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Abstract. In this paper we present “Logarithmic Cubic
Vector Quantization” (LCVQ), a novel type of gain-shape
vector quantization (GSVQ). In LCVQ, the vector to be
quantized is decomposed into a gain factor and a shape vec-
tor which is a normalized version of the input vector. Both
components are quantized independently and transmitted to
the decoder.
Compared to other GSVQ approaches, in LCVQ the input
vectors are normalized such that all shape vectors are lo-
cated on the surface of the unit hypercube. As a conclusion,
the shape vector quantizer can be realized based on uniform
scalar quantizers. This yields low computational complexity
as well as high memory efficiency even in case of very high
vector dimensions.
In order to demonstrate the coding efficiency of the proposed
quantization scheme, LCVQ is compared to existing quanti-
zation schemes, the recently proposed logarithmic spherical
vector quantization (LSVQ), logarithmic scalar quantization
(LSQ) and adaptive quantization backward (AQB).
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1. Introduction
The quantizer is in general the key element in com-

pression schemes for lossy speech and audio coding. In
the design of a quantizer in practice, a good trade-off be-
tween complexity and quantization performance has to be
achieved. On the one hand, scalar quantizers can be real-
ized with low complexity but have only a moderate quan-
tization performance. On the other hand, vector quantiza-
tion techniques show promising results close to the theo-
retically achievable performance but have larger implemen-
tation costs. Recently, a gain-shape vector quantization
(GSVQ) technique, logarithmic spherical vector quantiza-
tion (LSVQ), has been proposed which is a reasonably well-
balanced solution to this problem [1]. Internally, it requires
a vector codebook which is computed in an offline manner
[2].

“Logarithmic Cubic Vector Quantization” (LCVQ) is
a novel type of gain-shape vector quantization which offers
some advantages over LSVQ: It operates with low complex-
ity and high memory efficiency even in case of very high in-
put vector dimensions. Therefore, it is flexible regarding the
possibility to adjust the bit rate at runtime. It allows higher
input vector dimensions than LSVQ, since no vector code-
book is required.

In this paper, LCVQ shall be investigated and com-
pared to other quantization schemes: A generalization of
gain-shape vector quantization is given in Section 2 as
well as brief descriptions of logarithmic scalar quantization
(LSQ), LSVQ and the novel LCVQ.
Section 3 deals with the quantization scheme adaptive quan-
tization backward (AQB). It shows interesting similarities
to the previously mentioned GSVQ techniques LSVQ and
LCVQ.
The quantization performance of all quantization techniques
are evaluated in Section 4. Finally, conclusions are given in
Section 5.

2. Generalized Gain-shape Vector
Quantization

In gain-shape vector quantization (GSVQ) [3], the in-
put vectorx ∈ RL with dimensionL is decomposed into a
gain factorg ≥ 0 and a shape vectorc ∈ RL which are then
quantized independently by means of a scalar quantizer for
g and a vector quantizer forc and transmitted to the decoder
(refer to Figure 1).
The two components are computed as

g = ‖x‖p =

(
L∑

i=1

xp
i

) 1

p

and c =
1

g
· x (1)

with ‖x‖p denoting the p-norm of a vector.

In the decoder, combining the quantized version of the
gain factor,g̃ = Qg(g) and of the shape-vector,c̃ = Qc(c)
results in the overall reconstruction vector

x̃ = g̃ · c̃ . (2)

The main difference between LSVQ and LCVQ can be
demonstrated based on equation 1:
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Fig. 1. Parallel quantization of the gain and shape component
with p = 2 andQc = Qsvq for LSVQ andp = ∞,
Qc = Qcvq for LCVQ.

In LSVQ, settingp = 2 results in a normalization of input
vectorx to its Euclidean norm

g = ‖x‖2 =
√
xT · x . (3)

In contrast to this, LCVQ makes use of the uniform
(maximum) norm withp = ∞ instead of the Euclidean
norm:

g = ‖x‖
∞

= max(|x1| , . . . , |xL|) . (4)

Using the Euclidean norm for normalization yields in
the shape vectorsc being located on the surface of theL-
dimensional unit hypersphere. In contrast to this, normaliz-
ing with the unit norm results inc lying on the surface of the
L-dimensional unit hypercube. The difference is illustrated
in Figure 2.

x = g · c

g

c

x1

x2

1

(a) Euclidean norm

x = g · c

g

c

x1

x2

1

(b) Uniform norm

Fig. 2. Comparison ofg = ‖x‖2 on the left andg = ‖x‖
∞

on the right hand plot for vector dimensionL = 2. The
normalized vectorc = x/g lies on the surface of the
unit sphere or unit cube, respectively.

2.1. Logarithmic Quantization of the Gain Fac-
tor

In LSVQ and LCVQ, the gain factorg is quantized us-
ing a logarithmic scalar quantizer (LSQ)Qg. Here, the A-
law companding algorithm shall be used with the number of
reconstruction levelsNg, compression factorA and stepsize
∆g, as described in [4]. It can be shown, that in the case of
LSQ, the stepsize scales with the reconstruction valueg̃ [5]:

∆g(g̃) =
1 + ln(A)

Ng

· g̃ . (5)

The signal-to-noise ratio (SNR) of LSQ is independent of
the input vector probability density function (PDF)

SNRlsq,A|dB = 6.02 ·R+ 10 log10(3)

− 20 log10(1 + ln(A)) (6)

with R denoting the bit rate of the quantizer. This indepen-
dence comes at the price of a penalty-term of10 log10(3) −
20 log10(1 + ln(A)) compared to the well-known6 dB-per-
bit-rule [5].

As LSQ can be considered as a special case of LSVQ
and LCVQ for input vector dimensionL = 1, it is used in
Section 4 as a reference.

2.2. Logarithmic Spherical VQ (LSVQ)

In logarithmic spherical vector quantization, the Eu-
clidean norm withp = 2 is used in equation 1 for normal-
ization of input vectorx:

g = ‖x‖2 =
√
xT · x . (7)

In that case, the normalized shape vectorsc are lying on the
surface of theL-dimensional unit hypersphere.
The shape vectorc is quantized using a spherical vector
quantizer (SVQ) denoted byQc = Qsvq whose codebook
consists ofNsvq spherical codevectors which are located on
the surface of the unit sphere. The overall design goal of the
codebook ofQsvq is to distribute the codevectors uniformly
over the unit sphere surface.
[2] shows, that using LSQ for quantization of the gain factor
g = ‖x‖2 and SVQ for the shape vectorc results in a SNR
which is independent of the PDF of the input vector:

SNR
(I)
lsvq =

N
2

L

lsvq

Clsvq · π
·
(

Γ
(
L
2

)

2 · (1 + ln(A))

) 2

L

·

∫

x∈RL

p(x) · ‖x‖22 dx
∫

x̃∈RL

p(x̃) · ‖x̃‖22 dx̃
︸ ︷︷ ︸

≈1

. (8)

Equation 8 is a qualitative formula for the SNR which can be
derived from the normalized quantizer point density function
under high bit rate assumptions.Clsvq denotes an unknown
quantization cell form-factor andΓ(z) =

∫
∞

0
e−t · tz−1dt

the gamma-function [6].

High bit rate approximations yield another more quan-
titative formula for the SNR indB as

SNR
(II)
lsvq |dB = 6.02 ·Reff

− 10 log10




L

(L+ 1)
L−1

L

·
[

2 ·
√
π · Γ

(
L+1
2

)

Γ
(
L
2

)

] 2

L

·
[
(1 + ln(A))2

12

] 1

L

)

. (9)
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This formula is used in Section 4 to compare the perfor-
mance of LSVQ with the novel LCVQ scheme.

With Ng being the number of quantization reconstruc-
tion levels of the gain-component, the total number of LSVQ
codevectors is

Nlsvq = 2Reff ·L = Ng ·Nsvq (10)

with Reff denoting the effective bit rate per vector dimen-
sion. Naturally, a bit allocation is needed to distribute the
overall bit rate optimally over the gain and the shape quan-
tizer’s bit rates [2].
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Fig. 3. LSVQ reconstruction values (denoted by crosses) and
quantization cells for vector dimensionL = 2 with
number of spherical codevectorsNsvq = 12.

Figure 3 shows the overall LSVQ reconstruction values
and quantization cells for the example ofL = 2. The SVQ
codevectors are located on versions of the shells of the unit
sphere which are scaled by the LSQ reconstruction levels.

The design of spherical vector-codebooks used for
Qsvq is rather complex and shall not be discussed in this pa-
per. Different procedures are given in [7] and [2].

2.3. Logarithmic Cubic VQ (LCVQ)

In “Logarithmic Cubic Vector Quantization”, the input
vector is normalized by its uniform norm

g = ‖x‖
∞

= max(|x1| , . . . , |xL|) = xl0 (11)

with l0 = argmax
l

(|xl|) denoting the index of the maximum

value ofx such that the normalized vector componentcl0 =
1.
As a result, the shape vectorsc are lying on the surface of
theL-dimensional unit hypercube with edge length equal to
2 as depicted in Figure 2(b).
The quantizer of the shape vectorQc = Qcvq can be realized

in a very efficient way as it consists ofL− 1 uniform scalar
quantizersQsq for each dimension with indexl 6= l0

c̃l =

{

Qsq(cl), if l 6= l0 ,

1, if l = l0 .
(12)

Each uniform scalar quantizerQsq has the same number of
reconstruction levelsNc and the stepsize

∆c =
2

Nc

. (13)

The total number of LCVQ reconstruction values is calcu-
lated as

Nlcvq = 2Reff ·L = Ng ·Ncvq = Ng · 2 · L ·NL−1
c (14)

with Ncvq denoting the number of reconstruction values per
cube shell. The factor2 · L gives the number of surfaces of
aL-dimensional hypercube.
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Fig. 4. LCVQ reconstruction values (denoted by crosses) and
quantization cells for vector dimensionL = 2 with
number of quantization cells per dimensionNc = 3.

The overall LCVQ reconstruction values and quantiza-
tion cells for vector dimensionL = 2 are depicted in Figure
4. The reconstruction values are lying on cube shells which
are scaled by the LSQ reconstruction levels and are equally
distributed over the hypercube surface (similar to the SVQ
codevectors, refer to Figure 3).

Using only scalar quantizers, it becomes clear that
LCVQ offers the previously mentioned advantages such as
low memory and implementation cost. Note that LCVQ has
no limits regarding the input vector dimension in compari-
son to LSVQ, where the vector dimension is bounded by the
codebook design.

3. Adaptive Quantization Backward
(AQB)

In adaptive quantization backward, which was pro-
posed in [9], the quantization stepsize∆x is dynamically
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adapted to the instantaneous signal powerσ̃x of the quan-
tized input signal̃x(k) with k being the current time index.
σ̃x is estimated recursively using the latest transmitted value
Z(k − 1):

∆x(k)

∆x(k − 1)
=

σ̃x(k)

σ̃x(k − 1)
= f {Z(k − 1)} = M(k − 1) .

(15)

M(k) denotes the so-called stepsize multiplier which is a
function ofZ(k). M(k) can be precalculated and stored in
a table.

x(k) x̃(k)

∆x(k)∆x(k)

±Z(k)
Qsq Q′

sq

Encoder Decoder

StepsizeStepsize
adaptationadaptation

Fig. 5. Block diagram of the adaptive quantization backward
scheme.

Figure 5 shows a block diagram of the AQB method:
Qsq is a common uniform scalar quantizer with number of
reconstruction levelsNaqb = 2R and stepsize∆x(k). Qsq

providesZ(k) as an intermediate value at time indexk which
is also transmitted to the decoder. In the decoder,Z(k) is
transformed byQ′

sq to the quantization reconstruction level
x̃(k). The stepsize-adaptation block is the same in encoder
and decoder and uses equation 15 to estimate the instanta-
neous stepsize∆x(k).

The AQB shall be considered as a reference quantizer
in Section 4 as it shows similarities to LCVQ and LSVQ in
the sense that all these algorithms have in common to esti-
mate the instantaneous signal variance: AQB uses a direct
estimation of the variance, whereas LCVQ and LSVQ are
adapting to the variance by normalization of the input vector
to the gain factor.

4. Evaluation
For the evaluation, a large number of signal vectors was

generated following a normal or uniform distribution. These
vectors were quantized afterwards with an LCVQ or an AQB
quantizer for different vector dimensionsL ∈ {2, 8, 48}. Fi-
nally, the signal-to-quantization-noise ratio (SNR) was cal-
culated for each quantization scheme. The optimal LCVQ
bit allocation forNg andNc was determined experimentally.
The simulated SNRs of LCVQ and AQB are compared to the
theoretical SNRs of LSVQ (equation 9) and LSQ (equation
6) for different bit ratesReff ∈ [1.5, 5].

The companding factorA is set to5000 for all loga-
rithmic quantizers, which was found in [10] as a reasonable

trade-off between dynamic range and performance for audio
signals.

Figure 6 shows the results of LCVQ compared to
LSVQ, AQB and LSQ for uniformly and Figure 7 for nor-
mally distributed input vectors. LCVQ achieves almost the
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Fig. 6. SNR for uniformly distributed input vectorsx.

same SNR as LSVQ for the uniform input vector distribution
for all input vector dimensionsL. LCVQ shows better re-
sults than AQB for high bit rates and above vector-dimension
L = 8.
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Fig. 7. SNR for input vectorsx following a normal distribution
with meanµx = 0 and varianceσ2

x
= 1.

For normally distributed input vectors, LSVQ outperforms
LCVQ for all vector-dimensionsL, whereby the difference
between the LSVQ and LCVQ SNR increases withL. For
vector-dimensionL = 8 and lower bit rates, LCVQ provides
a similar performance compared to AQB and performs better
for high bit rates.
The worst SNR results in both PDF scenarios are obtained
by LSQ which is the special case of LSVQ and LCVQ for
vector dimensionL = 1.
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LCVQ quantization cells introduce a larger quantiza-
tion error due to their square shape compared to the non-
square shaped LSVQ cells [8]. The overall square config-
uration of LCVQ reconstruction values is not optimal for
spherically distributed sources either [2].

In practice, it is not feasible to generate LSVQ code-
vectors above a vector dimension ofL = 16 whereas LCVQ
is still able to quantize vectors with very large dimensions.
This is one of the key advantages of LCVQ compared to
LSVQ.

5. Conclusions
In this paper, a novel gain-shape vector quantization

technique, “Logarithmic Cubic Vector Quantization”, was
proposed and compared to other quantization schemes, par-
ticularly to logarithmic spherical vector quantization. LCVQ
offers the advantages of low complexity, high memory effi-
ciency and adaptivity to different bit rates at runtime. LSVQ
shows slightly better SNR results than LCVQ. By a signif-
icant increase of the input vector dimension, which is not
possible for LSVQ, LCVQ can overcome the performance
loss compared to LSVQ.
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