speech signal is often determined by a specific
scenario, e.g., for a mobile phone or a hearing aid in constant orientation to the
speaker. Besides, methods for estimating the direction of arrival (DOA) can be
applied. DOA estimation is a well studied field and an overview for applications in
mobile phones can be found in [Nel09], where the cross-correlation based method
by Knapp and Carter [KC76] showed the highest robustness towards noise. Further
approaches can be found in [RFB81] proposing a least-mean-square (LMS) algorithm
or [Ben00] using an adaptive eigenvalue decomposition (AED) for DOA estimation.
Dependent on the DOA the microphone signals delay will be compensated. This
procedure is usually carried out in a pre-processing step before the noise reduction
(e.g., by a fractional delay filter [LVKL96]). For all considered approaches in this
section, the DOA of the speech signal is assumed to be known and the resulting
delay between the signals is compensated and is not scope of this work.

4.4.1 Coherence Weighting
Franz and Bitzer proposed a multi-microphone algorithm for wind noise reduction
in [FB10]. The approach consists of two stages of which the first performs a
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Figure 4.17: Spectral weighting based on the magnitude squared coherence
Cxy(λ, µ) as proposed in [FB10].

wind noise reduction in general. The second stage is especially designed for the
application of binaural hearing aids and replaces disturbed signal parts from one
monaural signal by the corresponding clean parts from the other monaural signal.
Because the required shadowing from the wind for at least one microphone is
usually not given, only the first stage is considered here. This stage directly uses
the magnitude squared coherence (MSC) Cxy(λ, µ) as defined in Equation 3.8 for
the two microphone signals x and y. The dual microphone wind noise suppression
gain is then defined as

Gcoh(λ, µ) = max
{

min
{

(Cxy(λ, µ)− thmin) · (1−Gmin)
thmax − thmin

+Gmin, 1
}
, Gmin

}
.

(4.33)

The parameters thmax, thmin and Gmin limit the gain function as depicted in
Figure 4.17. The definition for this suppression gain is motivated by the described
coherence properties of speech and wind noise as shown in Section 3.3.4. In the
case of wind noise the MSC Cxy(λ, µ) tends to zero, which leads to a suppression
in these frequency bins. A speech signal produces a high coherence and generates
gain values close to one. The thresholds thmin and thmax allow a headroom for
some fluctuations around Cxy(λ, µ) = 0 for pure wind noise and Cxy(λ, µ) = 1 for
clean speech. Otherwise, variations of Cxy(λ, µ) in these ranges will lead to some
unwanted artifacts in the filtered output signal.

4.4.2 Differential Array Wind Noise Suppression
A further dual microphone method for wind noise suppression is presented by
Elko in [Elk07]. Again, it is proposed to apply a spectral weighting gain, which is
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directly calculated from the input signals. The basic idea of this algorithm can be
derived from an observation made with so-called differential arrays. They achieve
a directional filtering by using the difference of two microphone signals, where the
directionality can be modified by delaying and weighting of the signals [HB04]. This
approach works efficiently for small microphone distances (dm < 10 cm) but shows
a high sensitivity to uncorrelated noise in the microphone signals (see Chapter 4
in [BW01]) such as sensor self-noise or wind noise. This sensitivity is usually not
desired, because instead of a noise attenuation an amplification of the uncorrelated
wind noise is performed. The principle of the differential array can be used vice versa
to the original approach for the detection and reduction of wind noise. Therefore,
the sum and difference of the microphone short-term PSD estimates are considered
as

Φ̂sum(λ, µ) = α · Φ̂sum(λ− 1, µ) + (1− α) · |X(λ, µ) + Y (λ, µ)|2 (4.34)
Φ̂diff(λ, µ) = α · Φ̂diff(λ− 1, µ) + (1− α) · |X(λ, µ)− Y (λ, µ)|2 (4.35)

defining the power ratio

PR(λ, µ) = Φ̂diff(λ, µ)
Φ̂sum(λ, µ)

. (4.36)

According to [Elk07], the sum and difference PSDs from Equations 4.34 and 4.35
can be expressed in terms of the coherent speech short-term PSD Φ̂ss(λ, µ) and
the wind noise short-term PSD Φ̂nn(λ, µ) as

Φ̂sum(λ, µ) = 4 · Φ̂ss(λ, µ) + 4 · Φ̂nn(λ, µ) · CW(µ)
+ 2 · Φ̂nn(λ, µ) · (1− CW(µ)) + Φ̂micx(λ, µ) + Φ̂micy (λ, µ) (4.37)

Φ̂diff(λ, µ) = 4 · Φ̂ss(λ, µ) · sin2
(
πd̃mµfs
cM

)

+ 4 · Φ̂nn(λ, µ) · CW(λ, µ) sin2
(
πd̃mµfs
UM

)

+ 2 · Φ̂nn(λ, µ) · (1− CW(µ)) + Φ̂micx(λ, µ)+Φ̂micy (λ, µ) (4.38)

with the coherence function CW(µ) of wind noise. The self-noise of the two micro-
phone signals is expressed by the PSDs Φ̂micx|y (λ, µ). Neglecting the self-noise and
assuming a zero coherence of wind noise CW(λ, µ) = 0 (cf. Equation 3.12), the
power ratio in Equation 4.36 in the case of pure wind noise (Φ̂ss(λ, µ) = 0) turns
to

PRn(µ) = 1 (4.39)

and in the case of a clean coherent speech signal (Φ̂nn(λ, µ) = 0) to

PRs(µ) = sin2
(
π d̃m µfs
cM

)
, (4.40)
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which is only dependent on the effective microphone distance d̃m. This distance is
defined by the angle θ between the microphone axis and the incident direction of
the speech signal

d̃m = cos(θ) · dm. (4.41)

With the aforementioned assumption of delay compensated speech signals, i.e.,
θ = 90◦, follows d̃m = dm. The resulting power ratios for wind noise and coherent
speech signals are shown in Figure 4.18 by the dashed and solid curves, respectively,
where for the speech signal three different effective microphone distances are
considered. It can be seen that the distinction between speech and wind noise
improves with smaller microphone distances. The suppression gain Gdiff(λ, µ) to
reduce the wind noise in speech signal is stated in [Elk07] as the ratio between the
theoretical power ratio for speech in Equation 4.40 and the measured power ratio
in the current frame PR(λ, µ) from Equation 4.36

Gdiff(λ, µ) = PRs(µ)
PR(λ, µ) . (4.42)

The idea is to reduce the noisy input signal by the ratio between the measured
power ratio PR(λ, µ) and the predicted power ratio PRs(µ) for a clean speech
signal. From Equation 4.40 and the curves in Figure 4.18, it can be seen that the
separation between speech and wind noise works better the smaller the microphone
distance is. But even for a relative big microphone distance of 10 cm, a reasonable
separation in the relevant frequency range below 1500Hz is ensured.
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Figure 4.18: Power ratios for wind (PRW, Equation 4.39) and speech (PRs,
Equation 4.40) for different microphone distances.
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4.4.3 Coherence Based Wind Noise Estimation
In contrast to the two aforementioned methods, which directly compute a suppres-
sion gain, the algorithm proposed in [NV14a] first performs a noise estimation and
then applies a noise reduction based on a spectral weighting. This separation of
wind noise estimation and reduction can be useful as the choice of the subsequent
gain calculation gives an additional degree of freedom for the design of the speech
enhancement system. Furthermore, the noise estimate can be combined with other
disturbance estimates, e.g., background noise, acoustic echo or reverberation.

For the noise estimation also the low coherence of wind noise and the high
coherence of speech is considered. In [DE96], Dörbecker proposed a noise estimator
for a dual microphone system expecting uncorrelated, i.e., incoherent background
noise signals. The dual microphone signal model in DFT domain is given by5

X(λ, µ) = S(λ, µ) ·H1(λ, µ) +N1(λ, µ) (4.43)
Y (λ, µ) = S(λ, µ) ·H2(λ, µ) +N2(λ, µ). (4.44)

Equal noise power levels

Φ̂n1n1 (λ, µ) ≈ Φ̂n2n2 (λ, µ) ≈ Φ̂nn(λ, µ), (4.45)

and similar transfer functions H1|2(λ, µ) of the desired speech signal

|H1(λ, µ)| ≈ |H2(λ, µ)| ≈ |H(λ, µ)|, (4.46)

are assumed in both microphones. Then, the magnitude squared cross power
spectrum can be expressed for uncorrelated noise signals N1(λ, µ) and N2(λ, µ) as

|Φ̂xy(λ, µ)|2 = Φ̂ss(λ, µ)2 · |H(λ, µ)|4 (4.47)

and the product of the power spectra of each microphone signal can be written as

Φ̂xx(λ, µ) · Φ̂yy(λ, µ) =
(

Φ̂nn(λ, µ) + |H(λ, µ)|2 · Φ̂ss(λ, µ)
)2
. (4.48)

Taking the square root of Equations 4.47 and 4.48, they can be combined and
rearranged for an estimate of the noise PSD

Φ̂nn,Coh(λ, µ) =
√

Φ̂xx(λ, µ) · Φ̂yy(λ, µ)− |Φ̂xy(λ, µ)|, (4.49)

where the short-term estimates of the PSDs are defined by the recursive smoothing
approach as

Φ̂xy(λ, µ) = α · Φ̂xy(λ− 1, µ) + (1− α) ·X(λ, µ) · Y ∗(λ, µ). (4.50)

The noise estimate from Equation 4.49 can be used for the subsequent speech
enhancement, e.g., based on a spectral weighting. However, it has the drawback that

5The influence of the impulse responses h1(k) and h2(k) (see Equations 2.1 and 2.2) is
modeled by the transfer functions H1(λ, µ) and H2(λ, µ).
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due to the smoothing process for the computation of the PSDs, the aforementioned
problem of an slow adaptation occurs as demonstrated in Section 4.2.3. In [DE96]
a smoothing constant close to one (α = 0.96) is proposed to reduce the variance
of the estimated PSDs, which is sufficient to follow the characteristics of general
background noise types, but may introduce high estimation errors in the case of
highly non-stationary wind noise (see Figure 4.10).

The effect of the smoothing constant on the dual microphone signals is investi-
gated and shown in Figure 4.19. A sequence of 10 seconds of speech is mixed with
wind noise signals taken from [NV14b], where the recordings were carried out with
a dual microphone mock-up phone with a microphone distance of 10 cm.

In 4.19a the spectrogram of the noisy speech of one microphone signal is
presented while 4.19b and 4.19c shows the MSC values over time and frequency
using smoothing constants of α = 0.96 and α = 0.5, respectively. For the illustration
of the coherence, the red areas represent parts with high coherence close to one
while the blue areas depict incoherent segments. As the MSC Cxy is the normalized
version of the cross-PDS of the two signals x(k) and y(k) (see Equation 3.8), the
performance of the noise estimate in Equation 4.49 can be predicted from the
accuracy of the MSC calculation. In Figure 3.8 it was shown, that the scenarios of
clean speech and pure wind noise are characterized by C(λ, µ) = 1 and C(λ, µ) = 0,
respectively. Consequently, an overestimation, e.g., α = 0.5, of the MSC and thus
of the cross-PSD leads to an underestimation of the wind noise in Equation 4.49.
In the same way an underestimation of the MSC, e.g., α = 0.96, leads to a too high
wind noise estimate. Thus, the two effects displayed in Figure 4.19 have a great
influence on the accuracy of the wind noise estimate.

The trade-off between variance reduction and estimation accuracy in terms of
the tracking speed is clearly visible. On the one hand the choice of α = 0.96 in
Figure 4.19b results in a good estimation of the true values of the MSC, e.g., in the
case of wind noise as the blue areas indicating the expected low coherence in the
low-frequency range (f < 1000Hz). The high smoothing constant cause a smearing
of the MSC values over time, which is clearly visible at t = 3 s (black box), where a
speech segment begins with only low wind noise energy but blue areas still indicate
a low coherence. On the other hand, the coherence in Figure 4.19c computed with
a low smoothing constant (α = 0.5) shows a direct adaptation at this speech onset
with a high coherence. Here, even the harmonic structure of voiced speech segments
is visible during wind noise highlighted by the dashed black box. The drawback of
the high variance in the estimate becomes apparent in segments, where only wind
is active, e.g., in the solid black box before t = 3 s.

The slow adaptation of the coherence for α = 0.96 might be negligible in the
case of stationary or only slowly varying noise signals, which were assumed in the
original approach [DE96], but deteriorate the performance of noise estimators for
non-stationary noise such as wind noise. Therefore, in the following two strategies
are proposed concerning this problem leading to an improved wind noise estimation.

Both approaches are further developments of the original approach from [DE96]
by exploiting not only the magnitude of the coherence function as before, but also
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Figure 4.19: Short-term coherence for different smoothing constants.
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the phase of the complex coherence. As evident in Equation 3.7 the phase of the
complex coherence Γxy(λ, µ) is only affected by the cross-PSD Φ̂xy(λ, µ), because
the auto PSDs are always real-valued. Choosing the smoothing constant α = 0 for
the calculated cross PSD leads to the phase in each frame

ϕΓ(λ, µ) = ∠{Φ̂xy(λ, µ)} = ∠{X(λ, µ)} − ∠{Y (λ, µ)}, (4.51)

which is determined as phase difference between the two input signals X(λ, µ) and
Y (λ, µ). For a coherent signal the phase difference is only dependent on the DOA
of this signal. A not compensated delay τ between the signals will generate a linear
phase function

ϕΓ(λ, µ) = 2πµτfs
M

. (4.52)

The measured phase of the coherence of the same signals as in Figure 4.19
is represented in Figure 4.20 in a time-frequency representation for compensated
DOA, i.e., τ = 0. The zero phase of the speech signal is clearly visible by the
green areas in the undisturbed segments, while parts of the signal in which wind is
dominant the phase takes random values in the interval −π . . . π.

As mentioned before the DOA is assumed to be known and the corresponding
delay is compensated (τ = 0). For a mixed signal containing similar speech and
noise levels in each microphone signal

|S1(λ, µ)| ≈ |S2(λ, µ)| = S(λ, µ) (4.53)
|N1(λ, µ)| ≈ |N2(λ, µ)| = N(λ, µ) (4.54)
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Figure 4.20: Coherence phase ∠{X(λ, µ)·Y ∗(λ, µ)} of speech and wind noise.
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the coherence phase can be expressed as6

ϕΓ =arctan
(
|S||N |(sin(ϕs1 − ϕn2) + sin(ϕn1 − ϕs2)) + |N |2 sin(ϕn1−ϕn2)
|S|2+|S||N |(cos(ϕs1−ϕn2)+cos(ϕn1−ϕs2))+|N |2 cos(ϕn1−ϕn2)

)
.

(4.55)

For the sake of brevity the frequency and time indices are omitted in this equation. A
direct relation between the SNR (|S|2/|N |2) and the phase ϕΓ is not possible, since
the phases of speech signals ϕs1|2 and noise signals ϕn1|2 are randomly distributed
and unknown. However, it can be seen that in the case of pure wind noise (S = 0)
ϕΓ takes the value of the difference of noise phases

ϕΓ,wind = ϕn1−ϕn2 (4.56)

and in the case of clean speech (N = 0)

ϕΓ,speech = 0. (4.57)

The measured distribution of the phase in the case of wind noise and clean
coherent speech is shown in Figure 4.21. As expected, the zero phase behaviour of
the speech is apparent and result in a peak at ϕΓ = 0. For wind noise a uniform
distribution of the phase between −π and π is given. This property is exploited
in the following by two proposals for advanced wind noise estimation using dual
microphone signals.

-π 0 π

ϕΓ

(a) Speech

-π 0 π

ϕΓ

(b) Wind noise

Figure 4.21: Phase distribution of wind noise and speech signals.

4.4.3.1 Decision Directed Wind Noise Estimation

As shown in Equation 4.55, a single phase value of ϕΓ of the coherence in a one
time-frequency bin can not be mapped to the degree of distortion. Therefore, the

6The derivation of Equation 4.55 can be found in Appendix B.
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4.4 Dual Microphone Wind Noise Reduction

distribution of the phase within one signal frame is investigated in [NV14a] to
further develop the approach by Dörbecker [DE96]. As shown in Figure 4.21 the
distribution of the noise phase follows a uniform distribution, which is in general
characterized by a variance of A2/3 for a range of values between −A . . . A. For
the variance of the phase normalized by π2/3

σ2
ϕ(λ) = 3

π2

µc∑

µ=1

ϕΓ(λ, µ)2

µc + 1 (4.58)

follows that σ2
ϕ(λ) takes a value of one for a uniform distribution between −π . . . π

in the case of wind noise. For the zero-phase segments of the clean speech short-term
cross PSD Φ̂xy(λ, µ), values close to zero are expected. The frequency limit for
the variance computation defined by µc should be chosen to a range in which both
wind noise and speech are active, e.g., to 0 . . . 4000Hz. The variance of the phase
information represents a wind and speech indicator and can be used to update the
noise estimate similar as proposed by Ephraim and Malah for the decision directed
signal-to-noise-ratio (SNR) estimation scheme [EM84]. Here, the phase variance
is applied as parameter defining the cross-fade factor between the noise estimate
Φ̂nn(λ, µ) given in Equation 4.49 and the input signal X(λ, µ) as

|N̂DDWE(λ, µ) = (1− σ2
ϕ(λ)) · Φ̂nn,Coh(λ, µ) + σ2

ϕ(λ)|X(λ, µ)|2. (4.59)

Here, the smoothing constant for the computation of the PSDs is chosen to α = 0.5
to allow a fast adaptation to changes in the wind noise characteristic. The cross-fade
presented in Equation 4.59 circumvent the issue of overestimating the coherence in
noise only segments (σ2

ϕ(λ)→ 1) as visualized by the red areas in Figure 4.19c by
taking directly the input spectrum as noise estimate. In this way the problem of
underestimating the noise signal in speech pauses resulting from the aforementioned
overestimation of the coherence is bypassed.

4.4.3.2 Adaptive Smoothing Factor for Improved Coherence Estimation

The second proposed advance is a modified calculation of the cross and auto PSDs
in Equation 4.50, which are required for the coherence estimation. As discussed
above the coherence estimation heavily depends on the choice of the smoothing
factor α. For an exact coherence value in segments containing only wind noise,
α should be close to one but a smaller α ensures a fast adaptation, e.g., at the
beginning of speech activity. This trade-off is bypassed by an adaptive smoothing
factor based on the phase variance σ2

ϕ(λ) calculated in each frame as an indicator for
the predominant signal component (speech or wind noise). The adaptive smoothing
factor is determined by a sigmoid characteristic as

αad(λ) = 1
1− (1− σ2

ϕ(λ))2 (4.60)

and the relation is shown in Figure 4.22. A similar relation was previously proposed
in [Mar01] for an optimal smoothing parameter in dependency of the a posteriori
SNR.
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Figure 4.22: Mapping between phase variance and adaptive smoothing factor.

The adaptive smoothing factor is automatically limited to the range 0.5 . . . 1
and guarantees a fast adaptation to coherent speech parts (σ2

ϕ(λ)→ 0) and a low
variance during wind activity (σ2

ϕ(λ)→ 1). The resulting coherence computed with
the adaptive smoothing factor is shown in Figure 4.23. An improvement compared
to both coherence plots with constant smoothing factors in Figure 4.19 is clearly
visible. A fast adaptation at speech onsets is given, e.g., at t = 3 s given by the
sharp red edge of the red area. At the same time low coherence values indicated by
the blue areas arises at segments with pure wind noise, e.g., at t = 5 . . . 5.5 s. The
adaptive smoothing parameter can now be used for the computation of the cross-
and auto-PSDs required for the noise estimate in Equation 4.49.
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Figure 4.23: Coherence computation with adaptive smoothing factor αad.
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4.4.3.3 Estimation Accuracy of Dual Microphone Wind Noise Estimation

In this section the discussed variants of coherence based wind noise estimation
schemes are evaluated and compared by means of their accuracy measured by the
logarithmic error elog (see Equation A.4). For this evaluation dual microphone noise
recordings from [NV14b] are mixed with speech recordings made with a dual micro-
phone mock-up phone with a microphone distance of 10 cm. Figure 4.24 presents
the results for the original approach by Dörbecker and the two advancements
described in the previous section.
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DDWE [NV14a]
ASWE (new)
DDWE + ASWE (new)

Figure 4.24: Wind noise estimation accuracy of dual microphone approaches.

The decision directed wind noise estimation (DDWE) is defined by Equation 4.59
and for the adaptive smoothing approach adaptive smoothing wind noise estima-
tion (ASWE) the noise estimate is computed as proposed by Dörbecker but with
adaptive smoothing constants. Besides, the combination of both advancements
(DDWE + ASWE) is also taken into account during the evaluation procedure. The
advancements of the original approach yield in a significant improvement for all
considered input SNRs indicated by a decrease of the logarithmic error between 5
and 7 dB. If only one modification is considered, the phase-based cross-fading shows
a better performance. The combination of both concepts generates only a marginal
lower logarithmic error than one of the modifications. The small improvement
of the combination arises from the fact that both methods uses the additional
information gained from the phase in a similar way for the update of noise estimate.

4.4.4 Evaluation of Dual Microphone Wind Noise Reduction
As already introduced for the single microphone solutions the performance of
all considered dual microphone wind noise reduction concepts is compared by
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Figure 4.25: Noise reduction performance of dual microphone systems.

the NA-SA measure and the SII. The coherence based weighting (CohW) from
Section 4.4.1, the differential array approach (SumDiff) from Section 4.4.2, and
the original coherence based noise estimator by Dörbecker (CohEst) are evaluated.
The proposed wind noise estimator exploiting the phase information is used in
the realization, where the combination of the adaptive smoothing and the noise
cross-fade (DDWE + ASWE) is taken into account. The methods providing a
wind noise estimate are applied with the modified spectral subtraction gain rule
explained in Section 4.3.2, as this method showed the highest improvements in
Section 4.3.3. The results are depicted in in Figures 4.25 and 4.26.

For the NA-SA values, the combined phase based wind estimation (DDWE +
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Figure 4.26: Intelligibility performance of dual microphone systems.
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ASWE) scheme achieves the highest performance. The SumDiff and CohW methods
also show high NA-SA values for all considered SNR scenarios. As expected, the
original coherence based approach (CohEst) results in the lowest performance. The
predicted speech intelligibility in terms of SII indicates similar high improvements
for the proposed wind estimator (DDWE + ASWE) and the coherence based
spectral weighting (CohW), where the CohW method shows the highest SII values
for low SNRs. The original approach (CohEst) again only leads to a small SII gain.

In conclusion, all algorithms achieve an improvement in terms of the depicted
measures. The proposed method for wind noise estimation clearly outperforms the
original coherence based approach for noise estimation. Here, the improvements
can be realized by exploiting the phase information of the two microphone signals.
The new method can also shows a better performance then the two methods from
literature for dual microphone wind noise reduction, if both measures the SII and
NA-SA are both of interest.

4.5 Wind Noise Reduction via Partial Speech Synthesis
So far, the conventional realization for a noise reduction system by means of a
spectral weighting as introduced in Figure 2.4 is considered in this chapter. In this
section a new alternative approach is introduced to enhance a distorted speech
signal as shown in Figure 4.27.

The analysis and synthesis of the framework is again implemented as an overlap-
add structure by first segmenting and windowing the time-domain signal and
transforming it into the DFT domain. Subsequently, two steps are proposed to
enhance the noisy input spectrum X(λ, µ):

1. wind noise reduction (WNR) stage yielding the spectrum X̃(λ, µ),

2. speech synthesis stage generating a synthetic speech spectrum S̃(λ, µ).

Both signals are combined, leading to an estimate Ŝ(λ, µ) of the clean speech signal.
The motivation of this alternative design is given by the fact that even the best
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Figure 4.27: Alternative speech enhancement system.
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candidates of the wind noise reduction systems presented in Secs. 4.2-4.4 tend to
introduce a high-pass effect to the filtered speech. This is due to the extreme low
SNR conditions at low frequencies. To overcome this issue, the synthesis stage
is incorporated into the process of speech enhancement. The signals xλ(k) and
ŝλ(k) denote the segmented time-domain signals in the current frame λ of the input
signal and the enhanced output signal, respectively.

An initial version of this algorithm is proposed in [NNJ+12], which applies a
technique similar to an artificial band width extension (ABWE) to the noisy speech
signal. This system is further developed in [NNV15] incorporating knowledge about
the speech signal characteristics in terms of pre-trained codebooks. Both methods
will be presented in the following Secs. 4.5.1 and 4.5.2.

4.5.1 Reconstruction Based on Partial Synthesis

The basic concept proposed in [NNJ+12] is to consider the distorted lower frequency
parts of a speech corrupted by wind noise as missing parts of the speech resulting
into a band-limited signal. The problem of enhancing band-limited speech is a
well studied objective in the case of speech coding. Heterogeneous communication
networks do not allow a transmission of the full frequency range, even though parts
of the network are capable to transmit the considered speech with a wide frequency
range. This problem is solved by the so-called artificial band width extension
(ABWE), where the missing parts of the signal are reconstructed using a priori
knowledge and statistical models for speech signals (see, e.g., [Jax02], [Gei12]).

The system, which is designed to reconstruct the missing or highly disturbed
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xλ,pre(κ) s̃λ(κ)

fc(λ)
fc(λ) s̃λ,LP(κ)

f0(λ)
gS(λ)

aλ(1) . . . aλ(lLP)

Figure 4.28: Wind noise reduction using partial speech synthesis (PSYN).
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4.5 Wind Noise Reduction via Partial Speech Synthesis

parts of the speech signal, is shown in Figure 4.28. For the sake of clarity the
analysis and synthesis parts of the framework shown in Figure 4.27 are omitted.

Speech Synthesis

The core part of the system is the speech synthesis block to generate a synthetic
noise-free speech signal. Here, the frequently used source-filter model is applied
[VM06]. This model is derived from the process of speech generation in the human
body and is depicted in Figure 4.29.

The most important organs of speech production are highlighted in Figure 4.29a.
The airflow produced by the lungs is modulated by the larynx, where the vocal
chords generate the so-called excitation signal. This is either a periodic signal or a
noise-like signal. The vocal tract, consisting of the mouth, nose and throat, acts
as an acoustic resonator and performs a filtering, i.e., a spectral shaping of the
excitation signal. The filtered signal is then radiated via the lips and the nostrils.
The periodic parts of the excitation signal are voiced speech segments resulting in
vowels while the noise-like excitation leads to unvoiced speech such as fricatives.

Although there are several more categories of speech, e.g., plosive or mixed
segments, the partitioning into voiced and unvoiced speech leads to the widely used
source-filter model for speech production in Figure 4.29b. The equivalent to the
excitation is represented by either an impulse generator or a noise generator for
voiced or unvoiced sounds, respectively. The time lag between the impulses for
voiced segments is determined by the pitch period T0 or the fundamental frequency
f0 = 1/T0 and the noise-like signal can be given by, e.g., a white noise signal. As
discussed earlier and demonstrated in Section 4.2.1, wind noise mainly shows a
spectral overlap with voiced speech. Therefore, unvoiced speech can be separated by

Vocal tract

Larynx
Trachea
Lungs

(a) Organs of speech
production

Impulse
Generator

Noise
Generator

× Vocal Tract
filter a(λ)

gs(λ)

f0(λ)

eλ(κ)
s̃λ(κ)

voiced/
unvoiced
decision

(b) Source-filter model producing a synthetic
speech signal s̃λ(κ)

Figure 4.29: Generation of voice in human body and digital source-filter
model.
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a simple high-pass filter as realized in the upper branch signal x̃λ(k) in the proposed
system in Figure 4.28. Consequently, the source-filter model is only employed to
produce voiced speech segments. The influence of the vocal tract is simulated by
the filter with the time-varying coefficient vector

a(λ) = [aλ(1), . . . , aλ(lLP)] (4.61)

of order lLP.
For the generation of the artificial speech, several steps are necessary. First, the

excitation impulse train in the current voiced speech frame of length LF is defined
by

eλ(κ) =
M0−1∑

i=0

δ(κ− i ·N0), κ = 0, . . . , LF, (4.62)

with the discrete equivalent of the pitch period

N0 = dT0 · fsc = dfs/f0c, (4.63)

and

M0 = bLF/N0c (4.64)

is the number of pitch cycles in one signal frame. The index κ represents the sample
position within the current frame λ. The signal power is controlled by the time
varying gain gs(λ) resulting into the weighted excitation signal

ẽλ(κ) = gs(λ) · eλ(κ). (4.65)

A digital filter models the effect of the vocal tract on the excitation signal. It is
realized by the linear predictive coding (LPC) synthesis filter as an all-pole filter
with the coefficients aλ(i). The output of the source-filter model is the synthetic
speech signal

s̃λ(κ) = ẽλ(κ) +
lLP∑

i=1

s̃λ(κ− i) · aλ(i), (4.66)

where lLP is the linear prediction (LP) order. For the considered application in the
system presented in Figure 4.28, a frame-wise processing is necessary, therefore all
quantities of the model for the speech synthesis are dependent on the frame index
λ and must be estimated each frame.

Parameter Estimation

In the proposed system in Figure 4.28, all parameters for the speech synthesis are
estimated by first applying a fixed pre-filter, which reduces the influence of the
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4.5 Wind Noise Reduction via Partial Speech Synthesis

wind noise on the speech signal features. A high-pass filter with a cut-off frequency
of 200Hz and a high slope steepness to ensure that the low frequency effects of the
wind noise are strongly reduced. In the considered implementation, this is achieved
by a high-order finite impulse response (FIR) filter hpre(k) of 160 taps in the case
of fs = 16 kHz.

The all-pole filter for the vocal tract filter are represented by LPC coefficients.
For the estimation of the predictor coefficients aλ(1) . . . aλ(lLP) an efficient algorithm
is the Levinson-Durbin recursion ([Lev47], [Dur60]), which is applied on the pre-
filtered noisy input signal

xλ,pre(k) = hpre(k) ∗ xλ(k). (4.67)

The order of the vocal tract filter represented by aλ(1) . . . aλ(lLP) was found to be
sufficiently high for lLP = 20 ([VM06]).

There exists a large number of methods for the estimation of the fundamental
frequency or the pitch period of speech signals. Thorough investigations have shown
that algorithms working in the frequency-domain yield most robust results in case
of wind noise disturbance. Here the harmonic product spectrum (HPS) method is
applied for pitch estimation, which was introduced in Section 4.2.2.2 and defined
in Equation 4.20.

The gain gs(λ) controlling the power of the synthetic speech segments is com-
puted comparing the excitation signal eλ,pre(κ) of the noisy, pre-filtered signal and
the excitation eλ(κ) produced by the pulse train as described in Equation 4.62.
Ideally, the power of the reconstructed excitation signal should be equal to the
power of the excitation signal of the clean speech signal. The sum of the squared
residual signal eλ,pre(κ) is directly accessible from Levinson-Durbin recursion as
the prediction error for the computed LPC coefficients. Then the gain can be
calculated as

gs(λ) =

√√√√√√√

LF−1∑
κ=0

e2
λ,pre(κ)

LF−1∑
κ=0

e2
λ(κ)

. (4.68)

Speech Composition

The combination of the two signal branches depicted in Figure 4.27 is realized
by two contrary filters (low-pass and high-pass) with the cut-off frequency fc(λ).
Through the upper branch only the noise-free parts x̃λ(k) of the signal pass by
applying a high-pass filter. The remaining components of the system reconstruct
the missing speech signal parts. The cut-off frequency fc(λ) defines the amount of
reconstructed speech in the output signal and is controlled by the wind detection.
The power ratio between between a low-frequency range and the frequency range
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up to fs/2 is used as

fc(λ) = fmax ·

µhi∑
µ=0
|X(λ, µ)|2

M/2−1∑
µ=0

|X(λ, µ)|2
(4.69)

to determine the cut-off frequency. The parameter for the limit of the low-frequency
range µhi is chosen to 100Hz as in this range no speech activity is expected and
only wind noise will cover this part of the spectrum. The parameter fmax controls
the maximum range of the reconstructed speech in the output signal. In [NNJ+12],
fmax = 1500Hz was found to give a good trade-off between wind noise suppression
and artifacts of the synthetic speech in the output of the system. A higher value
will result in a more aggressive wind noise reduction but will also introduce a wider
range of artificial speech, which leads to a “robotic sound” of the processed signal.
The final output signal of the proposed system is then given by the sum of the
low-pass filtered synthetic speech s̃λ,LP(κ) for the reconstruction of the noisy parts
and the noise-free speech parts x̃λ,HP(κ) gained from the high-pass filter

ŝλ(κ) = x̃λ,HP(κ) + s̃λ,LP(κ). (4.70)

4.5.2 Corpus-based Wind Noise Reduction

In the system proposed in the previous section many components and parameters
are chosen heuristically by extensive subjective investigations yielding an enhanced
output signal as it will be shown in Section 4.5.4. However, an advancement is
proposed in [NNV15] using also the new concept of reconstructing the missing or
highly noisy parts of the speech signal by a synthetic speech signal. The main
difference is to incorporate pre-trained information gained from a clean speech
corpus into the wind noise reduction task. This system will be denoted as corpus-
based wind noise reduction corpus-based wind noise reduction (CORP).

The system is presented in Figure 4.30, again omitting the analysis and synthesis
parts of the framework and also the FFT/IFFT stages. The main parts are the
signal combination, realized here as a binary spectral gain function Gbin(λ, µ) and
the speech synthesis stage. The latter exploits not only information from the current
input signal as the pitch frequency f0(λ), but also pre-trained information gained
from a clean speech corpus, which is applied during the speech synthesis process.
Therefore, the term corpus based speech synthesis is used. As a post-processing
step, a residual noise reduction is applied. For the calculations of the binary gain
Gbin(λ, µ), the speech synthesis, and the residual noise reduction gain GW(λ, µ)
a wind noise STPS estimate |N̂ (λ, µ)|2 is required. Here, the P-IBM method is
applied, which was presented in Section 4.2.2.2 and turned out to give the best
results (see Figures 4.11, 4.13 and 4.14).
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Figure 4.30: System for corpus based speech enhancement CORP.

Signal Composition by Binary Mask

The aim of this stage of the algorithm is to compose the signal Ŝ′(λ, µ) of parts of
the masked input signal X̃(λ, µ) and parts of the synthetic speech signal S̃(λ, µ),
which is denoted by the signal composition block in Figure 4.27. The frequency
dependent composition is realized by the binary mask Gbin(λ, µ) applied to the
noisy input X(λ, µ) and inverted mask (1 − Gbin(λ, µ)) to the synthetic speech.
The aim is to cancel out highly impaired parts in the input signal and replace
them with S̃(λ, µ). As explained in Section 4.2.2.2, a binary mask is commonly
determined by comparing a local criterion LC(λ, µ) for each time-frequency bin,
e.g., the SNR, to a frequency dependent threshold th(µ)

Gbin(λ, µ) =

{
0, if, LC(X(λ, µ), |N̂ (λ, µ)|2) < th(µ)
1, otherwise.

(4.71)

In the proposed system the speech presence probability (SPP) is used as local
criterion as clean speech indicator. It is defined according to [CB01] as

LC(λ, µ) = LC(X(λ, µ), |N̂ (λ, µ)|2)

=
(

1+(1+ξopt) exp
(
− |X(λ, µ)|2

|N̂ (λ, µ)|2
· ξopt
ξopt + 1

))−1

, (4.72)

where the constant parameter ξopt is the optimal a priori SNR (=̂ 15 dB as
proposed in [GH11]). The SPP has values between 0 and 1 for each frequency
bin and is compared to the frequency dependent threshold as indicated by (4.71):
th(µ) = 0.95 for 0 ≤ f ≤ 500Hz and th(µ) = 0.75 for f > 500Hz. Thus, the
lower frequencies are more likely set to zero, where most of the wind energy is
assumed. The noise STPS |N̂ (λ, µ)|2 is estimated by the pitch adaptive method
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[NV15] presented in Section 4.2.2.2, which showed the best performance for the
single microphone wind noise reduction schemes. In this chapter a setup using only
one microphone is considered. In the case of dual microphone configurations, the
coherence based method [NV14a] derived in Section 4.4.3 can be applied for the
wind noise estimation. The binary gain is multiplied with the noisy input signal
X(λ, µ) yielding the masked signal X̃(λ, µ).

Speech Synthesis

The corpus based speech synthesis is depicted more detailed in Figure 4.31. The
input values are the noisy input X(λ, µ) the wind noise STPS estimate |N̂ (λ, µ)|2
and the fundamental frequency f0(λ). The goal is to produce a voiced speech signal
applying the source-filter model already shown in Figure 4.29b. The corresponding
components, i.e., excitation generation, vocal tract filter, and the gain gs(λ), can be
found in the bottom branch of Figure 4.31. The synthetic speech signal is again given
by filtering the excitation eλ(κ) with the vocal filter ã(λ) = [ãλ(1), . . . , ãλ(lLP)]
(Equation 4.66). In contrast to the previously described system, for the generation
of the excitation signal eλ(κ), a pitch cycle extracted from clean speech is taken
as template pitch cycle (TPC), which is shown in Figure 4.32. The length of this
pitch cycle is inversely proportional to its fundamental frequency f0,TPC. To adjust
the excitation signal the TPC is time-warped by the ratio

R(λ) = f0,TPC

f0(λ) (4.73)

by re-sampling7 of the TPC with R(λ). Different speakers were tested (male and
female) for the TPC with only marginal differences, therefore only one TPC is
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Figure 4.31: Corpus based speech synthesis component from Figure 4.30.

7For the re-sampling process the resample function of Matlab was used.

108



4.5 Wind Noise Reduction via Partial Speech Synthesis

0 10 20 30 40 50 60 70 80

0

0.05

Samples

A
m

pl
itu

de

Figure 4.32: Template pitch cycle (TPC) used for the excitation signal gener-
ation.

applied, which is taken from a male speaker from the training data set of the TIMIT
database [LKS89].

The generation of the excitation signal is depicted in Figure 4.33 using repeated
re-sampled TPCs. The process is exemplified by three frames, where two issues
have to be covered during the generation.

1. Continuous transition between consecutive frames:
To avoid discontinuities between consecutive frames, only the second half of
the LF samples of each frame are updated, as shown by the gray highlighted
segments in Figure 4.33. By this procedure the overlapping parts of the
frames are identical for the assumed overlap of half frame-size in the used
framework.

2. Pitch synchronicity:
If each updated part starts with the beginning of the (time-warped) TPC,
the generated excitation signal will not result into a pitch synchronous signal
because the last pitch cycle is not necessarily attached in its full length, i.e.
until its last sample. E.g., in Figure 4.33, the first excitation update in frame
λ− 1 ends a few samples after the third TPC starts. Therefore, the missing
fraction of the last used TPC of the previous frame is used as as starting
point for the current frame λ. This is realized by a circular shift of the TPC
by κ samples.

The amount of samples for the required shift of the TPC in the current frame
is defined by

δ(λ) = LF/2
N0(λ− 1) − b

LF/2
N0(λ− 1)c (4.74)

and the operation of the circular shift of x(k) by δ samples is described by
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Figure 4.33: Excitation signal generation in three consecutive frames.

CS(x(k), δ). Then the excitation signal in a frame λ is then determined as

ẽλ(κ) =

{
ẽλ−1(k + LF/2), if κ < LF/2
CS(TPCf0(λ)(κ), δ), else.

(4.75)

The periodically repeated TPC, which is re-sampled to the current fundamental
frequency f0(λ) is denoted by TPCf0(λ)(κ).

The vocal tract filter in Figure 4.31 is obtained by means of a codebook in which
representations ãi of the filter coefficients gained from clean speech are stored. The
vector

p̃i = [p̃1,i . . . p̃KCB,i]
T (4.76)

is the i-th entry and contains KCB features describing the spectral envelope. Ad-
ditionally, the associated LPC coefficients ãi are stored in the codebook with the
aim to find the optimal coefficient vector ãopt(λ) in each frame by comparing the
currently observed feature vector p(λ) with the stored vectors p̃i. This concept
was already deployed for the purpose of background noise estimation methods
proposed in [Ros10] or [HNNV14]. The features describing the spectral envelope of
the noise and speech signals are given by cepstral coefficients [Ros10] or the DFT
representation [HNNV14]. In contrast to these methods, the codebook is used for
the speech synthesis in the proposed system.

The codebook is derived from the training data set of the TIMIT database
[LKS89] using only voiced speech segments, because speech pauses and unvoiced
segments are not generated by the speech synthesis and should therefore not be
represented by the codebook. For the codebook generation, the voiced speech is
segmented in the same way as for the noise reduction process, i.e., into frames of
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4.5 Wind Noise Reduction via Partial Speech Synthesis

20ms with an overlap of half frame-size. To reduce the number of entries in the
codebook the k-means algorithm is employed as vector quantizer8 [MRG85].

Different parameters can be taken to describe the vocal tract filter in each frame.
Taking the aforementioned cepstral coefficients or directly the spectral amplitudes
in each frequency bin is possible. For speech coding applications also the LPC
coefficients or the line spectral frequency (LSF) are used [Ita75]. The latter are
known to be robust to quantization effects. This is an important issue as the size
of the codebooks, i.e., the number of entries, is limited in order to comply certain
complexity aspects. Four different features are considered for the estimation of the
vocal tract filter parameters:

1. Linear predictive coding (LPC) coefficients: Coefficients of the auto-regressive
(AR) filter representing the vocal tract by means of an infinite impulse
response (IIR) filter.

2. Mel-frequency cepstral coefficients (MFCC): Cepstral coefficients using a non-
uniform frequency resolution, which is adopted to the frequency resolution of
human auditory system [RJ93]. This representation is widely used for speech
and music recognition tasks (see, e.g., [DM80]).

3. Line spectral frequencies (LSF): The representation proposed by Itakura
[Ita75] contains exactly the same information as the LPC coefficients by
computing the roots of the palindromic and antipalindromic polynoms of the
LPC polynom. Broadly speaking, they represent the positions of the poles
and zeros of the spectral envelope.

4. Spectral envelope (SPENV): As a description for the vocal tract filter also the
complete spectral envelope can be taken into account, which is given by the
DFT representation of the LPC filter. In contrast to the other three features,
the spectral envelope is not a compact representation since all frequency bins
must be stored into the codebook.

During the estimation process the trained codebook entries are compared to
the features calculated from the input signal. To reduce the effect of the wind
noise on the codebook search, a spectral subtraction is applied using the wind noise
STPS estimate. The considered parameter from the input signal is computed in
the current frame resulting in a de-noised parameter vector p(λ). The optimal
codebook entry is given by minimizing the mean square error (MSE) between the
feature vector p(λ) of the de-noised input signal and each codebook entry p̃i

iopt(λ) = arg min
i
{||p̃i − p(λ)||2}. (4.77)

Figure 4.34 compares the performance of the four features for the description
of the vocal tract filter. The performance is measured by comparing the squared
magnitude |Ã(λ, µ)|2 of the spectral envelope of the estimated vocal tract by

8The implementation in voicebox by Brookes was used for the vector quantization [B+11].
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Figure 4.34: Effective logarithmic spectral distortion of estimated envelopes
for three different input SNRs and codebooks with 512 entries.

a considered feature with the squared magnitude of the true spectral envelope
|A(λ, µ)|2 of the clean speech signal. The error is computed by the logarithmic
spectral distortion (LSD) between the two power spectra as

LSDdB = 1
K

K∑

λ=0

√√√√∑

µ∈µ̃

(
10 log10

|A(λ, µ)|2

|Ã(λ, µ)|2

)2

(4.78)

where only the frequency bins µ̃ are taken into account, which needs to be replaced,
i.e., where the binary mask of Equation 4.71 is zero.

The results in Figure 4.34 are gained for three SNR scenarios and for the four
features stored in a codebook of 512 entries gained from three minutes of voiced
speech randomly taken from the training set of the TIMIT database. For all SNR
conditions, the LSF representation offers the lowest distortion, which shows that
they are the most robust towards the degradation of the input signal but also to
the applied vector quantizer during the codebook generation. These results support
the knowledge from speech coding that LSFs are a good choice for a quantized
representation of the vocal tract filter coefficients and they will be used in the
following.

A second experiment is carried out to investigate the influence of the training
data. During the codebook generation, two parameters can be adjusted, the size,
i.e., the number of codebook entries and the duration of the training sequence.
The impact of both parameters is shown in a two-dimensional representation in
Figure 4.35 using LSFs as feature vector again in terms of the LSD. The duration
of the training sequence is given on the x-axis while the y-axis depicts the number
of codebook entries and the gray scale reflects the LSD value.

Besides for very small codebook sizes of 16 or 32 entries and short durations
the computed LSD values are not varying to a great amount. Furthermore, the
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Figure 4.35: LSD for different variants of the codebook generation using LSF
vocal tract filter representation.

length of the training data seems not to influence the result if the codebook size
is sufficient high (e.g., 512 entries or more). In the following, a codebook of 512
entries gained from 3 minutes of training data is used, as larger codebooks or more
training data does not indicate significant improvements.

The last missing parameter for the speech synthesis part in Figure 4.31 is the
gain gs(λ), which is multiplied with the DFT representation Ssyn(λ, µ) of the
generated speech signal. Because the spectral distribution of the synthetic speech
signal is already defined by the excitation signal and the vocal tract filter, only
a global gain is required controlling the power of each frame. In the ideal case,
S̃(λ, µ) has the same power as the unknown clean speech signal frame S(λ, µ). To
adjust the power the gain computation is realized as follows

gs(λ) =

√√√√√√

∑
µ

[
|X(λ, µ)|2 − |N̂ (λ, µ)|2

]

∑
µ

|Ssyn(λ, µ)|2
, (4.79)

which can be seen as a spectral subtraction of the noise estimate |N̂ (λ, µ)|2 with
respect to a whole signal frame. After the multiplication with the gain factor the
artificial speech signal S̃(λ, µ) can be used for the signal composition as explained
before.

Residual Noise Reduction

So far, the proposed system in Figure 4.30 only applies a binary processing ei-
ther to reconstruct the signal (Gbin(λ, µ) = 0) or to keep the noisy input signal
(Gbin(λ, µ) = 1). A high amount of wind noise suppression can be achieved by
tuning the threshold for the binary gain computation in Equation 4.72 to a more
aggressive setting, i.e., to set gains to zero for lower SPP values. However, this
introduces a higher fraction of artificial speech in the output signal on the expense
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of an unnatural sound. A better solution is given by applying the binary decision
as described before in order to reconstruct only the highly noisy parts of the signal.
The remaining noise is then removed by a conventional noise reduction as proposed
in Section 4.3. This means that the noise estimate |N̂ (λ, µ)|2 is used along with the
modified spectral subtraction of Section 4.3.2, which is applied to the unmasked,
i.e, non-reconstructed frequency bins.

4.5.3 On the Phase Reconstruction

All conventional noise reduction methods, which apply a spectral gain only enhance
the magnitude of the noisy input spectra

Ŝ(λ, µ) = G(λ, µ) ·X(λ, µ) = |Ŝ(λ, µ)| · e jη(λ, µ) (4.80)

keeping the noisy phase η(λ, µ) of the complex spectrum X(λ, µ). In this section a
discussion is carried out about the phase of the synthesized speech spectrum applied
in the aforementioned concepts for wind noise reduction. Several publications can
be found on the topic of phase processing in the terms of speech enhancement. The
experiments reported by Wang and Lim [WL82] showed that the phase only has an
influence on the processed speech at very low SNRs (-25 dB) for long frame-sizes
of 400ms. In other cases the incorporation of the clean phase does not result in
any improvement. Ephraim and Malah derived that the MMSE estimate of the
complex spectrum of the clean speech leads to the known Wiener solution keeping
the noisy phase [EM84]. The calculations made by Vary in [Var85] predicts that
phase deviations are only perceived for SNRs lower 6 dB.

In the last years several approaches were presented, which address speech en-
hancement processing also incorporating phase modifications of the noisy signals
(see, e.g., [KG12], [GKR12], [MS14]). In total, the improvement is limited and
only a combined processing of phase and magnitude of the spectral coefficients
indicates an improvement ([MS14]). All methods require an estimate of the funda-
mental frequency to apply pitch synchronous adaptation of the analysis-synthesis
framework.

The proposed generation of synthetic speech explained in Equation 4.75 and
Figure 4.33 can be seen as a synchronization of the generated excitation signal to
the fixed analysis-synthesis framework. Thus, the phase of the generated speech
signal is of great importance for the pitch synchronicity. Keeping the noisy phase
introduces discontinuities in the overlapping parts of the frames, which results in
severe artifacts and the periodicity of the initially voiced segments is destroyed.
From the listening impression, segments generated with a noisy phase sounds similar
as unvoiced speech, which is of course not desired. After these considerations, the
synthetic speech signal is applied for both magnitude and phase reconstruction in
the proposed concepts presented in Sections 4.5.1 and 4.5.2.
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4.5.4 Performance Results
The two proposed systems including the speech synthesis into the noise reduction
process:

• partial speech synthesis (PSYN) (Section 4.5.1)

• corpus-based wind noise reduction (CORP) (Section 4.5.2)

are evaluated with wind recordings and compared to three methods using only a
conventional spectral weighting:

• the SPP based algorithm from [GH11], which can be seen as the state-of-the-
art approach for background noise estimation,

• the morphological technique (MORPH) [HWB+12] (see Section 4.2.2.2)„

• the masked based approach (P-IBM) [NV15] (see Section 4.2.1.1).

Both algorithms for wind noise estimation MORPH and P-IBM gave sufficiently
accurate wind noise estimates. These methods for noise estimation are used in
combination with modified spectral subtraction (see Section 4.3.2).

Because of the non-linear processing, which is introduced by the speech synthesis
in the two alternative approaches, the quality measures used before (NA-SA and SII)
can not be calculated, since they require the filtered clean speech signal and filtered
pure noise signal. These two signals are not given in the new concepts for wind
noise reduction where parts of the input signal are replaced by a synthetic speech
signal. Thus, two other measures are used for the evaluation of the algorithms:

1. Perceptual evaluation of speech quality (PESQ): A measure standardized
by the International Telecommunication Union (ITU) [IT01] to predict the
perceptual rating of human listeners on a mean opinion score (MOS) between
0.5 (bad) and 4.5 (no distortions) as proposed by [RBHH01]. Here, the
wideband extension ([IT07]) is applied for the considered audio signals with
a sampling frequency of 16 kHz.

2. Segmental SNR (segSNR): A widely used measure, which computes a seg-
mental, i.e., frame-wise ratio between the clean speech signal and the error
between the clean and processed speech [QB88]. The averaged values of
frames, where both speech and wind noise are active results in the considered
measure.9 A higher value indicates an improvement.

The experiment is carried out with 270 s speech data randomly chosen from
the test set of the TIMIT database. Wind noise segments from real recordings
[NV14b] were added with lengths between 0.3 and 3 s. The level of the wind noise
is adjusted to a realistic scenario resulting in mostly negative SNR values in frames,
where both speech and wind are active. For the shown PESQ results the percentage

9More details on the computation of segmental SNR (segSNR) are given in Appendix A.1.
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Figure 4.36: PESQ-MOS results for different degrees of degradation.

of the length of voice activity, which is corrupted by wind noise is given (shown
on the x-axis of Figure 4.36). Because the PESQ measure shows saturation effects
for low SNR values (<-5 dB) and high SNR values (>5 dB), the amount of noise
can be adjusted with a finer resolution by the percentage of noisy speech, i.e., the
temporal overlap of speech segments and noise segments.

The results in terms of the PESQ values in Figure 4.36 show that all considered
algorithms yield an enhancement of the perceptual evaluation of speech quality
(PESQ) value of the noisy speech, as depicted by the dashed gray reference line.
As expected, the SPP method, which is designed for background noise tracking, is
not capable to follow the non-stationary characteristics of wind noise. Thus only
marginal improvements can be seen. The PSYN concept and the two conventional
approaches based on noise estimation and spectral weighting (MORPH and P-IBM)
show similar results for all degrees of degradation. The best performance for all
scenarios is achieved by the corpus based method (CORP) with PESQ improvements
up to 2 MOS values. Investigations using CORP method without the spectral
weighting applied as post-filter (see Figure 4.30) show only marginal lower results.

The second measure, the segmental SNR, is depicted in Figure 4.37 averaged
for all noise scenarios. Again, all methods show an improvement compared to
the SNR value of the noisy input, which is represented by the dashed gray line.
The corpus based speech synthesis method shows the best performance with a
gain over 16 dB compared to the noisy input signal. Besides, the insufficient noise
reduction performance of the SPP for conventional background noise estimation is
demonstrated by only a low improvement of about 4 dB segSNR.
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4.6 Conclusions

In this chapter different concepts for the enhancement of speech degraded by
wind noise are presented. Systems using a single microphone or dual microphone
configurations are investigated. As the special characteristic of wind noise makes it
necessary to develop algorithms especially designed for the statistical properties of
wind noise, new concepts for both configurations are developed.

First, a single microphone noise reduction system based on spectral weighting is
considered. For the required wind noise STPS estimate, two new noise estimation
schemes are proposed exploiting the spectral energy distribution of wind and speech.
Since the first step of the estimation is an wind detection, the NSTM method from
Section 3.5.1.2 is used in the schemes, which showed the highest accuracy. The
sub-band signal centroid played an important role for the classification of noisy
signal, i.e., if speech, wind, or both signals are active. A subsequent exploration
of the spectral shapes of speech and wind noise leads to two novel algorithms
to estimate the STPS of wind noise minima fitting approach (Min-Fit) and the
pitch Adaptive binary mask (P-IBM). Where the Min-Fit algorithm features a low
complexity, P-IBM leads to a more accurate noise estimate, indicated by a low
logarithmic error of the STPS estimate (3 to 8 dB lower than all considered methods
for all relevant scenarios). Combined with the recursive spectral subtraction gain
computation, a high wind noise reduction is achieved, where the pitch adaptive
approach P-IBM also clearly outperforms previously presented wind noise reduction
systems in terms of the NA-SA measure and the SII.

For applications using two microphones, the coherence properties of speech and
wind noise can be taken into account for the noise reduction. A wind noise STPS
estimator is proposed in Section 4.4.3, which solves the problem of fast changes
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of the noise level by a decision directed scheme for the noise estimate and an
adaptive update scheme for the coherence computation (DDWE + ASWE). The
key point is to incorporate phase information of the complex coherence function.
The new method (DDWE + ASWE) shows better performance than state-of-the
art methods for dual microphone wind noise reduction for different conditions. A
further advantage of the proposed method is that the noise estimation is carried out
separately. This can be useful, if the signal is processed by additional enhancement
steps.

All methods for speech enhancement based on a spectral weighting, have the
drawback that they introduce undesired attenuation of the speech signal in parts
with a very low local SNR. Because of the high signal levels of wind noise at low
frequencies, this leads to an high-pass effect on the output signal. This problem is
circumvented by an innovative approach for speech enhancement, which reconstructs
parts of the speech. Two concepts using the source-filter model of speech production
are presented, where the use of information stored in pre-trained codebooks is the
key to ensure a high speech quality. These methods have a higher computational
complexity compared to the approaches applying only a spectral weighting, but
the evaluation under realistic conditions showed a great performance gain in terms
of the PESQ measure and the segmental SNR.

In summary, for a single microphone system and a noise reduction by spectral
weighting the combination of the P-IBM wind noise estimation and the recursive
spectral subtraction method should be chosen. If a low-complexity solution is
is required, the minima fitting approach can also be taken into account for the
noise estimation. Using two microphones, the new proposed coherence based wind
noise estimation exploiting the phase information shows the best results. In cases
where the complexity is not a crucial point, the concept applying a partial speech
synthesis can further improve the speech enhancement performance.
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Chapter 5

Application to Mobile Phones

In this chapter the application of speech enhancement algorithms in mobile phones
is considered. Often, the applied methods make assumptions about the acoustic
environment, e.g., in terms of a certain signal model and the resulting properties
and statistics. In real environments, derivations from these assumptions might
lead to a limited performance and call for modifications of the proposed systems.
Here, two applications are considered within this chapter, which deals with typical
problems that arise from practice.

While most smart-phones are equipped with at least two microphones there
exist a great number of so-called feature phones with limited functionality and only
a single microphone. For single-microphone systems, the simultaneous occurrence of
wind noise and background noise is a common scenario. As a speech enhancement
system must be robust to this condition, the first application in this chapter is the
combined reduction of background noise and wind noise. Different approaches will
be discussed to ensure a high suppression of all noise signals.

The second application deals with conventional background noise reduction for
mobile phones using two microphones. Here, two use cases are considered with
different acoustic characteristics, the normal hand-held position (HHP) and the
hands-free position (HFP). Because solutions for the HHP were already presented
in detail in the work of Jeub in [Jeu12], this work will focus on noise reduction
for the HFP case. In these conditions, usually the coherence models of speech and
noise can be exploited. However, these models and the coherence properties of
real signals lead to limitations of the noise reduction system. Thus, in the second
part of this chapter solutions are presented to circumvent this limitations. Several
solutions for wind noise reduction using two microphones were already introduced
in Section 4.4. A further combination of the proposed advanced background noise
reduction with dual microphone wind noise could be possible but is not considered
here.

5.1 Combined Wind and Background Noise Reduction
As mobile phones can be used in many situations, usually, there is not only a
single disturbance but a mixture of different noise signals impairing the speech
quality. In addition to wind noise further noise sources might occur, e.g., traffic
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noise from a street near by, or inside-car noise if the phone call is taking place
inside a convertible car. This section discusses different possible options to combine
a general background noise reduction with a wind noise reduction. Here, the single
microphone setting of the overlap-add structure depicted in Figure 2.4 is considered
with a noise estimation stage and subsequent spectral weighting to enhance the
desired speech signal.

5.1.1 Concept for Combined Noise Reduction
Different configurations are conceivable, which incorporate both background noise
and wind noise reduction. E.g., both estimates of background noise and wind
noise could be carried out independently and this leads to a parallel processing
for both noise types. This is however not favorable for the following reason. All
considered wind noise estimators rely on the assumption, that the input signal only
contains clean speech and wind noise. They exploit spectral properties of the clean
speech and pure wind noise in order to achieve a processing, which is not based on
the temporal characteristics of speech and noise. The presence of further signal
portions such as additional background noise will influence the wind detection and
estimation. Therefore, a serial processing is applied, where first the conventional
background noise is reduced and then the wind noise reduction is carried out. The
underlying model of the noisy input signal is given by

x(k) = s(k) + nb(k) + nw(k), (5.1)

or in the short-term discrete Fourier transform (DFT) domain

X(λ, µ) = S(λ, µ) +Nb(λ, µ) +Nw(λ, µ), (5.2)

where the subscripts identifies background noise (b) and wind noise (w) portions in
the noisy signal.

The used structure for the combined noise reduction is presented in Figure 5.1,
where two setups can be chosen by position of switch A.

• Switch A in position i1 : wind noise detection and wind noise estimation
based only on the modified spectrum Ŝ′(λ, µ).

• Switch A in position i2 : wind noise detection based on input spectrum
X(λ, µ) and wind noise estimation based on the modified spectrum Ŝ′(λ, µ).

The first stage applies a conventional background noise reduction using the
speech presence probability (SPP) method of Gerkmann and Hendriks [GH11] for
the noise PSD estimation Φ̂nn,b(λ, µ) (see Section 2.3.1), which is known to give
reasonable results for many background noise types. Applying a spectral gain
G1(λ, µ), this results in the first enhanced signal Ŝ′(λ, µ). The second stage for the
wind noise reduction is realized by the pitch adaptive inverse binary mask (P-IBM)
method proposed in Section 4.2.2.2 for the estimation of the wind short-term power
spectrum (STPS) |N̂w(λ, µ)|2 and the calculation of a gain G2(λ, µ).
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Figure 5.1: System for combined background noise and wind noise reduction.

The normalized short-term mean (NSTM) used for the wind detection (see Sec-
tion 3.5.1.2), is not influenced by any zero-mean signal (e.g., additional background
noise). But, the processing by the background noise reduction in the first stage
can remove or reduce the short-term offset caused by the wind noise. In this case
the important feature for the wind detection is removed. This leads to undetected
parts of wind noise activity in the observed signal and thus remaining wind noise
components. Therefore, the unfiltered input is used for the wind noise detection, if
switch A is in position i2 . For the remaining processing steps of the pitch adaptive
inverse binary mask (P-IBM) algorithm for wind noise estimation, the pre-filtered
signal Ŝ′(λ, µ) is applied as explained in Section 4.2.2.2.

The partial speech synthesis concept presented in Section 4.5 is based on the
assumption that the occurring noise is sparse with respect of its energy distribution
in the time-frequency domain. This is fulfilled for wind noise but usually not
for background noise in general, which can cover a larger range in both time
and frequency. Thus this concept of speech enhancement is not applied for the
combined noise reduction in this section. Besides, for the application in mobile
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phones, computational complexity is always a constraint for signal processing
algorithms. This also pleads for the a noise reduction via spectral weighting, which
is characterized by a lower complexity.

Using the background noise PSD estimate Φ̂nn,b(λ, µ) and the wind noise STPS
estimate N̂w(λ, µ) two spectral gains G1(λ, µ) and G2(λ, µ) are computed. For the
background noise reduction the Wiener rule using the decision directed approach
(DDA) for SNR estimation [EM84] is applied, while the gain of the second stage
is calculated by the recursive spectral subtraction rule (see Section 4.3.2). As
depicted in Figure 5.1, both gains are combined to the gain G(λ, µ), which is
finally multiplied with the noisy spectrum X(λ, µ) for the desired noise suppression.
Different gain combinations are possible and will be discussed.

A serial processing of the two noise reduction stages leads to a concept where
both gains are multiplied successively to the noisy spectrum. Then the combined
gain reads

G(λ, µ) = G1(λ, µ) ·G2(λ, µ) (5.3)

and an aggressive noise reduction is realized because a multiplication of two gains
in the range between one and zero will always lead to a combined gain smaller than
both gains G1(λ, µ) and G2(λ, µ).

A further quite aggressive approach is to use the minimum of both gains

G(λ, µ) = min{G1(λ, µ), G2(λ, µ)}, (5.4)

which limits the combined gain at least to the smaller of the to gains.
To realize a more moderate combined gain it also possible to average both gains

G1(λ, µ) and G2(λ, µ). Here, the arithmetic mean

G(λ, µ) = G1(λ, µ) +G2(λ, µ)
2 (5.5)

and the geometric mean

G(λ, µ) =
√
G1(λ, µ) ·G2(λ, µ) (5.6)

are considered. An analysis of the performance of the different combinations is
given in the following section. For all proposed setups in Equations 5.3 to 5.6, the
combined gain G(λ, µ) is limited to -40 dB.

5.1.2 Results
For the evaluation, noisy speech signals are generated containing both wind and
background noise as depicted in Equation 5.1. To reflect different scenarios, both
noise signals are scaled to different SNR values. The background noise signals are
taken from the ETSI database ([ETS09]) using one of three typical noise types for
an outdoor environment (Fullsize Car1 130Kmh, Outside Traffic Road, Work Noise
Jackhammer).
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The proposed scheme for combined wind and background noise reduction is
evaluated using the noise attenuation - speech attenuation (NA-SA) metrics for
the noise reduction performance and the speech intelligibility index (SII) measures
to predict the intelligibility enhancement. The following presented measures are
averaged over the three considered background noise types.

In a first investigation the two variants controlled by the position of switch A
( i1 , i2 ) in Figure 5.1 are compared using the gain combination by multiplication
(Equation 5.3). In order to investigate different background noise and wind noise
scenarios, two experiments are carried out. Firstly, in Figure 5.2 the speech-to-
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Figure 5.2: Results different wind noise (WN) SNR and a fixed background
noise (BGN) SNR of 5 dB.
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wind-noise ratio is varied between -15 and 15 dB using a fixed background noise
SNR of 5 dB for the simulations. Secondly, the speech-to-background-noise ratio
takes values between -15 and 15 dB while a wind noise SNR condition of -5 dB is
considered (see Figure 5.3).

−15 −10 −5 0 5 10 15

0

5

10

15

Background Noise SNR/dB

N
A

-S
A

/d
B

BGN reduction
BGN + WN reduction variant i1
BGN + WN reduction variant i2

(a) Noise reduction performance

−15 −10 −5 0 5 10 15

0

0.5

1
good

poor

Background Noise SNR/dB

SI
I

BGN reduction
BGN + WN reduction variant i1
BGN + WN reduction variant i2
Noisy input

(b) Intelligibility enhancement

Figure 5.3: Results for different background noise (BGN) SNR and a fixed
wind noise (WN) SNR of -5 dB.

The motivation for both fixed SNR values in the experiments is that realistic
conditions of the considered noise type should be investigated. For the noise
attenuation (NA) required for the NA-SA values, the reduction of the complete
noise (wind noise + background noise) is taken into account. The evaluation is
carried out to compare three configurations for the aforementioned SNR scenarios:
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5.1 Combined Wind and Background Noise Reduction

1. background noise (BGN) reduction,

2. serial processing of background noise and wind noise (WN) reduction without
any exchange of information (BGN + WN) (switch A open),

3. the modified combination proposed in Figure 5.1 (switch A closed).

For all considered wind noise SNR conditions in Figure 5.2, the modified
combination results in the highest performance for both the noise reduction and
speech intelligibility enhancement. As expected, the BGN reduction alone only
shows limited improvements resulting in lower values compared to a combined
approach, especially for the NA-SA measure in Figure 5.2a. It can be seen, that
both configurations for the combined reduction achieve high noise reduction and
a great enhancement of the speech intelligibility. In some cases the conventional
noise reduction also removes parts of the wind noise signal, which are necessary
for the detection and the associated wind noise estimation. Thus, the modified
combination, where the unfiltered input is used for the detection stage of the
proposed estimation concept, results in a higher performance, due to a better
detection of the wind noise signal.

A similar behaviour is observed for both measures regarding a variation of the
background noise level in Figure 5.3. Here, it is also noticeable, that the difference
between the three considered methods is decreasing for lower SNR values. This
is due to the fact that in these conditions the background noise is dominant and
thus the background noise reduction dominates the quality of the complete noise
reduction system.

The second aspect consider in this evaluation is the gain combination of the two
gains calculated for the background noise reduction G1(λ, µ) and the wind noise
reduction G2(λ, µ). The proposed approaches in Equations 5.3-5.6 are compared
using the same SNR scenarios as for the previous investigations and the NA-SA
measure and the SII values. The results are shown in Figure 5.4 for varying wind
noise SNRs and in Figure 5.5 for varying background noise SNRs. For both SNR
scenarios two issues stand out.

As expected, the multiplication and the minimum of the two gains results in a
quite aggressive noise reduction and the high speech attenuation leads to degraded
NA-SA values. This can be seen in Figures 5.4a and 5.5a where the multiplication
and the minimum leads to the lowest measures in all cases. The averaging of the
two gains results to a better noise reduction performance ensuring a high NA-SA
value of 20 to 22 dB for the arithmetic mean combination representing the best
performance.

A different performance can be seen from the intelligibility enhancement depicted
in Figures 5.4b and 5.5b. All proposed methods yields an improvement compared to
the SII of the noisy input presented by the dashed gray curve. As already explained
in previous parts of this work an aggressive noise reduction might not improve
the subjective auditory impression but achieves an enhanced intelligibility. The
aggressive methods showing the lowest NA-SA measures provide the highest SII
improvements and vice versa for the moderate methods which average the two
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Figure 5.4: Results for different gain combinations for different wind noise
SNR and a fixed background noise SNR of 5 dB.

spectral gains. This leads to a difference of 0.1 for the SII between the multiplication
method and the arithmetic mean combination.

The auditory impression of the output signals supports this results. For the
multiplication of the two gains, parts of speech are clearly degraded and in some
cases, where both wind noise and background noise are active in the lower fre-
quency range (e.g., for car noise), speech is partially completely attenuated but not
necessarily unintelligible.

The results presented in this section support the proposed combined noise
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Figure 5.5: Results performance for different gain combinations for different
background noise SNR and a fixed wind noise SNR of -5 dB.

reduction concept, where first the background noise is estimated and reduced and
subsequently the wind noise is considered. For the wind noise detection based on the
NSTM the noisy input signal should be used, as the processing for background noise
reduction decreases the detection accuracy. The choice of the gain combination of
the background noise reduction gain and the wind noise reduction gain depends on
the application. If a high noise reduction performance is desired, the arithmetic
mean of the gains leads to best results. In contrast to that the aggressive approach
of the gain multiplication achieves the highest intelligibility improvements. A good
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trade-off is given by the geometric mean of the two gains with a high NA-SA
measure also considerably good SII improvements. Here, also a good listening
impression is provided where not too high speech attenuation is introduced.

5.2 Dual Microphone Noise Reduction
Figure 5.6 depicts the considered dual microphone arrangement for the mobile
phone application. This configuration can be found in many currently available
smart-phones. The setup allows a microphone distance of approximately 10 cm.
While the primary microphone is always at the bottom of the device, the reference
microphone can be placed at the top or the back of the phone. The signals of both
microphones can be exploited for the reduction of background noise for the two
scenarios explained in the following.

Primary
microphone

Reference
microphone

Figure 5.6: Dual microphone configuration for mobile phone.

5.2.1 Hand-held Telephony
In the hand-held position, the primary microphone is close to the the mouth to
ensure a high level of the desired speech signal. At the reference microphone, clearly
lower speech levels can be observed. In contrast to this, the noise signal levels
in both microphones are very similar, if a homogeneous noise field is given. In
[JHN+12] the level differences of the two microphone signals were exploited yielding
a frequency dependent voice activity detector (VAD). Based on the VAD, the noise
power spectral density (PSD) estimate can be calculated by taking either the signal
from the primary microphone (speech absence) or from the reference microphone
(speech presence). This procedure is applied along with a modified Wiener filter
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5.2 Dual Microphone Noise Reduction

for the noise reduction, which also incorporates the power level differences of the
microphone signals. A more detailed presentation of this method and evaluation
results can be found in [JHN+12], [HJN+11] and [Jeu12].

5.2.2 Hands-free Telephony
Besides the previously described case of hand-held position, mobile phones can
operate in the hands-free mode. This can be useful, when more than one person
participates at the near-end side, for phone calls during a car drive, or for making
video calls. Since the mobile device is not in a steady position as in the hand-held
case, no assumptions about the power levels of speech and noise can be made at
the two microphone positions. In most of the cases the power level differences are
very similar for both speech and background noise. Hence, other characteristics
must be taken into account for the differentiation between speech and noise. The
primary and reference microphone are treated of equal value in the following.

For many situations, the sound field of the undesired background noise can be
assumed as a diffuse noise field as explained in Section 3.3.4. Then, the spatial
correlation between signals can be exploited in terms of the frequency dependent
short-term coherence function

Γxy(λ, µ) = Φ̂xy(λ, µ)√
Φ̂xx(λ, µ) · Φ̂yy(λ, µ)

. (5.7)

The short-term estimates of the auto and cross PSDs (Φ̂xx(λ, µ), Φ̂yy(λ, µ),
Φ̂xy(λ, µ)) are computed by the first order smoothing defined in Equations 3.46
and 3.47.

For an ideal diffuse noise field, Γxy(λ, µ) can be modeled by the sinc function
(see Equation 3.10). The speech is often assumed to be coherent (Γss(λ, µ) = 1).
However, these conditions are not exactly fulfilled in many real environments,
i.e., Γss(λ, µ) 6= 1. One constraint is that the microphones do not show an
omnidirectional characteristic due to the mounting into the mobile phone. This
effect as well as reflections and reverberation have an impact on the coherence
properties of the speech signals [BW01], [Jeu12]. Additionally, the assumption of
an ideal diffuse noise field is mostly not fulfilled, because of some coherent noise
sources in the background. These coherent portions result in an increase of the
noise coherence function. The deviations of measured coherence functions from
the theoretical curves are shown in Figure 3.8a and 3.8b for speech and noise,
respectively. A further drawback of the coherence properties even under ideal
conditions, is that both speech and noise exhibit high coherence values at low
frequencies. Thus the separation is more difficult in this frequency range.

The proposed noise estimation tackling these problems is realized in two steps
and is depicted in Figure 5.7 ([NBV13]). The advantages of a single and dual
microphone processing are combined. The first stage is the single microphone speech
presence probability (SPP) based noise estimation method [GH11] as introduced
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Figure 5.7: Dual microphone system for background noise reduction.

in Section 2.3.1. The resulting estimate of the noise PSD Φ̂nn,SPP(λ, µ) according
to Equation 2.18 is calculated using the signal of the first microphone X(λ, µ).
Besides, the SPP p(H1|X(λ, µ)) is computed in each time-frequency bin (see
Equation 2.14). Both quantities are used in the second stage, which also incorporates
the coherence properties of the two microphone signals X(λ, µ) and Y (λ, µ) for the
noise PSD estimation. The coherence based component of the proposed system also
incorporates an update of the speech coherence function Γss(λ, µ) and the noise
coherence function Γnn(λ, µ), which might vary over time. The noise PSD estimate
is then used for the SNR estimation and subsequent spectral gain computation as
depicted in Figure 5.7.

Coherence Based Noise Estimation

The coherence based noise estimation can be seen as a generalized version of
the method by Dörbecker in [DE96] already mentioned in Section 4.4.3. A first
adaptation to diffuse noise fields was proposed in [JNK+11] and further developed
in [NBV13] in order to circumvent limitations, which arises in practice.

We assume that speech and noise signals are uncorrelated. Then, the auto- and
cross PSDs of the input signals are given by

Φ̂xx(λ, µ) = Φ̂s1s1 (λ, µ) + Φ̂n1n1 (λ, µ) (5.8)
Φ̂yy(λ, µ) = Φ̂s2s2 (λ, µ) + Φ̂n2n2 (λ, µ) (5.9)
Φ̂xy(λ, µ) = Φ̂s1s2 (λ, µ) + Φ̂n1n2 (λ, µ). (5.10)

Furthermore, we assume a homogeneous speech and noise field in both microphone
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signals of the system, i.e.

Φ̂s1s1 (λ, µ) = Φ̂s2s2 (λ, µ) = Φ̂ss(λ, µ) (5.11)
Φ̂n1n1 (λ, µ) = Φ̂n2n2 (λ, µ) = Φ̂nn(λ, µ). (5.12)

In [JNK+11], we assumed ideal coherent speech (Γss(λ, µ) = 1). This is, however,
not always fulfilled in real situation as it was shown in Section 3.3.4. In the following
we neglect this assumption and thus, the cross PSD in (5.10) can be rewritten with
(5.7) and (5.11, 5.12) as

Φ̂xy(λ, µ) = Γss(λ, µ) · Φ̂ss(λ, µ) + Γnn(λ, µ) · Φ̂nn(λ, µ), (5.13)

where Γss(λ, µ) and Γnn(λ, µ) are the coherence functions of the speech and noise
signals1, respectively. Inserting Equations (5.11) and (5.12) in Equations (5.8) and
(5.9) and using the geometric mean of the two auto PSDs leads to

√
Φ̂xx(λ, µ) · Φ̂yy(λ, µ) = Φ̂ss(λ, µ) + Φ̂nn(λ, µ). (5.14)

Resolving Equation (5.13) into

Φ̂ss(λ, µ) = Φ̂xy(λ, µ)− Γnn(λ, µ) · Φ̂nn(λ, µ)
Γss(λ, µ) (5.15)

and inserting in Equation 5.14 results in

Φ
′
nn(λ, µ) =

√
Φ̂xx(λ, µ) · Φ̂yy(λ, µ)− Φ̂xy(λ, µ)

Γss(λ, µ)

1− Γnn(λ, µ)
Γss(λ, µ)

. (5.16)

In periods, where speech is not predominant (i.e., in speech pauses), it turned out
that a weighted average with the noisy input signal (e.g., from the first microphone)
is more accurate than the estimate from (5.16). Therefore, the final noise PSD
estimate of the coherence based stage is given by

Φ̂nn,coh(λ, µ) = ρcoh(λ, µ) ·Φ′
nn(λ, µ) + (1− ρcoh(λ, µ)) · |X(λ, µ)|2. (5.17)

The weighting factor

ρcoh(λ, µ) = Γ̂xy(λ, µ)− Γnn(λ, µ)
Γss(λ, µ)− Γnn(λ, µ) (5.18)

is a function of the measured short-term coherence Γ̂xy(λ, µ) in the current signal
frame. It is calculated as defined in Equation 5.7, where the required PSDs are
given by the first-order recursive smoothing given in Equation 3.47. The parameter
ρcoh(λ, µ) can be interpreted as a dual microphone soft voice indicator, similar to
the single channel SPP value p(H1|X(λ, µ)).

1The coherence functions for the speech and noise signals are defined in the same way as
described in Equation 5.7, but using the cross- and auto-PSDs of speech or noise only.
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Coherence Function Update

The coherence based noise estimate given in Equations 5.16 to 5.18 requires the
coherence functions of the speech signals Γss(λ, µ) and noise signals Γnn(λ, µ).
This can be constant functions as described in [JNK+11]. In practice, Γss(λ, µ)
and Γnn(λ, µ) are not known and might also change over time. Therefore, we
propose to update Γss(λ, µ) by recursive smoothing with αΓ in periods, where
speech is predominant and Γnn(λ,µ) in periods, where speech is absent. The speech
presence probability p(H1|X(λ, µ)) from Equation 2.18 determines these periods by
applying a simple threshold. The update rule is based on the short-term coherence
Γ̂xy(λ, µ) and reads for the noise coherence function

Γ̂nn(λ, µ) = αΓ ·Γ̂nn(λ−1, µ)+(1−αΓ)·Γ̂xy(λ, µ), ∀ µ ∈ {p(H1|X(λ, µ)) < 0.1}.
(5.19)

This rule uses the speech pauses to update the noise coherence function Γ̂nn(λ, µ)
in time-frequency bins with a low SPP.

The same rule can not be applied directly for the update of the speech coherence
function because a high SPP value p(H1|X(λ, µ)) does not necessarily indicate a
noise-free speech segment. Hence, the influence of the noise must be taken into
account. Using Equations 5.8 - 5.10 and assuming again that noise and speech
signals are uncorrelated, the coherence function of Equation 5.7 can be expressed
as

Γxy(λ, µ) = Φ̂s1s2 (λ, µ) + Φ̂n1n2 (λ, µ)√
Φ̂xx(λ, µ)Φ̂yy(λ, µ)

= Φ̂s1s2 (λ, µ) + Φ̂n1n2 (λ, µ)
Φ̂ss(λ, µ) + Φ̂nn(λ, µ)

= Φ̂s1s2 (λ, µ)
Φ̂ss(λ, µ)

(
1+ Φ̂nn(λ, µ)

Φ̂ss(λ, µ)

)−1

+ Φ̂n1n2 (λ, µ)
Φ̂nn(λ, µ)

(
1+ Φ̂ss(λ, µ)

Φ̂nn(λ, µ)

)−1

.

(5.20)

With the definition of the a posteriori SNR

γ(λ, µ) = Φ̂xx(λ, µ)
Φ̂nn(λ, µ)

= Φ̂ss(λ, µ) + Φ̂nn(λ, µ)
Φ̂nn(λ, µ)

(5.21)

and inserting the coherence function for speech Γss(λ, µ) and noise Γnn(λ, µ) in
Equation 5.20 the coherence can be rewritten as

Γxy(λ, µ) = Γss(λ, µ)γ(λ, µ)− 1
γ(λ, µ) + Γnn(λ, µ) 1

γ(λ, µ) . (5.22)

For the a posteriori SNR, the noise PSD estimate from the previous frame and
the smoothed noisy input are used to compute Φ̂nn(λ, µ) and Φ̂xx(λ, µ). Now
Equation 5.22 can be rearranged and finally leads to the corrected speech coherence
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function

Γss,cor(λ, µ) = Γxy(λ, µ) γ(λ, µ)
γ(λ, µ)− 1 − Γnn(λ, µ) 1

γ(λ, µ)− 1 . (5.23)

As we now consider the influence of the noise signals, the update of the speech
coherence function can be carried out similarly to Equation 5.19 during periods,
where speech is active, i.e., with a high SPP value. The computation rule is then
given by the following expression

Γ̂ss(λ, µ) = αΓ·Γ̂ss(λ−1, µ)+(1−αΓ)·Γss,cor(λ, µ), ∀µ ∈ {p(H1|X(λ, µ)) > 0.9}.
(5.24)

The smoothing constants in Equation 5.19 and Equation 5.24 are chosen to αΓ = 0.95
and the coherence functions are initialized as Γ̂ss(0, µ) = 1 for the speech and
Γ̂nn(0, µ) for an ideal diffuse noise field as expressed in Equation 3.10.

The second issue mentioned at the beginning of this section is the similar
coherence characteristic of speech and noise for low frequencies. This leads to
an inaccurate distinction between speech and noise signals. To circumvent this
problem the SPP noise estimate Φ̂n,SPP(λ, µ) is incorporated in the problematic
frequency range. Then the final noise PSD estimate of the complete system is given
by combining the estimates from Equations 2.18 and 5.17 and reads

Φ̂nn(λ, µ) =

{
Φ̂nn,SPP(λ, µ), if µ < µs

Φ̂nn,coh(λ, µ), else,
(5.25)

where µs represents the split-frequency between the single microphone and dual
microphone noise estimate. Here, we propose to use the frequency, where the MSC
of the ideal diffuse coherence in (3.10) takes the value 0.5. All parameters for the
SPP based components of the system are chosen as proposed in [GH11].

5.2.3 Evaluation
As in Chapter 4, the estimation accuracy as well as the noise reduction performance
is rated using the logarithmic error elog of the noise PSD estimate (see Equation A.4)
and the speech quality measures NA-SA and SII. For realistic signal generation, a
mock-up phone is used, which is equipped with two microphones with a distance
of 10 cm. The speech signal of the hands-free scenario is produced by an artificial
head including a mouth simulator (HEAD acoustics HMS II.3), where the mock-up
phone is situated 50 cm in front of the head according the ETSI EG 201 377-2
standard [ETS04]. The diffuse noise field is generated by four loudspeakers in the

audio laboratory2. This is carried out by the procedure defined in the ETSI
standard EG 202 396-1 [ETS09] using the four noise signals from the provided

2The audio laboratory is a measurement room with low reverberation (T60 < 100ms) and
good isolation from surrounding signals.
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database (pub noise, work noise jackhammer, outside traffic crossroads, fullsize
car1 130Kmh) and two artificial noise signals (constant and modulated white
noise). All results shown in the following are averaged over all noise types. The
evaluation is carried out, comparing the single channel SPP based method, [GH11]
the original coherence based approach (CohB) presented in [JNK+11] assuming
constant coherence properties, and the proposed advanced method [NBV13].
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Figure 5.8: Estimation accuracy in terms of the logarithmic error elog.

The logarithmic error in Figure 5.8 is depicted for different input SNRs between
-10 and 20 dB. For all cases both the SPP and the advanced method show the
best results with approximately 2 dB lower error. This results seem not to indicate
any advantages from the use of dual microphone characteristics, but considering
the noise reduction performance presented in Figure 5.9, the advanced approach
shows the highest improvement. In contrast to the estimation accuracy the SPP
based method results in lower values in terms of the NA-SA measure as shown
in Figure 5.9a. This is due to the property, that the SPP noise tracker applies a
rather aggressive noise reduction, i.e., a high noise reduction is applied at the price
of undesired speech attenuation.

The intelligibility enhancement presented in Figure 5.9b indicates an improve-
ment for all algorithms compared to the noisy input signals marked by the dashed
gray line. Again, the advanced method achieves the highest SII value ensuring to
avoid “poor” intelligibility conditions for SNRs greater than 16 dB.
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Figure 5.9: Evaluation of speech enhancement performance.
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5.3 Conclusions
In this chapter two realistic scenarios are discussed in which the speech signal
captured by a mobile phone is degraded by different noise types. For both sce-
narios, solutions are proposed to bypass problems usually occurring in realistic
environments. These are, that not always ideal conditions can be assumed as the
coherence properties or appearance of only clean speech and wind noise without
any further background noise.

First, the scenario is investigated, where not only wind noise but also back-
ground noise is present. This is an important issue, because the complete speech
enhancement system must be robust to scenarios with additional noise sources.
The proposed scheme applies a conventional noise reduction followed by the wind
noise reduction. The evaluation with different noise signals showed that an efficient
noise reduction can be achieved. A further improvement can be reached, if the
wind noise detection exploits properties gained from the unfiltered input signal.
Different combinations of the background noise and wind noise suppression are
investigated. Here the geometric mean of the spectral gains for two reduction stages
leads to a high noise reduction of up to 22, dB and at the same time an enhanced
intelligibility.

In the second part of this chapter, dual microphone solutions are presented to
combat background noise for the application of mobile phones in hand-held and
hands-free position. A short description of the principle is given, which exploits
the power level differences of speech and noise for the detection and estimation of
the noise PSD. A more detailed solution is presented in the case of the hands-free
scenario. Here, the coherence properties of the speech and the noise field are
considered. A system is proposed that solves two problems of a coherence based
processing:

1. non-ideal coherence properties,

2. high correlation of low-frequency diffuse noise.

This is realized by a combination of a single microphone system exploiting the
temporal characteristics in terms of the SPP with the coherence based processing
using both microphone signals. Here, a clear improvement of the noise reduction
performance is measurable using real recordings captured by a dual microphone
mock-up phone.
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Summary

So far conventional approaches for speech enhancement are not capable to reduce
wind noise. Hence, special algorithms are developed and presented. Different
prerequisites are considered, driven by the number of microphones or the application
of the used system. The temporal, spectral, and in the dual microphone case the
spatial properties are investigated for the detection, estimation and reduction
of wind noise. All proposed algorithms are evaluated with real recordings and
compared to state-of-the-art wind noise reduction methods. It turns out that
the proposed techniques clearly outperform the previous methods with respect to
the increase in signal-to-noise ratio and speech intelligibility. This was proven by
numerous benchmarks with standard objective and perceptual measures for speech
quality assessment.

Signal Analysis and Modelling
After a short introduction in the principles of noise estimation and speech en-
hancement, the first focus of the thesis was the investigation of wind noise from a
digital signal processing perspective. In a thorough analysis the statistics of the
recorded digital representation of wind noise and its distinct characteristics were
presented in detail. Different properties in the time domain, the discrete Fourier
transform (DFT) domain or regarding the spatial correlation of wind noise signals
captured by two microphones were explored, always with regard to detect wind
noise in a recorded signal in short segments. Based on the analysis of wind noise,
different approaches for the detection were presented and compared in terms of
their accuracy and robustness towards the presence of speech signals. In the time
domain, the normalized short-term mean (NSTM) approach, which exploits the
offset introduced by the wind noise, showed the best performance. Similar results
were achieved by a method in the frequency domain that decomposes the noisy
speech signal into a speech template spectrum and a wind noise template spectrum.
For systems with two microphones the averaged short-term coherence is applied as
wind detector. Contrary to the expectation that the use of two microphone signals
leads to an improved detection the results indicates only comparable detection
rates. This is due to the computation of the coherence, which always includes an
averaging process over time and leads to a decreased adaptation speed to the fast
changing signal characteristics of wind noise.
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Using the knowledge of the statistics of wind noise signals, a model was derived
for the generation of artificial wind noise as digital signal. So far only models for
the prediction of the long-term behavior of wind are known. The proposed model
generates a signal with clearly higher temporal resolution and played a significant
role for the development and testing chain of speech enhancement algorithms.
The spectral characteristics are reproduced by an auto-regressive (AR) filter with
prototypical coefficients. The non-stationary temporal behavior is simulated by
a time-varying gain. It was shown that with an appropriate parameterization,
the short-term energy can be modeled by a Weibull distribution. For the long-
term behavior a Markov model has been applied for the representation of the
different wind intensities. Comparative analyses showed such a high similarity
between real wind noise recordings and the generated wind noise that the time-
and cost-consuming recordings could be reduced to a minimum.

Wind Noise Estimation and Reduction

The main part of this thesis dealt with the estimation of the short-term power
spectrum (STPS) of wind noise and the enhancement of the degraded speech signal.
As all concepts for speech enhancement of a noisy signal require an estimate of the
underlying noise, methods were developed, which can precisely determine the wind
noise spectrum in a given signal containing both speech and wind. The spectral
shapes of speech and wind noise were exploited for a distinction. The experimental
comparison with other state-of-the-art wind noise estimators showed that the new
methods lower the logarithmic error in order of 5 dB in all relevant wind noise
conditions. The wind noise estimators were also compared as part of commonly
used overlap-add structure with a spectral weighting gain for noise suppression.
Here again, the proposed algorithm achieved the best performance considering both
the noise reduction and the intelligibility enhancement. An improvement in terms
of the difference between noise and speech attenuation (NA-SA) of over 15 dB can
be achieved in all relevant cases.

Many present-day mobile devices are equipped with two microphones. Therefore,
a new approach was derived for the estimation of wind noise using the short-term
coherence. To solve the problems introduced by the non-stationary behavior of
the wind noise, besides the magnitude, also the phase of the complex valued
coherence has been used for the wind noise estimation. A comparison with other
dual microphone wind noise reduction methods demonstrated similar intelligibility
enhancement results, but an improved noise reduction performance.

All wind noise reduction concepts applying a spectral weighting gain suffer
from a strong speech attenuation in the highly degraded parts at lower frequencies.
Therefore, an innovative concept for speech enhancement was introduced. The
basic idea is to partially reconstruct the degraded speech spectrum by parts
of an artificially generated speech spectrum. By means of techniques known
from the artificial bandwidth extension and pre-trained speech codebooks, the
widely used source-filter model for speech production has been incorporated in the
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speech enhancement process. Perceptual measures and an evaluation in terms of
the segmental SNR proved that the new concept can mitigate to a large extend
the effects introduced by the conventional spectral weighting. This system is a
completely new approach for speech enhancement and can be extended to combat
a wider range of noise types. The final evaluation of all algorithms was performed
with real wind noise recordings to prove their efficiency under realistic conditions.

Noise Reduction for Mobile Phones
It is of special interest that the speech enhancement techniques also hold in the
context of realistic acoustic, i.e., non-ideal, situations. Exemplary, two concrete
scenarios were discussed dealing with problems in realistic environments for a
mobile phone application.

First, the integration of a wind noise reduction component into a conventional
noise reduction system is investigated. In this context, the operation order was
discussed with the consensus that first the background noise reduction should
be applied followed by the wind noise reduction. The evaluation with speech
signals degraded by both background and wind noise manifests this structure. A
modification of this serial processing could even further improve the performance.

The second scenario considers dual microphone mobile phones for the use in a
diffuse background noise field. In case of a hand-held telephony the power level
differences of speech and noise can be exploited for the estimation of the noise
power spectral density (PSD) and the subsequent background noise reduction. For
the hands-free condition, a coherence based method was adopted to solve two
problems of realistic recordings: (i) non-ideal coherence properties of the signals
and (ii) high-coherent parts of diffuse noise for lower frequencies.

In conclusion, it can be stated that the algorithms proposed in this thesis can
efficiently reduce the effects of wind noise and background noise in speech signals.
Especially, the wind noise reduction techniques improves intelligibility in terms of
an speech intelligibility index (SII) score indicating a poor intelligibility (SII < 0.45)
to a range of good intelligibility (SII > 0.8). In addition, informal listening tests
confirm a high quality of the processed speech signals. With these results, a high
signal quality in many mobile communication devices can be ensured even under
severe outdoor conditions. This thesis is the first, which addresses the complete
problem of detecting and reducing wind noise from a signal processing perspective.
The results provide valuable concepts for many applications, such as mobile mobile
phones, outdoor microphones or hearing aids. All considered algorithms besides
the partial speech synthesis are characterized by a low computational complexity,
which is comparable to conventional noise reduction methods.
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Appendix A

Evaluation Environment

A.1 Evaluation of Speech Enhancement

All considered speech enhancement algorithms in this thesis are realized in an
overlap-add structure. The complete set-up for algorithms applying a spectral
gain G(λ, µ) for noise reduction is depicted in Figure A.1. For the evaluation
of the methods not only the mixed noisy signal x(k) is used, but also the clean
speech signal s(k) and the pure noise signal n(k), which are also available in the
simulation environment. The same analysis procedure in terms of segmentation,
windowing and fast Fourier transform (FFT) is applied to all input signals yielding
the frequency domain representations S(λ, µ), N(λ, µ), and X(λ, µ). For systems
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Ŝ(λ, µ)

S(λ, µ)

N(λ, µ)
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applying a spectral weighting, the gain function G(λ, µ) can also be multiplied with
the clean speech spectrum S(λ, µ) and the pure noise spectrum N(λ, µ) where
G(λ, µ) is only calculated based on the information given by X(λ, µ). After the
noise reduction stage the three input signals results into an enhanced noisy signal
Ŝ(λ, µ), the filtered clean speech S(λ, µ) and the filtered noise signal N(λ, µ) and
their time-domain representations ŝ(k), s(k) and n(k).

Different quality measures can be computed from a comparison the input
and output signals of the presented evaluation structure. In this thesis, the
noise attenuation - speech attenuation (NA-SA), speech intelligibility index (SII),
perceptual evaluation of speech quality (PESQ) and segmental SNR (segSNR) are
used.

Segmental Speech and Noise Attenuation

Comparing the clean speech s(k) with the filtered speech s(k) and the input noise
n(k) with the filtered noise n(k), the segmental attenuation of the speech and noise
signals due to the applied noise reduction can be calculated as

SA/dB = 1
#{Ks}

∑

l∈Ks

(
10 · log10

(∑LF−1
k=0 s2(k + l · LF)∑LF−1
k=0 s2(k + l · LF)

))
(A.1)

NA/dB = 1
#{Kt}

∑

l∈Kt

(
10 · log10

(∑LF−1
k=0 n2(k + l · LF)∑LF−1
k=0 n2(k + l · LF)

))
(A.2)

For the speech attenuation only the set Ks of frames with speech activity is
considered, while for the noise attenuation the complete set off all signal frames Kt
is used.

Regarding the NA and SA measures separately, no direct proposition about
the speech quality can be made. But difference between NA and SA indicates
the effective noise reduction performance and predicts an enhancement for values
greater 0 dB.

Segmental Signal-to-Noise Ratio

A further measure for the rating of the signal quality is the segmental signal-to-noise
ratio. It is defined by the mean of all segments Ks with voice activity as follows

segSNR/dB = 1
#{Ks}

∑

l∈Ks

(
10 · log10

( ∑LF−1
k=0 s2(k + l · LF)∑LF−1

k=0 (s(k + l·LF)− ŝ(k + l·LF))2

))
.

(A.3)
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A.2 Evaluation of Noise Estimation Accuracy
The accuracy of the noise is often determined by means of the error between the
noise estimate by the considered algorithm and a known reference noise signal (see,
e.g., [TTM+11], [GH11]). Using the evaluation structure of Figure A.1, the true
noise signal is given and can be used as reference. The logarithmic error is defined
as

elog/dB = 1
ML

L−1∑

λ=0

M−1∑

µ=0

∣∣∣∣10 log10

(
Nref(λ, µ)
N̂ (λ, µ)

)∣∣∣∣ . (A.4)

In conventional noise reduction systems often the noise PSD is estimated by a first-
order recursive smoothing approach. As discussed throughout this work, smoothing
of the wind noise estimate can lower the accuracy. Hence, the short-term power
spectrum (STPS) of the noise signal

|Nref(λ, µ)|2 = |N(λ, µ)|2 (A.5)

is used as noise reference.
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Appendix B

Derivation of Coherence Phase

The phase of the complex coherence function will be derived in the following as
function of the magnitude and phase of the complex speech and noise spectra from
a dual microphone configuration. It is assumed that both speech and noise show
similar levels in both microphone signals. Then, the spectra of the two signals in
both microphones 1|2 read

S1|2(λ, µ) = |S(λ, µ)| · ejϕs1|2 (λ, µ)
, (B.1)

N1|2(λ, µ) = |N(λ, µ)| · ejϕn1|2 (λ, µ)
. (B.2)

The noisy input signals of the two microphone are given by

X(λ, µ) = |S(λ, µ)| · ejϕs1 (λ, µ) + |N(λ, µ)| · ejϕn1 (λ, µ), (B.3)
Y (λ, µ) = |S(λ, µ)| · ejϕs2 (λ, µ) + |N(λ, µ)| · ejϕn2 (λ, µ). (B.4)

Regarding the short-term complex coherence function defined by

Γ̂(λ, µ) = Φ̂xy(λ, µ)
Φ̂xx(λ, µ) · Φ̂yy(λ, µ)

, (B.5)

the auto PSDs Φ̂xx(λ, µ) and Φ̂yy(λ, µ) are real-valued, and only the cross-PSD
Φ̂xy(λ, µ) is complex-valued. Hence, the phase of Equation B.5 is determined by
Φ̂xy(λ, µ). In Section 4.4.3, the phase of the coherence is exploited to achieve a
sufficient adaptation speed to the fast changing wind noise characteristics. Therefore,
the smoothing constant α for the PSD calculation (see Equation 4.50) is set to
zero. For the computation of the magnitude squared coherence (MSC) Cxy, this
choice of α is not recommended, because the required PSDs must be calculated
as expectation over a certain time-span (see, [Car87]) and α = 0 will lead to
Cxy = 1 for all signal types. But for the phase of the coherence or the cross-PSD, a
characteristic information is given by this instantaneous calculation in each frame
and will be shown in the following. That means, for the choice α = 0 the cross-PSD
computation reads

Φ̂xy(λ, µ) = X(λ, µ) · Y ∗(λ, µ). (B.6)

For the sake of clarity, the time and frequency indices λ and µ are omitted in
the following equations. Inserting Equations B.3 and B.4 into Equation B.6, the
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cross-PSD reads

X · Y ∗ = |S|2 · cos(ϕs1 − ϕs2 ) + |N |2 · cos(ϕn1 − ϕn2 )
+|S ·N | · (cos(ϕs1 − ϕn2 ) + cos(ϕn1 − ϕs2 ))
+j · [|S|2 · sin(ϕs1 − ϕs2 ) + |N |2 · sin(ϕn1 − ϕn2 )
+|S ·N | · (sin(ϕs1 − ϕn2 ) + sin(ϕn1 − ϕs2 ))]. (B.7)

With the assumption of delay-compensated speech signals, i.e., ϕs1 = ϕs2 , the
phase of the coherence or cross PSD is given by

ϕΓ = ∠{Φ̂xy(λ, µ)} = ∠{X · Y ∗} = arctan
(

Im{X · Y ∗}
Re{X · Y ∗}

)

= arctan
(

|N |2 sin(ϕn1−ϕn2 )+|S||N |(sin(ϕs1−ϕn2 )+sin(ϕn1−ϕs2 ))
|S|2+|N |2 cos(ϕn1−ϕn2 )+|S||N |(cos(ϕs1−ϕn2 )+cos(ϕn1−ϕs2 ))

)

(B.8)

as it is used in Equation 4.55. This relation between the distribution of the phase
ϕΓ and the amplitudes of speech |S| and noise |N | can now be exploited for the
detection as it is shown in Section 4.4.3.
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Mathematical Notation & Abbreviations

Mathematical Operators

≈ approximately equal to
=̂ equivalent to (usually a unit conversion)
!= /

!
≤ shall be equal to / shall be less than or equal to

∧ / ∨ logical and / or
∈ element of
∀ for all
x∗ complex conjugate of x
|x| absolute value of x
bxc floor function, i. e., largest integer which is not greater than x
dxe ceiling function, i. e., smallest integer which is not less than x
dxc rounding function, i. e., closest integer to x
E{x(k)} expectation value of x(k)
Ê{x(k)} short-term expectation value of x(k)
Re{x} real part of x
Im{x} imaginary part of x
max
x
{f(x)} maximum of f(x) over x

arg max
x

{f(x)} argument x of maximum of f(x) over x

x average of x
#{X} cardinality of X, i.e., number of elements in X
||x|| norm, i.e., Euclidean distance of the vector x
xT transpose of the vector x

Non-Mathematical Operators

x̂ estimate of the signal or parameter x
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Mathematical Notation & Abbreviations

x̃ signals or parameters, which are not the direct result of observed sig-
nals, e.g., synthetic signals or pre-trained information in codebooks

Principal Symbols
α smoothing constant for recursive PSD calculation

αD decay constant of wind coherence model

αe mixing parameter of wind noise excitation

αξ smoothing constant for “decision-directed” a priori SNR estimation

αS spectral subtraction parameter

βS spectral subtraction parameter

γ a posteriori SNR

θ angle of arrival of signal

η phase complex DFT coefficients of noisy speech

κ sample index in the current frame

κW shape parameter of Weibull distribution

λ frame index

λW scale parameter of Weibull distribution

µ frequency bin

ν viscosity of air

Ξ sub-band signal centroid (frequency range of sub-band may be given as subscript)

ξ a priori SNR

ξopt optimal a priori SNR used in [GH11]

ϕΓ phase of complex coherence

Φ power spectral density

Φ̂ short-term estimate of power spectral density

Φ̂nn noise power spectral density estimate

Φxx (auto) power spectral density of a signal x(k)

Φxy cross power spectral density of the signals x(k) and y(k)
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Principal Symbols

ρ density of air

σ2
ϕ phase variance

σ2
E,ST variance of short-term frame energy over i frames

σ2
E,ST mean short-term variance of frame energy

σTSC weight for codebook decomposition

Υ long-term average speech spectrum

ω angular frequency (ω ≡ 2πf)

Ω normalized angular frequency (Ω ≡ 2πf/fs)

c speed of sound (343 m/s)

C magnitude squared coherence

dBFS decible relative to full scale [−1 . . . 1]

Dc characteristic dimension

dm microphone distance

d̃m effective microphone distance depending on θ

elog logarithmic error

EST short-term energy of one signal frame

f continuous (analog) frequency

fs sampling frequency

gLT long-term gain

GP prediction gain

GS spectral subtraction filter gain in generalized form

gST short-term gain

GW Wiener filter gain

H0 speech absence

H1 speech presence

I wind indicator, if not otherwise stated in the range between 0 and 1

k sample index

KCB length of one codebook vector
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Mathematical Notation & Abbreviations

LF frame size

Llog logarithmic spectrum level

lLP order of LP filter

M length of the DFT

N short-term spectrum of wind noise

nsyn synthetic wind noise signal

P sound pressure spectrum

Ps̄ speech misdetection rate

Pw wind detection rate

pW PDF of a Weibull distribution

R magnitude complex DFT coefficients of noisy speech

Re Reynolds number

sseq sequence of discrete states

S̃ synthetic speech signal

t continuous time variable

T60 reverberation time

U wind speed

Ũ normalized wind speed

u∞ free-field velocity

Acronyms
ABWE artificial band width extension

AED adaptive eigenvalue decomposition

ANSI American National Standards Institute

AR auto-regressive

ASR automatic speech recognition

ASWE adaptive smoothing wind noise estimation

CDF cumulative distribution function
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Acronyms

DC direct component

DCT discrete cosine transformation

DDA decision directed approach

DFT discrete Fourier transform

DOA direction of arrival

DSP digital signal processor

ETSI European Telecommunications Standards Institute

FFT fast Fourier transform

FIR finite impulse response

HFP hands-free position

HHP hand-held position

HPS harmonic product spectrum

IFFT inverse fast Fourier transform

IIR infinite impulse response

ITU International Telecommunication Union

LMS least-mean-square

LP linear prediction

LPC linear predictive coding

LSD logarithmic spectral distortion

LSF line spectral frequency

LT long-term

LTASS long-term average speech spectrum

MFCC mel-frequency cepstral coefficients

MMSE minimum mean square error

MORPH morphological approach

MOS mean opinion score

MSC magnitude squared coherence

MSE mean square error
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Mathematical Notation & Abbreviations

NA noise attenuation

NLMS normalized least-mean-square

NSF negative slope fit

NSTM normalized short-term mean

PDF probability density function

PESQ perceptual evaluation of speech quality

P-IBM pitch adaptive inverse binary mask

PSD power spectral density

PSYN partial speech synthesis

ROC receiver operating characteristic

RSS recursive spectral subtraction

SA speech attenuation

segSNR segmental SNR

segSSNR segmental speech-signal-to-noise-ratio

SII speech intelligibility index

SNR signal-to-noise-ratio

SPP speech presence probability

SSC sub-band signal centroid

ST short-term

STOI short-time objective intelligibility

STPS short-term power spectrum

THD total harmonic distortion

TPC template pitch cycle

TSC template spectrum combination

VAD voice activity detector

WNR wind noise reduction

ZCR zero crossing rate
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