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I. ERRATUM

In equation (7) the sign is incorrect. The correct equation states:

MMSE(cSNR) =
1

1 + cSNR
− 2

d

dcSNR
D(pY ||pY′ , cSNR).

II. ADDENDUM

The poster published at the conference included an additional figure to the published paper which helps to clarify the first
paragraphs in Section III:
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Fig. 1. Two equivalent scenarios for interpretation
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Abstract—The rate distortion function is a widely used theo-
retical bound which describes the minimum mean square error
(MMSE) distortion for a given number of quantization bits when
quantizing a scalar random variable. An analytical solution for
this function is only available for a small number of probability
density functions (pdf), such as the Gaussian pdf. For arbitrary
pdfs, the Blahut-Arimoto algorithm [1], [2] needs to be applied
to iteratively estimate the rate distortion function. We propose
a novel (semi-)analytical and non-iterative method to calculate
the rate distortion function for sources with arbitrary pdfs.
This method is based on the Guo–Shamai–Verdú (GSV) theorem
[3]. Furthermore, it is possible to apply the proposed method
for calculating the Optimum Performance Theoretically Attain-
able (OPTA) for arbitrarily distributed input symbols observed
through an AWGN channel.
Index Terms—Blahut-Arimoto Algorithm, Optimum Perfor-
mance Theoretically Attainable (OPTA) for AWGN Channels,
Rate Distortion Function, Guo–Shamai–Verdú (GSV) theorem

I. INTRODUCTION

When encoding realizations of a continuous-amplitude
discrete-time scalar random variable, the well known rate
distortion function expresses how many (information) bits
are at least required to obtain a certain minimum mean
square error (MMSE) distortion. The rate distortion function
depends on the input symbol probability density function (pdf)
and analytical solutions are available for some pdfs like the
Gaussian or the bipolar pdf [1], [2]. For arbitrarily distributed
input symbols, e.g. with uniform or Laplacian pdfs, the rate
distortion function can be calculated numerically using the it-
erative Blahut-Arimoto algorithm [4], [5]. We propose a novel
(semi-)analytical and non-iterative approach for obtaining rate
distortion functions for sources with arbitrary pdfs.
A theoretical bound which describes the maximum input-
output symbol signal-to-noise ratio (sSNR) of symbols ob-
served through an AWGN channel with a certain channel SNR
(cSNR) is the Optimum Performance Theoretically Attainable
(OPTA). OPTA is closely related to the rate distortion function,
yet it is not possible to use the Blahut-Arimoto algorithm to
directly calculate OPTA. The proposed approach also provides
(semi-)analytical solutions for OPTA of random variables with
arbitrary pdfs observed through additive white Gaussian noise.
Section II provides the derivation of the proposed approach
which is interpreted and illustrated with some examples in
Section III. Section IV summarizes the results.

II. (SEMI-)ANALYTICAL APPROACH TO
RATE DISTORTION FUNCTIONS AND OPTA

The derivation of the rate distortion function and OPTA
consists mainly of three steps. First, the input-output mutual
information for arbitrarily distributed input symbols is derived,
and second, a recently found relationship between information
theory and estimation theory, the Guo–Shamai–Verdú (GSV)
theorem [3] is applied. The third step consists of an interpre-
tation (Sec. III) to show the equivalence of the results of the
proposed approach and the Blahut-Arimoto algorithm.

n

yx

Fig. 1. A generic AWGN channel

We consider a generic scalar AWGN channel (Fig. 1) with
input symbols x with an arbitrary pdf pX and a variance of
σ2
x, additive white Gaussian noise symbols n with a variance
σ2
n and output symbols y = x + n. The channel quality is

cSNR =
σ2
x

σ2
n

.
The input-output mutual information I(X ;Y) of the AWGN
channel is

I(X ;Y) = h(Y ′)−D(pY ||pY′)− h(N ) (1)

which will be derived and further reformulated in the follow-
ing.
The noise and the input symbols are statistically inde-
pendet and Y ′ is a random variable with a zero-mean
Gaussian pdf pY′ which has the same variance as Y
(σ2
y′ = σ2

y). This pdf pY′ is called equivalent Gaussian
pdf in the following. The function h(·) stands for the dif-
ferential entropy1 h(A) = −

∫
pA(a) · ln (pA(a)) da and

D(f(a)||g(a)) =
∫
f(a)ln

(
f(a)
g(a)

)
da is the Kullback-Leibler

distance [1, (8.46)].
To derive (1), the statistical independence of the input symbols
and the noise is used while expanding the mutual information:

1To improve readability, limits of integrals are omitted when integrating
from −∞ to ∞.
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I(X ;Y) = h(Y)− h(Y|X ) = h(Y)− h(X +N|X )

= h(Y)− h(N|X ) = h(Y)− h(N )

= −
∫
pY(y) ·ln (pY(y)) dy − h(N )

= −
∫
pY(y) ·ln

(
pY(y)

pY′(y)

pY′(y)

)
dy − h(N )

= −
∫
pY(y) ·ln (pY′(y)) dy

−
∫
pY(y) ·ln

(
pY(y)

pY′(y)

)
dy − h(N ) (2)

= −
∫
pY′(y) ·ln (pY′(y)) dy

−
∫
pY(y) ·ln

(
pY(y)

pY′(y)

)
dy − h(N ) (3)

= h(Y ′)−D(pY ||pY′)− h(N ).

The conversion from (2) to (3) can also be found in [1, (8.72)-
(8.76)] but is elaborated with more detail for convenience in
the following using σ2

y = σ2
y′ :

−
∫
pY(y) ·ln (pY′(y)) dy

= −
∫
pY(y) ·ln


 1√

2πσ2
y′

· e
−y2
2σ2
y′


 dy

=ln
(√

2πσ2
y′

)∫
pY(y)dy

︸ ︷︷ ︸
=1

+
1

2σ2
y′

∫
y2pY(y)dy

︸ ︷︷ ︸
=σ2

y

=ln
(√

2πσ2
y′

)∫
pY′(y)dy

︸ ︷︷ ︸
=1

+
1

2σ2
y′

∫
y2pY′(y)dy

︸ ︷︷ ︸
=σ2

y′

= −
∫
pY′(y) ·ln (pY′(y)) dy. (4)

Equation (1) can be futher reformulated using the differential
entropy of a continuous-amplitude Gaussian random variable
[1]:

I(X ;Y) = h(Y ′)− h(N )−D(pY ||pY′)

=
1

2
ln
(
2πeσ2

y′
)
− 1

2
ln
(
2πeσ2

n

)
−D(pY ||pY′)

=
1

2
ln

(
σ2
y′

σ2
n

)
−D(pY ||pY′)

=
1

2
ln

(
σ2
n + σ2

x′

σ2
n

)
−D(pY ||pY′)

=
1

2
ln (1 + cSNR)−D(pY ||pY′). (5)

The first term of (5) is the well known channel capacity
for AWGN channels. The output pdf pY which is needed
to calculate the Kullback-Leibler distance is the convolution
of the input pdf pX and the Gaussian pdf pN of the

noise (pY = pX ∗ pN ). Therefore, the Kullback-Leibler
distance and hence the mutual information can be obtained
analytically for pdfs which allow closed form convolution
and integration to calculate the Kullback-Leibler distance.
For other pdfs, convolution and integration can be carried out
semi-analytically.

In [3] an analytical relationship between the mutual informa-
tion in nats and the minimum MSE (MMSE) of arbitrarily
distributed input symbols x and their observations y through
an AWGN channel (GSV theorem) is derived:

MMSE(cSNR) = 2 · d

dcSNR
I(X ;Y, cSNR). (6)

By inserting (5) into (6) we obtain our key equation:

MMSE(cSNR) =
1

1 + cSNR

+ 2
d

dcSNR
D(pY ||pY′ , cSNR). (7)

In the context of rate distortion functions, the rate equals
the mutual information I(X ;Y) and the distortion equals the
MMSE. The different operating points on the rate distortion
function can be obtained by varying cSNR.
Using our key equation (7), the MMSE and hence the max-
imum sSNR for a given cSNR can be calculated to directly
obtain OPTA:

sSNR(cSNR) =
σ2
x

MMSE(cSNR)
. (8)

III. INTERPRETATION AND EXAMPLES

The rate distortion function in the context of quantization
describes the minimum distortion which can be achieved by
an optimal quantizer with a given rate, i.e. a given number
of quantization bits per source symbol. The rate distortion
function can e.g. be obtained iteratively using the Blahut-
Arimoto algorithm. We consider two scenarios to obtain the
rate distortion function in a different way:
Scenario 1: The function does not change when it is calculated
for a transmission system in which the quantization bits
are ideally channel coded and transmitted over an AWGN
channel whose capacity equals the rate of the quantizer. The
quantization bits are not altered by the appended transmission
and thus the distortion is only introduced by the quantizer.
Scenario 2: The source symbols are directly transmitted with-
out quantization (therefore no quantization noise is introduced)
and without channel coding over the AWGN channel which
has the same capacity as in scenario 1. Now, the distortion is
only introduced by the noise of the AWGN channel.
In both scenarios, the overall information rate is the same
and since only ideal components are assumed, the minimum
distortion which can be achieved is also the same. In scenario
2, the mutual information or the information rate, respectively,
is limited by the channel noise and not by the number of
quantization bits as in scenario 1. Therefore the formulas
which hold for scenario 2 to calculate the information rate
i.e. mutual information (5) of the transmission system and the
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corresponding MMSE distortion (6) can be used to calculate
the rate distortion function of quantizing arbitrarily distributed
input symbols.
In contrast to the Blahut-Arimoto algorithm [4] where an
AWGN channel and hence the cSNR is not part of the
algorithm, the algorithm proposed in this paper explicitly uses
the AWGN channel for calculating the rate distortion function.
Therefore, the corresponding cSNR for each rate-distortion-
pair is also available and OPTA can easily be obtained.
An advantage of the Blahut-Arimoto algorithm is the possibil-
ity to use arbitrary distortion measures whereas the proposed
algorithm is limited to the MSE distortion measure. But the
proposed algorithm calculates the rate distortion function and
OPTA (semi-)analytically which yields more accurate results
with lower computational complexity than the Blahut-Arimoto
algorithm.

A. Rate Distortion Functions

To calculate the rate distortion functions, (5) and (7) can
be solved for arbitrary input pdfs. Due to the statistical
independence of the signal and the noise, the output pdf pY
is the convolution of the pdfs of the source symbols and the
noise symbols:

pY = pX ∗ pN . (9)

The equivalent Gaussian pdf pY′ has the same variance as pY :
σ2
y′ = σ2

y = σ2
x + σ2

n.

Without loss of generality, we set σ2
n = 1 and α =

σ2
x

σ2
n

=
cSNR. For some exemplary arbitrary input pdfs, the resulting
output pdfs are the following:
Uniform input pdf pX :

pY(y, α) =
1

4
√

3α

[
erf

(
y +
√

3α√
2

)
− erf

(
y −
√

3α√
2

)]
.

Laplacian input pdf pX :

pY(y, α) =
1

2
√

2α

{
e

1
α−y
√

2
α

[
1− erf

(
1√
α
− y√

2

)]

+ e
1
α+y
√

2
α

[
1− erf

(
1√
α

+
y√
2

)]}
.

Bipolar input pdf pX :

pY(y, α) =
1

2
√

2π

(
e−

(y+
√
α)2

2 + e−
(y−√α)2

2

)
.

Figure 2 shows the mutual information I(X ;Y) in bits2

for different input symbol pdfs. For continuous-amplitude
input symbol pdfs, the mutual information rises approximately
linearly with cSNR, but in the bipolar case, the mutual
information saturates at 1 bit. For a fixed cSNR, the highest
rates are achieved by the Gaussian input pdf and the rates for
the uniform and Laplacian pdfs are just below.

2All calculations have been carried out in nats to avoid frequent normal-
izations with ln(2). The graphs are plotted in bits, though.
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Fig. 2. Mutual information of a transmission system using an AWGN channel
for different input symbol pdfs
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Fig. 3. Difference between the mutual information of Gaussian input symbols
and arbitrarily distributed input symbols and their observation through additive
white Gaussian noise

Figure 3 shows the difference ∆I = I [Gauss]− I [arbit.] between
the mutual information of Gaussian input symbols and arbitrar-
ily distributed input symbols. For vanishing noise (cSNR →
∞) the output symbol pdf converges to the input symbol
pdf pY → pX and ∆I saturates at the shaping gain i.e. the
Kullback-Leibler distance between the input symbol pdf and
the equivalent Gaussian pdf: D(pY ||pY′) → D(pX ||pY′) =
h(Y ′) − h(X ). Using the differential entropy of uniform,
Laplacian and Gaussian random variables, ∆I saturates at
∆Imax, uniform = 0.2546 bit and ∆Imax, Laplacian = 0.1044 bit,
indicated by the dashed lines in Fig. 3. The Kullback-Leibler
distance between a discrete and a continuous-amplitude ran-
dom variable is infinite [1] and therefore ∆I for the bipolar
input pdf goes to infinity for rising cSNR.
Figure 4 shows the rate distortion functions calculated with
(7) for arbitrary input symbol pdfs. This rate distortion func-
tions are equal to the curves published in [6, Fig. 2] using
the Blahut-Arimoto algorithm. Especially the characteristic
crossovers of the curves of the Laplacian and uniform pdf
in the high distortion region can be observed in both graphs.

SCC 2010, January 18 – 21, 2010, Siegen, Germany Paper 12

ISBN 978-3-8007-3211-1  © VDE VERLAG -GMBH · Berlin · Offenbach



Fig. 4. Rate distortion functions for sources with different pdfs

B. Optimum Performance Theoretically Attainable (OPTA)

OPTA for an AWGN channel describes the theoretical bound
for the sSNR for a given channel quality cSNR and a fixed
input symbol pdf. The Blahut-Arimoto algorithm iteratively
computes rate-distortion-pairs, but it has no connection to the
channel quality of an AWGN channel. Equation (5) can be
used to calculate the cSNR for a given rate calculated with the
Blahut-Arimoto algorithm to obtain OPTA, however numerical
inaccuracies can easily produce misleading results. The pro-
posed algorithm uses the cSNR as an inherent parameter and
therefore, OPTA can be obtained directly from (5) and (8).
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Fig. 5. OPTA of a transmission system using an AWGN channel for different
input symbol pdfs

Figure 5 shows OPTA of a transmission system using an
AWGN channel with different channel qualities and input
symbol pdfs. The lowest sSNR for a fixed cSNR is obtained by
the Gaussian input symbol pdf. One can observe that the input
pdf with the highest mutual information for a given cSNR does
not automatically generate the highest sSNR, but in contrast,
yields the lowest sSNR.
The difference in sSNR between an arbitrary pdf and the
Gaussian pdf is shown in Fig. 6. Interestingly, for the two eval-
uated continuous-amplitude pdfs, the difference approaches
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Fig. 6. Difference between OPTA of a transmission system using an AWGN
channel for arbitrary input pdfs and Gaussian input pdfs

zero for small and large cSNR, and a maximum can be
observed at around cSNR = 4 and 9 dB, respectively. For
very good or very bad channels, a decoder which is optimized
to decode input symbols with a uniform or Laplacian pdf
cannot yield a gain over a linear estimator, which is optimal
for a Gaussian input symbol pdf. Only for channels between
approximately 0 dB and 25 dB a ∆sSNR of at least 0.1 dB
can be expected for e.g. a uniform input symbol pdf. This
behavior can be explained with the saturation of the difference
∆I between the mutual information of Gaussian and arbitrarily
distributed input symbols in Fig. 3. The MMSE depends on
the derivative of the mutual information, and therefore, when
the difference in mutual information saturates, the difference
in MMSE goes to zero. This relationship can also be shown
analytically: Without loss of generality, we set σ2

x = 1 and
define I [arbit.] = I(X ;Y, cSNR), I [Gauss] = 1

2 ln (1 + cSNR),
∆sSNR = 10 log10

(
sSNR[arbit.])− 10 log10

(
sSNR[Gauss]) and

∆I = I [Gauss] − I [arbit.] = D(pY ||pY′ , cSNR)

Using (6) it follows:

2
d

dcSNR
∆I = 2

d

dcSNR
I [Gauss] − 2

d

dcSNR
I [arbit.]

= MMSE[Gauss] −MMSE[arbit.]

=
1

sSNR[Gauss] −
1

sSNR[arbit.]

=
1

sSNR[Gauss]

(
1− sSNR[Gauss]

sSNR[arbit.]

)

⇔ sSNR[Gauss]

sSNR[arbit.] = 1− 2sSNR[Gauss] d

dcSNR
∆I.

(10)

The ∆sSNR(cSNR) can be calculated using (10) and
sSNR[Gauss] = 1

2 d
dcSNR

1
2 ln(1+cSNR)

= 1 + cSNR:
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∆sSNR(cSNR) = 10 log10

(
sSNR[arbit.])− 10 log10

(
sSNR[Gauss])

= 10 log10

(
sSNR[arbit.]

sSNR[Gauss]

)

= −10 log10

(
1− 2(1 + cSNR)

d

dcSNR
∆I

)

= −10 log10

(
1− 2(1 + cSNR)

d

dcSNR
D(pY ||pY′)

)
.

(11)

Equation (11) clearly shows that a saturation in D yields a
vanishing ∆sSNR.

IV. SUMMARY

In this paper a (semi-)analytical solution is proposed to cal-
culate the rate distortion function for arbitrarily distributed
source symbols. The approach is not iterative and therefore
has great advantages over the iterative Blahut-Arimoto algo-
rithm. Furthermore, OPTA can also be calculated for AWGN
channels and arbitrarily distributed input symbols which could
not be achieved directly with the Blahut-Arimoto algorithm.
The approach delivers deeper insights into estimating random
variables observed through additive white Gaussian noise
and gives a mathematical explanation for the convergence of
the sSNR for high and low cSNR for arbitrarily distributed
continuous-amplitude discrete-time input symbols.
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