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Abstract—In this paper, we analyze Logarithmic Cubic Vec-
tor Quantization (LCVQ), a novel type of gain-shape vector
quantization (GSVQ). In LCVQ, the vector to be quantized is
decomposed into a gain factor and a shape vector which is a
normalized version of the input vector. Both components are
quantized independently and transmitted to the decoder. Com-
pared to other GSVQ approaches, in LCVQ the input vectors
are normalized based on the maximum norm (also denoted as
L∞-norm) instead of the typically used Euclidean norm
(L2-norm). Therefore, all shape vectors are located on the surface
of the unit hypercube. As a conclusion, the shape vector quantizer
can be realized based on uniform scalar quantizers yielding low
computational complexity as well as high memory efficiency even
in case of very high vector dimensions.
In this paper, the concept of LCVQ is presented. Also, theoretical
quantization performance measures for LCVQ as well as the
optimal allocation of bit rate for gain factor and shape vector
are derived. In order to assess the proposed LCVQ approach,
the quantization performance achieved by LCVQ is compared
to results which were recently derived for Logarithmic Spherical
Vector Quantization (LSVQ), another highly efficient GSVQ
scheme proposed in [1].

I. INTRODUCTION

In general, the quantizers are key elements in compression

schemes for lossy source coding. In the design of a quantizer in
practice, a good trade-off between complexity and quantization

performance has to be achieved. On the one hand, scalar

quantizers can be realized with low complexity but have only
a moderate quantization performance. On the other hand,

vector quantization techniques show promising results close
to the theoretically achievable performance but have larger

implementation costs.

For high-quality speech-audio-coding, vector quantizers with
effective bit rates of more than 2 bits per sample are

needed. In contrast to this, most of today’s speech codecs

employ sparse vector codebooks [2] which are only suit-
able for very low bit rates (≤ 1 bit per vector dimen-

sion). Recently, Logarithmic Spherical Vector Quantization

(LSVQ), has been theoretically investigated in [1] and [3]. In
that context, LSVQ represents a class of Gain-Shape Vector

Quantizers (GSVQs) which may involve different practical

realizations of Spherical Vector Quantizers (SVQ), e.g., de-
scribed in [4]. Novel realizations of LSVQ which achieve a

high quantization performance with low computational cost
have been proposed in [5] and [6], respectively. However,

the proposed approaches for LSVQ require the storage of

precomputed vector codebooks. In practice, this limits the
available bit rates to low values (≤ 2− 3 bits per sample).

Logarithmic Cubic Vector Quantization (LCVQ) is a novel
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Figure 1. Parallel quantization of the gain and shape component with p = 2
and Qvq = Qsvq for LSVQ and p = ∞, Qvq = Qcvq for LCVQ.

type of gain-shape vector quantization which can be realized

in a very efficient way and therefore offers some advantages

over LSVQ: It achieves high quantization performance and at
the same time operates with low complexity. Furthermore, it

can be realized with high memory efficiency even for very
high input vector dimensions and allows higher bit rates since

no vector codebook is required. It is flexible in terms of the

used bit rate which can even be adjusted at runtime.
In this paper, the concept of LCVQ as well as theoretical

results are presented: In Section II, the principles of GSVQ in

general and LSVQ as well as LCVQ in particular are briefly
summarized. In Section III, novel equations for different

aspects related to LCVQ are derived, in particular a formula

to describe the LCVQ quantization signal-to-noise-ratio (SNR)
for high bit rates. The derived equations are verified by Monte

Carlo simulations and evaluated in Section IV to compare

LCVQ and LSVQ in terms of the achievable quantization
performance.

II. GENERALIZED GAIN-SHAPE VECTOR QUANTIZATION

The principle of gain-shape vector quantization (GSVQ) [7]

is illustrated by Figure 1: The input vector x ∈ R
L with

dimension L is decomposed into a gain factor g ∈ R+ and

a shape vector c ∈ R
L which are quantized independently

by means of the scalar quantizer (SQ) Qg and the vector
quantizer (VQ) Qvq, respectively. Gain value and shape vectors

are computed as

g = ‖x‖p =

(
L∑

i=1

|xi|p
)1/p

and c =
1

g
· x (1)

with ‖x‖p denoting the p-norm of a vector.

Both parts are transmitted to the decoder where the quantized
version of the gain factor, g̃, and of the shape-vector, c̃, are

combined to produce the overall reconstruction vector

x̃ = g̃ · c̃ . (2)
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Figure 2. Transforming x into c: Projection onto the different contour shapes,
the surface of a unit sphere (a) and a unit cube (b) due to the Euclidean and
the maximum norm, respectively, for the example of L = 2.

The main difference between LSVQ and LCVQ lies in equa-
tion 1 and can be illustrated based on Figure 2 for the example

of L = 2: In LSVQ, with p = 2, the input vectors x are

normalized to their Euclidean norm, g = ‖x‖2 =
√
x
T · x.

As a result, all normalized shape vectors c are located on the

surface of the L-dimensional unit hypersphere,

c ∈ SL with SL := {x ∈ RL : ‖x‖2 = 1}. (3)

In contrast to this, LCVQ makes use of the maximum norm
with p = ∞,

g = ‖x‖
∞

= max(|x1| , . . . , |xL|) . (4)

As a conclusion, the normalized vectors c are located on the

surface of the L-dimensional unit hypercube,

c ∈ CL with CL := {x ∈ RL : ‖x‖
∞

= 1}. (5)

The advantage of LCVQ compared to LSVQ lies in the fact

that the design of a high-dimensional vector quantizer can be
realized with significantly lower complexity if all vectors are

located on the surface of a high dimensional hypercube than
if the vectors are located on the surface of a hypersphere.

A. Logarithmic Quantization of the Gain Factor

Both approaches, LCVQ and LSVQ, have in common
that the gain factor g is quantized using Logarithmic Scalar

Quantization (LSQ) (Qg). This makes particularily sense for

speech and audio signals since a high dynamic range of
the input signal should be covered without that quantization

overload occurs. Given the A-law companding rule [8] with

the number of reconstruction levels Ng, compression factor A
and stepsize ∆g, it is shown in, e.g., [9], that the effective

quantization interval width is non-uniform and a function

of the reconstruction value g̃ located in the center of the
quantization interval,

∆g(g̃) =
CA

Ng
· g̃ with CA := 1 + ln(A) (6)

if the gain factor g to be quantized falls into the logarithmic

part of the A-law compression curve. The constant CA is
introduced here for a better readability of the equations derived

in the following.

The signal-to-noise ratio (SNR) of LSQ is independent of the
input vector probability density function (PDF),

SNRlsq ≈ 6.02Reff + 10 log10(3)− 20 log10(CA)
︸ ︷︷ ︸

=Plsq

, (7)

given on a logarithmic scale in dB with Reff = log2(Ng)
denoting the effective bit rate per sample of the quantizer.

However, this independence comes at the price of the penalty-
term Plsq compared to the well-known 6 dB-per-bit-rule [9].

In the following, LSQ is considered as a special case of LSVQ
and LCVQ for input vector dimension L = 1 and will be

refered to as the lower limit for the SNR plots for both LCVQ

and LSVQ in Section IV.

B. Logarithmic Spherical VQ (LSVQ)

In LSVQ, the shape vectors c are quantized using a spher-

ical vector quantizer (SVQ)

Qvq = Qsvq : c → c̃ ∈ Xsvq (8)

involving a vector codebook Xsvq composed of Nsvq spherical
codevectors c̃. In order to achieve high quantization perfor-

mance, the codevectors are distributed over the surface of the

L-dimensional unit hypersphere as uniformly as possible.
In [1] and [3], it is shown qualitatively as an intermediate

result that LSVQ yields an overall quantization SNR which

is independent of the PDF of the input vector. The derived
formula, however, is only of qualitative nature due to an

unknown quantization cell form-factor. Therefore, assumptions
are made in [1] about the shape of the SVQ quantization cells

and high bit rates are considered. Under these assumptions, a

quantitative formula for an estimate of the maximum achiev-
able LSVQ quantization SNR in dB is finally given as

SNRlsvq = 6.02Reff

−10 log10




L

(L + 1)
L−1

L

[

2
√
π
Γ
(
L+1
2

)

Γ
(
L
2

)

] 2
L[

C2
A

12

] 1
L

)

. (9)

In this formula, in analogy to Section II-A, the quantization
SNR is expressed as a function of the effective bit rate per

vector dimension (and hence sample) Reff which is defined as

2Reff ·L = Ng ·Nsvq = Nlsvq. (10)

Eq. (9) will be used in Section IV to compare the performance

of LSVQ with the novel LCVQ scheme. The asymptotic

maximum LSVQ quantization SNR in dB is

lim
L→∞

SNRlsvq = 6.02Reff (11)

and hence follows the 6-dB-per-bit-rule. Eq. (11) will be

referred to as the upper limit in the SNR plots in Section IV.
The design of spherical vector codebooks used for Qsvq

is rather complex and shall not be discussed in detail in

this paper. Due to practical reasons, in most cases, vector
dimensions higher than L = 16 can be realized only for low

bit rates (≤ 2− 3 bits per vector dimensions).
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Figure 3. Exemplary hypercube for L = 3 with codevectors and quantization
decision bounds of Qcvq for Nc = 3. An exemplary (flat) quantization cell
related to Qcvq (Ccvq) as well as a (non-flat) quantization cell related to the
combination of Qg and Qcvq (Clcvq) are illustrated on the right side.

C. Logarithmic Cubic VQ (LCVQ)

In LCVQ, the gain factor is computed as

g = max(|x1| , . . . , |xL|) = xl0 (12)

with l0 = argmax
l

(|xl|) denoting the index of the maximum

vector coordinate of x. Consequently, after normalization with
g, all shape vectors c are lying on the surface of the L-

dimensional unit hypercube (5) with edge length equal to 2.
Due to this normalization, the quantization of the shape vectors

c has been transformed into an (L− 1)-dimensional problem.

The quantizer Qvq = Qcvq can therefore be realized in a very
efficient way by quantizing the L−1 vector coordinates l 6= l0
of c by means of the uniform scalar quantizer Qsq as

Qcvq: c → c̃ =
[
c̃1 . . . c̃L

]T
with c̃l =

{

Qsq(cl) l 6= l0
±1 l = l0

(13)

Each uniform scalar quantizer Qsq has the same number of
reconstruction levels Nc yielding a quantization stepsize of

∆c = 2
Nc

. In a practical application, the quantization indices

for all vector coordinates l 6= l0, the position of the maximum
vector coordinate l0 and the sign of vector coordinate cl0 = ±1
are transferred to the decoder to reconstruct c̃.

With 2·L surfaces for a hypercube of dimension L, the number
of codevectors c̃ covering the surface of the unit hypercube is

Ncvq = 2 · L ·NL−1
c . With Ng as the number of quantization

reconstruction levels of Qg from Section II-A, the total number
of LCVQ codevectors is

Nlcvq = 2Reff ·L = Ng ·Ncvq = Ng · 2 · L ·NL−1
c . (14)

Again, Reff denotes the effective bit rate per vector coordinate.

An example of the hypercube covered by quantization cells

and reconstruction vectors related to Qcvq for L = 3, Nc = 3
and Ncvq = 2 ·L ·NL−1

c = 54 is given in Figure 3. Using only

scalar quantizers, the LCVQ can be realized with very low

memory and implementation cost. Also, since no codebook is
involved, the bit rate can be easily adapted during runtime.

In contrast to LSVQ, LCVQ has no practical limitations
regarding the input vector dimension as well as the effective

overall bit rate.

III. THEORETICAL ANALYSIS OF LCVQ

In order to derive mathematical equations for the LCVQ

quantization SNR, in the first step, the quantization distortion

related to Qcvq shall be investigated. In the second step, the
combination of Qcvq and Qg will be taken into account to

compute the SNR related to LCVQ. In the last step, based on

the derived LCVQ quantization SNR, the optimal allocation
of bit rate for Qg and Qcvq is determined. In all cases,

high bit rate assumptions are made such that the probability
density function (PDF) of the input vectors x as well as the

normalized input vectors c is assumed to be constant within

each quantization cell. Note that given a vector x and its
quantized version as x̃, the quantization cost function is the

squared error in the following,

d(x, x̃) = ‖x− x̃‖22 . (15)

A. Analysis of Qcvq

With the specification of Qcvq in (13), quantization decision

bounds as well as codevectors are defined which are located
on the surface of the unit hypercube. Therefore, given a

codevector as c̃, a quantization cell is defined as all vectors in
the area surrounding the codevector, constrained to be located

on the hypercube surface,

Ccvq := {c ∈ CL : Qcvq(c) = c̃} (16)

with CL from (5). An example quantization cell Ccvq is

highlighted on the surface of the cube in Figure 3 and shown
separately in Figure 3 a) for the example of L = 3. Due to the

use of uniform scalar quantizers, the overall surface is covered

with equally shaped quantization cells.
In order to derive the per-vector-coordinate quantization dis-

tortion of Qcvq, contributions originating from all Ncvq quanti-

zation cells must be taken into account. Due to the high bit rate
assumptions, the distribution of normalized vectors c within

each quantization cell can be expressed

pCcvq
(c) = 1/VCcvq

with VCcvq
=

∫

Ccvq

dc (17)

as the content (volume) of the quantization cell.

The quantization distortion for each single cell is

Dc̃ = E
{

‖c− c̃‖22
}

/L =

∫

Ccvq

pCcvq
(c) · d(c, c̃) · dc. (18)

The contributions from all cells are summed afterwards to
yield

Dcvq =
L− 1

L
Dsq =

L− 1

L

1

3 ·N2
c

. (19)

In this formula, the distortion related to Qcvq is given as a
function of the distortion related to a single scalar quantizer,

Dsq = ∆c2

12
, with Nc as defined in Section II-C.

The per-vector-coordinate signal power related to the normal-

ized vectors c is defined as

Scvq = E
{

‖c‖22
}

/L ∀ c ∈ CL. (20)

Scvq depends on the multivariate distribution of the vectors to

be quantized, p(x). For a uniform distribution of x, it can be
expressed as

Scvq =
1

3
· L− 1

L
+

1

L
(21)

In all other cases, Scvq can be determined numerically.
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Figure 4. Coverage of vector space by shells of quantization cells for L = 2.
Also, two exemplary cell shape types (labels I and II) are highlighted.

B. Analysis of Qlcvq

In LCVQ, the combination of Qcvq with Qg leads to an an
aggregation of scaled versions of the hypercube covered by

codevectors as described in Section III-A. This aggregation is

illustrated in Figure 4 for the example of L = 2 and leads to
hypercube shells filling the L-dimensional vector space. One

example shell is highlighted by darker color in Figure 4. The

”thickness“ of each shell is given by the quantization interval
width related to Qg, ∆g. As a conclusion, the flat quantization

cells Ccvq are transformed into non-flat LCVQ quantization

cells Clcvq by ”adding“ the height ∆g. This transformation is
also illustrated in Figure 3 b) where an exemplary LCVQ cell

Clcvq with height ∆g is shown for the example of L = 3.

For the computation of the SNR, at first all LCVQ quantization
cells within one shell are considered. Again, the distribution

of signal vectors x within each LCVQ quantization cell is

assumed to be uniform,

pClcvq
(x) = 1/VClcvq

with VClcvq
=

∫

Clcvq

dx (22)

as the volume of the LCVQ quantization cell. Given the con-
sidered shell with the corresponding quantized gain factor g̃,

the partial quantization distortion related to each quantization

cell is computed in analogy to (18). In analogy to Equation
(19), the contributions from all Ncvq cells within the shell are

summed yielding

Dlcvq(g̃) ≈
g̃L+2

VClcvq

·∆cL−1 · ([f1(Ng)− f2(Ng)] · Scvq

+f2(Ng) ·Dcvq(Nc)) (23)

with Scvq as the signal power (21) depending on p(x),
Dcvq(Nc) as the quantization distortion (19) related to Qcvq

and f1(Ng) and f2(Ng) as constants defined as

f1(Ng) =

[(

1 +
CA

2Ng

)L+2

−
(

1− CA

2Ng

)L+2
]

1

L+ 2
(24)

and

f2(Ng) =

[

(1 +
CA

2Ng
)L − (1 − CA

2Ng
)L
]

· L− 1

L · (L+ 1)

+

[

(1 +
CA

2Ng
)L + (1 − CA

2Ng
)L
]

· CA

Ng · (L + 1)
. (25)

The derivation of (23) involves more mathematical effort since
the LCVQ quantization cells have different shapes depending

on the position. In order to demonstrate this, two exemplary

cells of different shape are highlighted by the labels I and II in
Figure 4.

In analogy to the derivation of (23), the signal power related
to all vectors x located within the considered shell can be

derived as

Slcvq(g̃) ≈
g̃L+2

VClcvq

·∆cL−1 · f1(Ng) · Scvq. (26)

With (23) and (26), the overall quantization SNR related to

the specified shell is

Slcvq(g̃)

Dlcvq(g̃)
≈ f1(Ng) · Scvq

[f1(Ng)−f2(Ng)] ·Scvq+f2(Ng)·Dcvq

. (27)

Obviously, the term g̃L+2

VClcvq

in (23) and (26) cancels out for

(27), and also the other variables in (27) do not depend on g̃.

Therefore, the SNR computed for the specified shell is equal

for all shells which makes (27) the formula for the LCVQ
quantization SNR in general.

C. Optimal Bit Allocation

In order to optimally distribute the overall bit budget per
vector, R = L ·Reff , to Qg and Qcvq, at first a general citerion

is investigated motivated by the well-known normalized inertia

measure defined to find the optimal shape of a quantization

cell in [10]. Given a quantizer with all quantization cells of

identical shape and each described by means of a cubic base
area with edge length ∆c, a specific height ∆g and a specific

overall cell area content (volume), the cell shape is optimal in

terms of the maximum achievable quantization performance if
the overall cell is a cube, hence

∆g
!
= ∆c . (28)

This constraint shall be adopted for LCVQ. However, in

LCVQ, the resulting quantization cells are not perfectly cubic

and not of the same shape (demostrated by Figure 4). In
order to consider this, the diversity of cell shapes is taken

into account by a modification of constraint (28) as

α ·∆g(g̃)
!
= g̃ ·∆c (29)

with the still unknown average cell shape correction factor α.

Note here that in comparison to the general consideration to
define (28), the height of the quantization cell depends on g̃
in case of LCVQ. Combining (29) and (14) yields

Ng=
L
√
N

1

2

L

√

(αCA)
L−1

L
and Nc=

L
√
N L

√
1

αCAL
(30)

to compute Ng and Nc as a function of N = 2R and the

constant CA. In order to compute the optimal value for α,
(30) is substituted in (27). The resulting equation yields the

LCVQ quantization SNR given the effective overall bit rate
Reff as a function of the unknown coefficient α. Therefore, it

must be optimized to find the optimal value α which, however,

can only be done numerically due to the complexity of that
equation. Exemplary values for α are given in Figure 5 for

L = {2, 8, 48} and Reff = 1 . . . 10.
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Figure 5. Exemplary values for α for the optimal allocation of bits for Qg

and Qcvq for L = {2, 8, 48} and Reff = 1 . . . 10.

IV. EVALUATION

For all evaluations, the companding factor of all logarithmic

scalar quantizers is set to A = 5000 which is shown as a
reasonable trade-off between dynamic range and performance

for the quantization of audio signals in [1].

In order to verify the correctness of the derived equations
for LCVQ, Monte Carlo simulations were conducted for uni-

formly and normally distributed input vectors: The theoretical

solution leads to asymptotically identical SNR values as the
simulation for high bit rates. For lower bit rates and lower

vector dimensions a deviation of the computed SNR values
from the simulated values was observed. This can be explained

with the assumptions of high bit rates in Section III.

For a comparison of LCVQ with LSVQ, SNR values for
LCVQ as well as LSVQ were computed based on Equation

(27) and Equation (9), respectively, for different effective bit

rates 1.5 < Reff < 5 bit and vector dimensions L = {2, 8, 48}
for uniformly and normally distributed random vectors.

In case of uniformly distributed vectors, LCVQ achieves

approximately the same quantization SNR as LSVQ for all
input vector dimensions L. Due to the limited space in this

paper and the fact that the SNR curves for LCVQ and LSVQ
are almost identical, however, the corresponding SNR plots

shall not be shown here. Instead, the SNR curves computed

for a normal distribution are shown in Figure 6: The shown
SNR plots for LCVQ and LSVQ are bounded by the lower

limit which is the performance of LCVQ and LSVQ for a

vector dimension L = 1 (LSQ, refer to Section II-A) and
the upper limit which is the asymptotic performance of the

LSVQ for infinite vector dimension, L → ∞, Equation (11).

In the figure, it is shown that LSVQ has a performance
benefit compared to LCVQ, approximately 4 dB benefit for

L = 48, 2 dB benefit for L = 8 and almost no benefit

for L = 2. The reason for the lower performance of the
LCVQ is its suboptimal cubic arrangement of codevectors

given a spherically distributed random variable (refer to, e.g.,
[11]). However, the LCVQ was introduced as an alternative

to LSVQ with lower complexity and higher flexibility. This

partly compensates this drawback in practice as it allows the
use of LCVQ at significantly higher vector dimensions and bit

rates than the maximum supported bit rates of the LSVQ.

1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

: L = 48
: L = 8
: L = 2

S
N

R
[d

B
]

Reff[bits]

upper lim
it (”6-dB-per-b

it-r
ule“)

lower lim
it

: LSVQ, Eq. (9)

: LCVQ, Eq. (27)

Figure 6. LCVQ quantization SNR (27) compared to LSVQ quantization
SNR (9) for normally distributed input vectors.

V. CONCLUSIONS

In this paper, the concept of Logarithmic Cubic Vector

Quantization (LCVQ) was proposed. A theoretical analysis
was presented based on the assumption of a high overall

bit rate available for quantization. Equations describing the

quantization signal-to-noise ratio were derived, and, finally,
the optimal allocation of bit rate for the quantization of the

gain factor and the normalized shape vectors was computed.

The derived theoretical results were verified by Monte Carlo
simulations. Also, the LCVQ was compared to the rececently

proposed Logarithmic Spherical Quantization (LSVQ): LCVQ

offers the advantages of low complexity, high memory effi-
ciency and a higher flexibility. Nevertheless, based on the de-

rived equations it was shown that the quantization performance

is very similar to that of the LSVQ for uniformly distributed
signals. Only for signals following a normal distribution, the

LSVQ has performance benefits compared to LCVQ.
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