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Abstract—Linear analog block codes have been considered for
transmission of discrete-time and continuous-amplitude data. In
this paper, the fidelity measure parameter SNR (pSNR) at the
receiver is derived for an arbitrary generator matrix P using an
additive white Gaussian noise (AWGN) channel. In contrast to
[1], it is shown that the performance of linear analog bock codes
is dependent on the eigenvalues of the matrix PTP and not only
on the dimensions of the matrix P. Surprisingly, the quality of
the received values is independent of the code rate r, and e.g. a
simple identity matrix has the optimal eigenvalues. Furthermore,
the theoretical fidelity bound OPTA (Optimum Performance
Theoretically Attainable) is used to assess the performance of
a transmission system of continuous-amplitude data.
Index Terms—Linear Analog Block Codes, Analog Product
Codes, OPTA

I. INTRODUCTION

Analog block codes have been considered for discrete-

time and continuous-amplitude data transmission. Continuous-

amplitude data could be parameters of any speech, audio or

video source codec. To protect the parameters against channel

noise, analog coding measures can be applied. One possibility,

the analog product codes, was presented e.g. in [2]. Redun-

dancy is introduced by transmitting additional symbols which

are the sums of the rows and columns of the data arranged to

an N ×N matrix. An iterative, turbo-like decoding algorithm

was introduced in [2], which converges to the least squares

(LS) solution. The optimal factor to control the convergence-

speed was found in [1]. There, it was also derived that this type

of analog product codes, which uses redundancy consisting

of linear combinations of the data, can be reformulated as a

linear analog block code with a generator matrix P, whose

LS-decoder uses just a multiplication with the pseudoinverse

of P rather than performing iterative decoding.

In this contribution, we derive the optimal generator matrices

in terms of pSNR. In Section II, different channel quality mea-

sures and theoretical fidelity bounds are shown. In Section III

the properties of linear analog block codes are calculated. They

are interpreted in Section IV.

II. CHANNEL QUALITY AND BOUNDS

A. Eu/N0 versus CSNR

Figure 1 shows a generic vector transmission system. The time

index for successive data blocks is omitted for simplicity. The

data vectors u are transformed to code vectors by a bijective

n

u
zy

ûf(·) g(·)

Fig. 1. A generic vector transmission system

function f(·). Noise n is added and an estimate û is calculated

by the function g(·). The zero mean data vectors consist of dI

components, each with a variance of σ2
u. The zero mean code

and noise vectors y and n consist of dC ≥ dI components with

variances σ2
n and σ2

y , respectively. The ratio of the dimensions

is the code rate r = dI/dC . The energy of each vector is

calculated by:

Eu = dI · σ2
u, (1)

Ey = dC · σ2
y, (2)

En = dC · σ2
n. (3)

Using the Nyquist theorem, the dimension of the vectors can

also be interpreted as a factor proportional to the bandwidth

(in Hz) used on the channel. To avoid sending more energy

with decreasing code rates, the function f(·) comprises a

normalization to yield Ey = Eu.

As a common measure for the channel quality we use the

channel SNR (CSNR):

CSNR = 10 log10

(
σ2

y

σ2
n

)
. (4)

Reformulating the fraction clarifies that the energy of the data

vectors is normalized to the noise energy:

σ2
y

σ2
n

=
dCEy

dCEn
=

Ey

En
=

Eu

En
. (5)

Alternatively, we use a measure based on the noise power

spectral density which is defined as

Eu/N0 = 10 log10

(
σ2

u

2σ2
n

)
. (6)
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Reformulating the fraction shows the normalization of the

energy of the data vectors to the noise density

σ2
u

2σ2
n

=
Eu

2dIσ2
n

. (7)

The measures are connected by:

CSNR = 10 log10

(
σ2

y

σ2
n

)
Eu=Ey= Eu/N0 + 10 log10 (2r) (8)

When transmitting at code rates r �= 1, these two measures

are different. Without loss of generality, for different code

rates a constant transmission time is assumed, resulting in

the use of more bandwidth with a decreasing code rate. A

constant CSNR implies a constant total noise energy on the

channel, independent of the code rate and used bandwidth.

In real transmission systems however, noise is present at all

frequencies and is not reduced when the channel occupies a

broader spectrum. A constant Eu/N0 implies a constant noise

density, like in a physical channels. Therefore, the measure

Eu/N0 permits a fair assessment between codes with different

code rates whereas the CSNR measure does not.

B. Optimum Performance Theoretically Attainable (OPTA)

The goal in data transmission is to find a tradeoff between

the minimization of transmission-time, energy and bandwidth

consumption while obtaining a very low distortion at the

receiver. For binary sources, the distortion is measured in terms

of the bit error rate (BER). For continuous-amplitude sources,

this measure is inapplicable, because a minimum distortion on

the channel would still be rated as an erroneous transmission.

Here, the mean square error (MSE) is a more appropriate

measure (d(u, û) = E{(u − û)2}). To obtain the fidelity of

the whole transmission, the parameter SNR pSNR which is

the MSE normalized to the variance of the source symbols is

used:

pSNR = 10 log10

(
E{u2}

E{(u − û)2}
)

(9)

The minimum information rate that is necessary to describe

source symbols u with a Gaussian distribution pU (u) ∼
N(0, σ2

u) and a distortion D is given by the rate distortion

function [3, (10.24)]1:

R(D) =

{
1
2 ld σ2

u

D , 0 ≤ D ≤ σ2
u

0 D > σ2
u.

(10)

The channel capacity, i.e., the maximum information rate that

can be transmitted over a AWGN channel ∼ N(0, σ2
n) is [3,

(9.17)]:

C =
1
2

ld

(
1 +

σ2
y

σ2
n

)
bits per use. (11)

The variances of the transmitted (coded) signal y and the

noise n are σ2
y and σ2

n, respectively. To achieve capacity, the

1ld(·) is the logarithm to the base 2

information rate R has to match the channel capacity C. When

transmitting dI amplitude-continuous source symbols with the

minimum information rate R according to (10) while using dC

times the channel with the capacity C, the following equation

must hold:

R · dI = C · dC . (12)

Evaluating (10) and (11) with (12) for D ≤ σ2
u and r > 0

results in

dI · 1
2

ld
(

σ2
u

D

)
= dC · 1

2
ld

(
1 +

σ2
y

σ2
n

)

⇒ σ2
u

D
=

(
1 +

σ2
y

σ2
n

) 1
r

. (13)

The fraction
σ2

y

σ2
n

corresponds to the channel SNR (10
CSNR
10 ) and

σ2
u

D to the parameter SNR (10
pSNR
10 ):

pSNROPTA =
1
r
· 10 log10

(
1 + 10

CSNR
10

)
(14)

=
1
r
· 10 log10

(
1 + 2r · 10

Eu/N0
10

)
(15)

where (15) follows from (8). The maximum achievable pSNR

for a given channel quality (14) and (15) is called OPTA

(Optimum Performance Theoretically Attainable).
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Fig. 2. OPTA with Eu/N0 as channel quality measure

Figure 2 shows OPTA for given code rates and channel

qualities for Gaussian distributed source symbols.

III. LINEAR ANALOG BLOCK CODES

Using linear analog block codes, the functions f(·) and g(·)
in Fig. 1 are matrices such that encoding and decoding is

performed by:

y = P · u, (16)

û = P+ · z. (17)

The matrices P and P+ have the dimensions dC × dI and

dI × dC , respectively, and all vectors are column vectors.
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For calculating the performance of analog block coding using

an arbitrary generator matrix P′, this matrix has to be normal-

ized by a factor α, i.e., P = αP′. The normalization accounts

for keeping the energy of the source and code vectors equal

(Ey = Eu). The factor α is determined as follows:

Ey = E{||y||2} = E{||αP′u||2} = α2 E{(P′u)T(P′u)}

= α2 E{uT P′TP′︸ ︷︷ ︸
G′: dI×dI

u} = α2 E

{
dI∑

k=1

dI∑
l=1

ulg
′
l,kuk

}

= α2
dI∑

k=1

dI∑
l=1

g′l,k E {uluk} a)
= α2

dI∑
k=1

dI∑
l=1

g′l,kδl,k

= α2
dI∑

k=1

g′l,lσ
2
u = α2σ2

u · trace (G′)

= α2σ2
u · trace

(
P′TP′) . (18)

Step a) is due to E {uluk} = σ2
u ·IdI

, since the source symbols

are statistically independent. Using (1) and Ey = Eu results

in

dI · σ2
u = α2σ2

u · trace
(
P′TP′)

⇒ α =

√
dI

trace (P′TP′)
. (19)

Therefore,

P =

√
dI

trace (P′TP′)
· P′ (20)

can be used to normalize any given generator matrix P′ to

satisfy Ey = Eu.

The minimum variance unbiased estimator which has no a-

priori information available is the maximum likelihood (ML)

estimator [4]. For Gaussian noise, the least squares (LS)

estimator yields the same results as the ML-estimator and can

be derived by minimizing ||z−Pû||2 . This has already been

shown in [1], but is repeated here for the sake of completeness:

||z − Pû||2 = (z − Pû)T(z − Pû)

= (zT − ûTPT)(z − Pû)

= zTz − zTPû − ûTPTz + ûTPTPû. (21)

Differentiating the MSE w.r.t. û and setting it to 0 yields for

invertible PTP:

∂||z − Pû||2
∂û

= 0

⇔ −2PTz + 2PTPû = 0 (22)

⇔ û = (PTP)−1PTz (23)

Equation (22) follows from [5, (57) and (69)]. The expression

(PTP)−1PT is the pseudoinverse of P and will be denoted

P+. Thus, decoding with û = P+z yields the LS-optimal

estimate. On the way to calculate the pSNR, first, the error

and the variance of the error after decoding is considered:

u − û = u − P+z = u − P+(Pu + n)

= u − (PTP)−1PTP︸ ︷︷ ︸
IdI×dI

u + P+n

= P+n (24)

E
{||u − û||2} = E

{||P+n||2}
b)
= trace

(
P+MP+T

)
+ (P+m)TP+m

Step b) follows from [5, (252)] with M = E{nTn} and m =
E{n}. Continuing:

E
{||u − û||2} c)

= σ2
n · trace

(
P+P+T

)
= σ2

n · trace
(
(PTP)−1PTP(PTP)−1

)
= σ2

n · trace
(
(PTP)−1

)
(25)

= σ2
n ·

dI∑
i=1

1
γi

with γi = eig(PTP, i). (26)

Step c) is due to the zero mean of the noise (m = E{n} = 0)

and due to the statistical independence of the noise M =
E{nTn} = σ2

n · IdC
. The derivation of (26) occupies several

steps. Analogously to G′ in (18), the matrix G is defined

as G = PTP. Since G is symmetric, i.e., G = GT, the

eigenvalues of G, eig(G, i) = γi, i = 1 . . . Rank(G) have

the following property [5, (215)]):

eig(G−1, i) = γ−1
i (27)

With [5, (12)] follows

trace(G−1) =
Rank(G)∑

i=1

γ−1
i (28)

and therefore (26). Using (26) and (1), the parameter SNR for

linear analog block codes pSNRLABC can be calculated:

pSNRLABC = 10 log10

(
E{||u||2}

E{||u − û||2}
)

= 10 log10

(
σ2

u

σ2
n

1
dI

∑dI

i=1
1
γi

)
, γi = eig(PTP, i) (29)

= Eu/N0 − 10 log10

(
1
dI

dI∑
i=1

1
γi

)
+ 10 log10(2) (30)

= CSNR − 10 log10

(
1
dI

dI∑
i=1

1
γi

)
− 10 log10(r) (31)

Equations (30) and (31) allow to calculate the pSNR of

any given normalized matrix P. To maximize the pSNR

the matrix P has to fulfill some criteria. The matrix P has

to have full rank and all eigenvalues of PTP have to be

maximized subject to the energy constraint (Ey = Eu).
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To calculate the maximum eigenvalues, first, the sum of all

eigenvalues of PTP has to be determined:

dI∑
i=1

γi =
dI∑

i=1

eig
(
PTP, i

)
= trace

(
PTP

)
= α2 trace

(
P′TP′)

=
dI

trace (P′TP′)
trace

(
P′TP′) = dI . (32)

Furthermore, we need to show that all eigenvalues are positive.

For a given real vector x of dimension dI , w = Px is a real

vector with dimension dC . Using G = PTP and

wTw ≥ 0 because w2 ≥ 0

⇔ xTPTPx ≥ 0

⇔ xTGx ≥ 0
d)⇔ G is positive semidefinite

e)⇔ eig (G, i) ≥ 0 ∀i ∈ {1, 2, . . . , Rank(G)}
⇔ eig

(
PTP, i

) ≥ 0
f)⇔ eig

(
PTP, i

)
> 0 (33)

all eigenvalues are positive. Steps d) and e) are shown in

[5, (359) and (360)]. The case of disappearing eigenvalues

can be omitted, because G has to have full rank, due to the

necessary existence of the pseudo inverse P+. Therefore,

identity f) follows.

To maximize the pSNR in either (29), (30) or (31), the sum

in the denominator has to be minimized. Using the Lagrange

multiplier method with the constraint in (32) it follows:

L =
1
dI

dI∑
i=1

1
γi

− λ

(
dI∑

i=1

γi − dI

)
∂L

∂γj
:= 0

⇔ 0 = − 1
dIγ2

j

− λ (1 − 0)

⇔ λ = − 1
dIγ2

j

(34)

⇔ γj1,2 = ±
√

− 1
dIλ

. (35)

Inserting (35) into (32) we obtain:

dI∑
i=1

(
±
√
− 1

dIλ

)
= dI

⇔ dI ·
(
±
√
− 1

dIλ

)
= dI

⇔ dIλ = −1
(35)⇔ γj1 = 1 ∨ γj2 = −1. (36)

The case γj2 = −1 can be omitted due to (33). Thus, the

maximum pSNR is obtained if all eigenvalues of PTP are

equal, and due to the normalization in (20), are equal to one.

The maximum pSNR is therefore:

pSNRLABC
max = Eu/N0 + 10 log10

(
2dI

dI

)
= Eu/N0 + 3.01 dB (37)

pSNRLABC
max = CSNR + 10 log10

(
1
r

)
. (38)

IV. INTERPRETATION

Equation (30) and (31) show that using either the Eu/N0 or

the CSNR as a channel quality measure, the performance of

linear analog block codes depends on the eigenvalues of the

matrix PTP, as opposed to the claim in [1]. Furthermore,

using the fair measure Eu/N0 for the channel quality, the

code rate does not have any influence on the pSNR. The code

rate appears in (31) only due to the relationship between

CSNR and Eu/N0 (8). The eigenvalues of PTP have the

main influence on the pSNR. In [1, (20)] a similar derivation

was published, but the pSNR only depended on the code

rate and the CSNR. The contents of the generator matrix P
did not have any influence. There is a shortcoming in the

approach in [1], as an independence of the contents of P
is disproved here. The maximum pSNR is reached when all

eigenvalues of PTP are one. This holds, e.g. for the identity

matrix, Hadamard matrices or any zero padded versions of

such matrices.

Figure 3 shows the maximum pSNR for an optimal generator

matrix P. For a code rate of one, the linear analog block

codes approaches OPTA for high values of Eu/N0, but for

any smaller code rate, the distance to OPTA grows.
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Fig. 3. OPTA and pSNRmax over Eu/N0

Since one is the only code rate to approach OPTA and the

identity matrix meets the requirement of equal and normalized
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eigenvalues, a simple scalar factor already achieves the best

possible performance for linear analog block codes. Conse-

quently, for AWGN channels, linear analog block codes with

code rates smaller than one cannot be motivated.

V. SUMMARY

In this work, the performance of arbitrary linear analog block

codes has been derived for either the CSNR or the Eu/N0

channel quality measure. The pSNR depends on eig(PTP)
and when using the Eu/N0 channel quality measure it is

independent of the code rate. The dependency of the pSNR on

the code rate for the channel quality measure CSNR is only

due to the relationship between the CSNR and the Eu/N0

measure. Therefore, adding redundancy does not generate any

improvement in pSNR at the receiver, instead it only wastes

bandwidth and widens the gap to the theoretical upper bound

OPTA. One ideal generator matrix P would be the identity

matrix, which leads to the conclusion that for AWGN channels,

linear analog block codes with code rates r < 1 are not

reasonable.
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