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Abstract

During the last 25 years, most of the communication systems have been converted
to purely digital technology, although the transmitted content mostly is analog
by nature. The principal advantages of digital communication are compression by
source encoding, bit error protection by channel coding and robust transmission over
noisy channels by appropriate modulation. Digital systems are usually designed
for worst case channel conditions. However, often the channel quality is much
better, which is not reflected in an improved end-to-end transmission quality due
to inevitable quantization noise produced by the source encoder.
In this thesis, the focus is set on systems which
• are not purely digital anymore,
• benefit from increasing channel qualities, and
• avoid the saturation effect using discrete-time, continuous-amplitude techniques.
In the first part, purely analog, i.e., discrete-time and continuous-amplitude trans-
mission systems are considered – with linear or nonlinear components. Theoretical
performance limits are discussed and a new rate-distortion upper bound is derived
which can be evaluated semi-analytically. The performance of linear transmission
systems is derived analytically while simulations assess several nonlinear systems
including the famous Archimedes spiral. A new class of nonlinear discrete-time
analog coding systems, i.e., the Analog Modulo Block Codes (AMBCs) is developed.
One important observation is that nonlinear discrete-time, continuous-amplitude
systems can be decomposed into a discrete and a continuous-amplitudes part. The
considered systems exhibit a considerable gap to capacity but they all circumvent
the saturation effect due to the continuous-amplitude components.
In the main part of the thesis, these findings are turned into a design principle.
Hybrid Digital-Analog (HDA) transmission systems consist of separate digital and
analog branches while each is constructed independently. By combining both worlds
– digital and continuous-amplitude transmission – new concepts emerge which fuse
their advantages: capacity achieving performance in the digital branch with a huge
variety of conventional digital codes plus avoiding the saturation effect in the analog
branch. The performance of HDA systems is assessed theoretically as well as by
simulations. These Hybrid Digital-Analog (HDA) transmission systems outperform
both purely digital and continuous-amplitude concepts. HDA transmission is
an attractive solution for wireless systems such as microphones, loudspeakers or
distributed sensors.
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Chapter 1

Introduction

Not too long ago, wireless communication was purely analog. Radio, television, or
telephony used analog transmission systems with continuous-amplitude processing
to protect the content against channel noise. These analog transmission systems,
such as AM or FM radio, relied on the available technology, featuring a transmission
quality which improved gradually with increasing channel quality.

In 1948, Shannon [Sha48] split the transmitter into two logical units: the
source and the channel encoder. The source encoder uses a model of the content,
e.g., statistical properties of the source symbols, to generate a representation
with as few bits as possible while in the channel encoder additional bits are
introduced for the protection against channel noise. It has been shown that this
separation principle may achieve the theoretical performance limits at the cost of an
increased complexity and delay. This insight, combined with the rapid technological
evolution of integrated circuits, was the essential basis for the “digital revolution”
in communications. Since then, researchers and engineers have succeeded to build
efficient digital communication systems such as digital audio broadcast (DAB),
digital television (DVB) and mobile telephony (GSM, UMTS, UMTS LTE). High
complex transmission schemes with long block lengths are utilized in order to
achieve the performance bounds predicted by Shannon [BGT93,CFRU01,Cle06,
Lüd10,Sch11,3GP11]. These transmission schemes are the perfect choice for digital
content such as text or data.

However, a lot of content, e.g., audio, video, or sensor data is analog by nature.
The term “analog” is used for continuous-amplitude discrete-time variables or signals
throughout this work. The signal analysis employed in the source encoder first
extracts continuous-amplitude parameters. Then, they are quantized in a second
step to yield a compact representation in bits. As a result, the quantizer limits the
resolution of the reproduction in the receiver due to the inevitable quantization
noise.

In a transmission system, depending on the available resources – transmission
power, channel bandwidth, and channel quality – a compromise between the reso-
lution of the quantization and the strength of the channel coding (error protection)
has to be made. The transmission in a cellular communication system, for example,
has to be designed such, that it covers also the “worst case” channel conditions
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Chapter 1 – Introduction

experienced at the cell edge. Thus, operating at the cell edge requires a strong
channel coding while a low resolution in the source encoder is chosen. Closer to
the cell center, the receiver experiences a better channel quality, but the resolution
of the reproduction is limited due to the worst case design. Hence, the end-to-end
transmission quality saturates.

One solution to this design conflict is the Adaptive Multi Rate (AMR) trans-
mission concept [ETS98]. The transmitter obtains information about the current
channel quality via feedback channel and reacts with a favorable compromise
between quantization resolution and error protection. Unfortunately, the AMR con-
cept is not applicable in scenarios when feedback is not available: several receivers
(broadcast), fast changing channel conditions or too slow or delayed feedback, and
transmitters which are unable to adapt to the current channel quality due to cost
or complexity constraints.

For this reason, a new concept is sought which offers an alternative solution to
the design conflict. The main questions are: How can discrete-time and continuous-
amplitude content be transmitted using a non-adaptive transmitter while the
end-to-end transmission quality improves with increasing channel quality? How
can a modern transmission system be designed with the favorable properties that
are inherent in analog transmission systems?

The transmission chain has to be rethought. The principle of a discrete-time
representation of the band-limited signal and the separation of source and channel
coding is maintained, but the representation in bits of the continuous-amplitude
content is questioned. The source encoder is modified to output the undistorted
continuous-amplitude model parameters, e.g., by omitting the final quantization
step. These continuous-amplitude parameters or samples are then transmitted
using systems which are especially designed for discrete-time, continuous-amplitude
(analog) input. In this thesis, the focus is set on the design and evaluation of
transmission systems for continuous-amplitude parameters.

As the first step, purely analog transmission systems are analyzed. These
systems can be classified into linear and nonlinear systems. The performance of
linear transmission is predicted analytically for the case of Linear Analog Block
Codes (LABCs) [RSV09], while it is shown that these results also hold for any other
linear analog system. One interesting special case is transmitting Gaussian source
symbols with no additional redundancy [Gas02]. Here, capacity is achieved, but, as
soon as it is deviated from this setup (especially when adding redundancy) linear
analog systems show a poor performance.

Nonlinear systems promise better results specifically when adding redundancy,
but their analysis is more cumbersome. Computer simulations are employed
to quantify their performance. Considered nonlinear examples are Companding
Systems and Space Filling Curves including the famous Archimedes spiral [FR06,
HV06,RSV10a,HGFL11,BSGF13]. Based on the results of the investigation, a
new class of nonlinear transmission systems combining the block coding concept of
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1 Introduction

LABCs and a modulo operation as the mandatory nonlinearity is proposed and
analyzed: the Analog Modulo Block Codes (AMBCs) [SRV15].

All known purely analog transmission systems, including further examples in
the literature, such as Orthogonal Polynomials [WSR09], Shift Maps [VC03], or
Chaotic Dynamical Systems [CW98], have one disadvantage in common. They
cannot operate even close to the theoretical limits since the design or the operation
is either impossible or not feasible for long block lengths.

In consequence, a further approach has been introduced which combines digital
and analog transmission in one single hybrid system. Hybrid Digital-Analog (HDA)
transmission systems known in literature use numerical optimization for the design
of all components [SPA02]. However, due to the tremendous complexity during
design and even operation, again only small block lengths are feasible and the
theoretical limits are out of reach.

In this thesis, a new design approach for HDA transmission is introduced,
combining the advantages of both, the analog and the digital world. The insights and
knowledge gained in the last decades to build capacity achieving digital transmission
systems on the one side and continuous-amplitude processing circumventing the
saturation effect even for non-adaptive transmitters on the other side are unified.
These HDA transmission systems use conventional purely digital transmission and
additionally transmit the quantization error using continuous-amplitude discrete-
time means [RV13a,RV13b,RBV14,RV15].

In thorough assessments, the newly proposed design of HDA systems is compared
to purely digital systems. In the performed theoretical derivations and computer
simulations, the used resources – channel bandwidth, transmission power, and
channel quality – are chosen to be the same for a fair comparison. It will be
shown theoretically, that to any purely digital parameter transmission system, a
superior HDA transmission system can be created. Corresponding constructive
guidelines enable to design practical systems which prove their superiority in
computer simulations. It is interesting to note, that the additional complexity to
purely digital transmission is negligible.

The analysis of HDA systems leads to further very promising observations. For
purely digital transmission systems not achieving capacity, e.g., due to complexity
or delay constraints, the analog branch of the corresponding HDA system partially
compensates the imperfectness of the digital branch leading to decodability at
lower channel qualities. Furthermore, even the AMR systems can be enhanced
incorporating the HDA transmission concept to transmit successfully at lower
channel qualities.

Structure of the Thesis

In Chapter 2, the fundamentals of digital and analog transmission are reviewed.
The differences and similarities between purely digital and analog transmission
systems are detailed. Thereby, especially the effect of nonlinearities in analog

3



Chapter 1 – Introduction

transmission systems to yield discrete-valued and continuous-amplitude dimensions
and their necessity to achieve a good performance is described. Furthermore, the
separation of source and channel coding is reviewed also for continuous-amplitude
transmission.

Chapter 3 introduces several performance bounds to define the theoretical
limits for digital, analog, and HDA transmission. The performance of purely
linear transmission systems is derived and the Optimum Performance Theoretically
Attainable (OPTA) [BT67] is stated for different channel models including HDA
channels.

Rate-distortion theory is an integral component for the derivation of performance
bounds. Here, a new rate-distortion upper bound with an innovative construction
rule is proposed which provides an upper bound for the information rate at which
a certain mean-square error distortion could be achieved by a source encoder for a
given source distribution.

Additionally, the influence of the block length of a transmission system on the
performance and the need for long block lengths is reviewed to motivate the use of
HDA systems.

In Chapter 4, nonlinear analog transmission schemes are considered. The
functionality of the simplest continuous-amplitude transmission systems, i.e., Com-
panding Systems and Space Filling Curves, is to map usually just one source
symbol to channel symbols using continuous-amplitude (non)-linear functions. Sys-
tems mapping just one source symbol to one channel symbol (1:1) or the famous
Archimedes spiral which uses one additional redundant channel symbol per source
symbol (1:2) are analyzed and further numerically optimized.

Chapter 5 combines the gained insights and proposes a new class of codes.
Motivated by digital block codes, the performance of Linear Analog Block Codes
(LABCs) has been assessed, but due to the lack of a nonlinearity only a very limited
performance is achieved. Therefore, a new system using a real-valued matrix
multiplication with an additional modulo operation as the nonlinearity is proposed
and analyzed. Different decoders exploit the special structure of these Analog
Modulo Block Codes (AMBCs) with their discrete-valued and continuous-amplitude
dimensions.

In Chapter 6 the observation of the existence and necessity of discrete-valued
and continuous-amplitude dimensions is turned into a design principle. One in-
novative concept is to enable the independent construction of the digital and
the analog branch while the power and flexibility of digital transmission systems
is exploited. The inherent quantization error is additionally transmitted using
continuous-amplitude methods in the analog branch. Several receivers with different
types of estimators, operating either independently in the digital and analog branch,
or using joint estimation are proposed. The most powerful receivers, iterative
source channel decoders are adapted to HDA to even exploit the analog branch as
additional side information. The separation in HDA transmission into two branches
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enables new degrees of freedom in the design such as unequal power distribution or
adding redundancy in the analog branch.

The HDA systems are assessed both theoretically and via computer simulations
under the same conditions for a fair comparison.

Chapter 7 describes an application example of HDA transmission systems
including a source encoder. Correlated source symbols, which may emerge from,
e.g., band-limited speech, audio, or video signals, are encoded using block transform
coding to source parameters which are then transmitted using an HDA system.
Also here, HDA transmission and purely digital transmission are compared while
the source encoder in the HDA transmission system enables the transmission of
undistorted model parameters.

At the end, in Chapter 8 the properties of several proposed transmission systems
are compared. A special scenario is considered for which all systems including
linear analog systems, nonlinear Archimedes spirals, AMBCs, and HDA systems
may be parametrized. Here, the results and findings from the previous chapters
are confirmed.

Parts of the results of this thesis have been prepublished in the following refer-
ences: [RSV09,RSV10a,RSV10b,ERHV10a,ERHV10b,ERHV12,DRM12,RV13a,
RV13b,RKBV13,RBV14,RV15,SRV15]. These references are marked by an under-
lined label throughout this thesis.
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Chapter 2

Digital versus Analog Transmission

2.1 Introduction
In this chapter, first the generic transmission model and its system parameters
are introduced. Then, light is shed on the basic principles and on the reasons
why purely digital transmission works. Furthermore, the idea of discrete-time,
continuous-amplitude (analog) transmission is described, what is actually meant by
the term “analog” and which new aspects arise, such as the necessity of nonlinearities
and the resulting “large” and “small” decoding errors when dealing with analog
transmission systems. Following the insights on purely digital transmission, some
design criteria for analog systems are derived and the relationship between both
systems is briefly touched.

2.2 Transmission Model and System Parameters

A/D Parameter
analysis

Parameter
transmission system

Signal
synthesis D/A

s u û ŝ

Figure 2.1: Transmission of source parameters u generated from source
signal s by model based source coding.

Figure 2.1 shows a generic transmission system for continuous-amplitude, real
world sampled source signals. First, the samples of the signal are converted using
an analog to digital (A/D) block to enable analysis and encoding using digital
signal processing. The last block in the transmission chain consists of a digital
to analog (D/A) converter. Throughout this thesis, it is assumed that these A/D
and D/A converters exhibit a sufficiently high precision so the quantization error
introduced here can be neglected.

After conversion, the source signal s, which could be an audio signal, video
or sensor data is fed to a parameter analysis which uses a model of the content
and extracts parameters which describe the signal as closely as possible. These
parameters could be, e.g., Linear Predictive Coding (LPC) coefficients, samples of

7



Chapter 2 – Digital versus Analog Transmission

the prediction error signal or block transform coefficients generated in video encoding.
These continuous-amplitude and discrete-time parameters u, which are also called
“analog” parameters, are transmitted using a parameter transmission system and
are then decoded as û with potential distortions. A signal synthesis algorithm then
reconstructs the signal ŝ. In this thesis, the focus is set on improvements of the
parameter transmission system. The specific type of signal and the employed signal
model in the parameter analysis are not in focus since it is assumed that an improved
transmission quality of the parameters leads to a refinement of the reconstruction
of the signal ŝ. With regard to reproducibility of the results, the parameters u

are described using random variables which are independent identically distributed
(i.i.d.) or, as in Chapter 7, a correlated Gauss-Markoff source is employed.

The performance of the whole transmission system is measured in the end-to-end
symbol Signal to Noise Ratio (SNR) which is the ratio between the energy1 of the
source symbols and the Mean-Square Error (MSE) between the source symbols s

and the estimated symbols ŝ:

sSNR =
E
{
‖s‖2

}

E
{
‖s− ŝ‖2

} . (2.1)

The performance of the transmission of the parameters generated by the parameter
analysis are measured in the end-to-end parameter SNR. This is the ratio between
the energy of the source symbols and the MSE between the source symbols u and
the estimated symbols û:

pSNR =
E
{
‖u‖2

}

E
{
‖u− û‖2

} . (2.2)

The pSNR2 measures the performance of the parameter transmission system in
Figure 2.1 and is the usually applied figure of merit in this thesis. If a parameter
analysis outputs several types of continuous-amplitude parameters, e.g., LPC
coefficients and samples of the prediction error signal, an individual pSNR for each
type could be of interest for assessment. In this thesis, just one type of parameter
and hence just one type of pSNR is considered.

Although, the continuous-amplitude discrete-time parameters u which are
transmitted by the parameter transmission system are not the real world source
symbols originally processed by the parameter analysis, u will be denoted “source

1The average power of one source symbol s is denoted σ2
s = E{s2}. The expectation of

the vector norm of s integrates over the average power of each symbol with the duration T .
Thus, with the length `s of the vector s, E{‖s‖2} = σ2

s · `s · T denotes the average energy
of the vector s. Therefore, fractions of average energies of vectors of equal lengths equal
fractions of their powers. As common in signal processing, the symbol duration is normalized
to unity (T = 1) in this work.

2In image processing an alike SNR is used. The Peak SNR (PSNR) is defined differently
and therefore, to avoid confusion, here the “p” is written in lower case.
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2.2 Transmission Model and System Parameters

symbols” in the following and the parameter transmission system “transmission
system” for simplicity.

The usually considered baseband model of the general transmission system is
depicted in Figure 2.2.

u
1 × M

Transmitter D/A AWGN A/D Receiver û
y

1 × N

z

Figure 2.2: Baseband model of general parameter transmission system.

The source symbols u follow the probability density function (pdf) p(u) and are
combined to M -dimensional source vectors u.

A transmitter which may use purely digital operations or also continuous-
amplitude functions transforms the source vector to a channel vector y with N
dimensions. The dimension N of y also describes the number of channel uses which
are needed for transmission. The elements of the channel vector y may have a
discrete or continuous-amplitude nature, depending on the concepts used in the
transmitter. The overall rate of the transmitter is denoted by

r = M

N
. (2.3)

Before sending the channel symbols y over the Additive White Gaussian Noise
(AWGN) channel, the symbols are converted using a D/A block. An A/D block
digitizes the samples received from the AWGN channel. Again, is it assumed that
these convertors exhibit a sufficiently high precision, so the quantization error
introduced here can be neglected.

In the AWGN channel, the symbols are disturbed by additive Gaussian noise n

and received as z:

z = y + n. (2.4)

A receiver generates an estimate û of the source symbols.
The influence of signaling, matched filtering and sampling need not to be

considered here. Transmission with matched filtering, no intersymbol interference
and a minimum bandwidth ideal rectangle shape in the spectrum are assumed. All
signals are represented by vectors in the real baseband.

The channel quality can be expressed as the channel SNR (cSNR) which relates
the average energy of the channel vector to the average energy of the noise vector:

cSNR =
E
{
‖y‖2

}

E
{
‖n‖2

} . (2.5)
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In case of the above assumptions (matched filtering, no intersymbol interference
and a minimum bandwidth ideal rectangle spectrum), the very popular channel
quality measure Es/N0 is equivalent to the above defined cSNR:

Es/N0 = cSNR. (2.6)

The Es/N0 relates the transmitted transmission energy of the channel symbols to
N0 which is twice the noise power spectral density N0/2 on the channel. To enable
a fair comparison of the performance of digital transmission systems with different
code rates and different modulation schemes, another channel quality measure is
frequently used. The Eb/N0 relates the transmission energy which is spent per
source bit to N0. Using the spectral efficiency ρ, the Eb/N0 and the Es/N0 measure
are connected as follows:

Eb/N0 = Es/N0 · 1
ρ
. (2.7)

The spectral efficiency ρ describes the number of bits which are transmitted per
channel symbol, while it is assumed that the system is designed such, that they
can also be decoded successfully.

In the context of continuous-amplitude source symbols, the overall rate r = M
N

(2.3) denotes the number of source symbols which are transmitted per channel
symbol. Thus, r is the continuous-amplitude equivalent of the spectral efficiency
ρ. Inspired by (2.7), a similar measure is used for continuous-amplitude source
symbols: The Eu/N0 relates the transmission energy per source symbol to twice
the the noise power spectral density N0/2:

Eu/N0 = Es/N0 · 1
r

= Es/N0 · N
M
. (2.8)

With (2.6) it holds:

Eu/N0 = cSNR · 1
r

= cSNR · N
M
. (2.9)

In Figure 2.2 only real-valued (and not complex-valued) variables are used. This
approach is motivated by its simplicity and the correspondence to a baseband
transmission system which just allows real-valued channel symbols. Complex
modulation schemes such as Quadrature Phase Shift Keying (QPSK) which are
employed in the complex baseband when describing band-pass transmission are
also included in the above model: The real and the imaginary part of the complex
symbol are interpreted as two real symbols which are concatenated in the real
valued channel vector.

2.3 Purely Digital Transmission
Conventional purely digital transmission systems whose aim is the transmission
of bits and not continuous-amplitude values, usually consist of a concatenation of
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2.3 Purely Digital Transmission

digital channel coding and digital modulation. The m-dimensional information
words are encoded to n-dimensional code words which are then mapped by digital
modulation to N -dimensional channel vectors. The n-dimensional coding space
allows for 2n different points while only 2m < 2n points are selected as valid
code words, each code word corresponding to one information word. The digital
modulation then maps groups of the encoded bits to constellation points forming
the channel symbols. These channel symbols compose the channel vector. This
vector describes one point in the N -dimensional channel space which corresponds
to one valid code word in the n-dimensional coding space and to one m-dimensional
information word. Not all possible points in the channel space are valid, just a
points given by the structure of the digital channel code are sent.

An AWGN channel disturbs the channel symbols, shifting each sent symbol in
each dimension by a random distance. To eliminate the effect of the noise, the
decoder at the receiver assigns the received vector to the nearest valid point in
the N -dimensional channel space. The region, from which received vectors are
assigned to one valid point, is called “Voronoi region”. A decoding error occurs,
if the Euclidean length of the disturbing noise vector is large enough to reach a
neighboring Voronoi region.

To minimize decoding errors, the pairs of valid points in the N -dimensional chan-
nel space should exhibit a maximum Euclidean distances. However, the (squared)
distance of one valid point to the origin directly corresponds to the transmission
power which on the other hand shall be minimized. The optimum solution in this
conflict of objectives is positioning valid points such that the minimum distance
between any pair of points is maximum. This leads to similar error probabilities
for valid point and to Voronoi regions which approximate hyperspheres to fill the
channel space as densely as possible. Interestingly, the higher the channel dimension
N , the closer is the approximation of the Voronoi region to a hypersphere. This
effect is described by the sphere packing bound (Section 3.6).

This way the word error rate, i.e., the probability of decoding errors between
valid points can be minimized. The bit error rate can additionally be minimized
when neighboring valid points correspond to information bit vectors which differ just
in very few bit positions. Thus a “neighborhood” relation which the information bit
vectors exhibit (two vectors are neighbors if they have a small Hamming distance)
shall be preserved in the channel space, so the corresponding valid points are still
neighbors (now in terms of Euclidean distance).

In total, a purely digital transmission system with digital channel coding
and digital modulation can be understood as a direct mapping of m-dimensional
information bit vectors via n-dimensional code words after channel encoding to
valid points after modulation in the N -dimensional channel space.

11
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2.4 Nonlinear Analog Transmission and
Hybrid Digital-Analog Transmission

2.4.1 What is “Analog”?
Throughout this work, the term “analog” is used for continuous-amplitude discrete-
time variables.

Although, the ideas and the design of the analog and hybrid transmission
systems are driven by the idea of truly continuous-amplitude variables, in practice,
all operations and analog functions are conducted using digital signal processing.
It is assumed that the resolution of the necessary A/D and D/A conversion is
sufficiently high, so the introduced quantization error can be neglected.

2.4.2 The Necessity and Effects of Nonlinearities
To achieve a pSNR which is significantly greater than the channel noise cSNR,
more than one channel use per source symbol (N > M ⇔ r < 1) has to be
employed (Section 3.4). The transmission of one source symbol by several channel
uses can, e.g., be facilitated employing linear methods, i.e., continuous-amplitude
linear operations such as sums and multiplications with constants. Linearity is
given when encoding u1 and u2 leads to y1 and y2, respectively, encoding the sum
u3 = u1 +u2 yields the sum y3 = y1 +y2. The simplest solution for a linear system
is a repetition code which transmits the (normalized) source symbol u by 2 channel
uses y1 and y2. The maximum performance achievable with linear operations is
derived in Section 3.2. Regarding the cSNR, doubling the number of channel uses
improves the performance in terms of pSNR by 3 dB. For linear systems, no gain is
achievable at all by additional channel uses if the channel quality measure Eu/N0

is considered for a fair comparison between systems with different rates r.
However, the Optimum Performance Theoretically Attainable (OPTA) predicts

a possible gain in cSNR which rises exponentially with the number of channel uses
(3.49). Thus, nonlinear processing may be the solution to go beyond the linear
processing performance and reach the theoretical performance limits, e.g., [FR06].

Comparable to digital transmission systems, analog transmission systems can
also be characterized by valid code words which are transmitted as channel symbols.
Due to the continuous-amplitude nature of the source symbols, there are infinitely
many different channel symbols, which still form a pattern in the channel space.
In Figure 2.3 several analog modulation schemes are depicted which encode scalar
(M = 1) uniformly distributed source symbols as N = 2 channel symbols (y1 and
y2). The range of the source symbols is −1 < u < 1 and the average power of the
channel symbols is E

{
‖y‖2

}
/N = 1. The correspondence of a selection of channel

symbols to their source values is depicted in the figures.
One example of a linear analog modulation scheme is shown in Figure 2.3a. A

linear system always comprises just one (flat) hyperplane such as, e.g., the straight
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(b) Archimedes spiral (nonlinear).
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(c) Analog Modulo Block Code
(AMBC) (nonlinear).
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(d) Hybrid Digital-Analog (HDA)
transmission (nonlinear).

Figure 2.3: Different analog modulation schemes and their channel sym-
bols. All schemes encode M = 1 analog source symbol with
−1 < u < 1 forming 2-dimensional (N = 2) channel symbols
with E

{
‖y‖2

}
/N = 1.
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line (or arm) in the 1-dimensional (M = 1) case. In a nonlinear system, this one
(flat) hyperplane could, e.g., either be not flat anymore but bent or curved, and/or
the hyperplane could be split up into several hyperplanes.

One example of a nonlinear analog modulation scheme are space filling curves
(Chapter 4) which could be designed using, e.g., Archimedes spirals. Here, the line
is rolled up to a spiral yielding several spiral arms (Figure 2.3b).

In Chapter 5 a different class of analog codes, the Analog Modulo Block Codes
(AMBCs), are examined while one example is shown in Figure 2.3c. The arm is
still straight, but it is cut into shorter segments which are arranged in parallel and
tilted with respect to the coordinate axis.

Other candidates are Hybrid Digital-Analog (HDA) systems as described in
Chapter 6. The straight arm is cut into segments and arranged in parallel, but
here all segments have the same length and they are in parallel to the coordinate
axis (Figure 2.3d).

A common feature of all shown nonlinear modulation schemes is that for a
constant transmission power, the length of the arm is increased compared to a
linear system. Furthermore, the neighborhood relationship of the source symbols is
preserved on the channel. A performance comparison of these analog modulation
schemes is given in Section 8.3.

2.4.3 Small and Large Errors – Analog and Discrete Directions
In nonlinear analog transmission systems, two types of decoding errors can be
observed. This is illustrated in Figure 2.4. An Analog Modulo Block Code (AMBC)
may encode the source symbol u = 0.9 to y(u = 0.9). Two examples of noise
vectors n1 and n2 with the same length but different direction disturb the channel
symbol and lead to received symbols which are decoded by a Maximum Likelihood
(ML) decoder. The decoder splits the noise vector into two orthogonal components.
One components is in parallel to the hyperplane (i.e., the arm) and another
components is orthogonal to the hyperplane. As long as the orthogonal components
of the noise (as in case of n1) is small enough not to cross the decision border
between two neighboring arms, the decoder can eliminate the influence of the
orthogonal components of the noise vector. This results in a decoded symbol
whose corresponding channel symbol ŷ(û1) is on the correct hyperplane. If the
received symbol is across the decision border to a neighboring arm, e.g., at half the
distance for ML decoding (as in case of n2), the decoder chooses a point (ŷ(û2))
on the neighboring arm as the estimate of the received symbol. In the example
in Figure 2.4, the estimated symbol is û2 = 0.4 whose error to the original source
symbol is much higher than for û1 = 0.96. The corresponding source symbol on
the neighboring arm significantly differs in terms of MSE from the sent source
symbol, hence, a “large” decoding error occurs. This error is sometimes also called
“threshold” error, since it dominates the overall performance at just below a certain
channel quality [Tim70]. The parallel components of the noise vector result in an
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estimated symbol which is just along the arm. The neighborhood relationship of
the symbols on the arm leads to a “small” decoding error in terms of MSE.
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Figure 2.4: Different types of errors. The AMBC in Figure 2.3c is used.

The direction of the components orthogonal to the hyperplane can be called
“discrete” direction and the direction which is in parallel to the hyperplanes “analog”
direction. The choice of the discrete and analog direction depends on the nonlinearity
of the analog transmission system. In systems which exhibit parallel hyperplanes
(e.g., Figures 2.3c and 2.3d), the discrete direction is always the same for all channel
symbols. This does not hold for other analog transmission systems such as, e.g.,
the Archimedes spiral (Figure 2.3b). Since here the arms are bent, the direction
which is in parallel or orthogonal to the arms is different for each channel symbol.

Even though all entries of the channel vector are analog and exhibit continuous
amplitudes, there are still the discrete dimensions, in which only discrete values
occur. This leads to an interesting observation: A nonlinear analog transmission sys-
tem (with N > M) always comprises discrete dimensions! This observation answers
the open question posed, e.g., in [Rez03], why a system withN continuous-amplitude
channel symbols and nonlinearities does not achieve the expected performance.

The number of discrete dimensions of a transmission system can be derived as
follows. For systems with parallel hyperplanes, the channel space could be rotated,
such that the hyperplanes are in parallel to M coordinate axes. Thus M vector
entries are needed to represent the analog direction and hence N−M entries remain
for the discrete directions which are orthogonal to the hyperplanes. It follows that
if a nonlinear analog transmission system transmits M -dimensional source vectors
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over an N -dimensional channel, N −M channel symbols are discrete. For systems
without parallel hyperplanes (e.g., the Archimedes spiral), the same observation can
be made. However, here, the angle of the rotation to align the analog direction with
the coordinate axis is dependent on the considered channel symbol (Figure 2.3b).

Another conclusion is that since any nonlinear analog transmission system with
more channel uses (N) than source dimensions (M) exhibits discrete and analog
directions, this property may directly be used as a design principle as shown in
Chapter 6.

2.4.4 Design Criteria
In the design process of nonlinear analog transmission systems, two main criteria
have to be considered: On the one hand, the stretching effect, i.e., the area of the
hyperplane (i.e., the length of the line for M = 1) should be as large as possible to
combat the components of the channel noise which are parallel to the hyperplanes.
The size of the area of the hyperplanes is also responsible for the performance
of the transmission system at such a high channel quality, that ambiguity about
the hyperplane during decoding improbable [FR06] (e.g., Section 5.3.4 for Linear
Analog Block Codes (LABCs)). On the other hand, the Euclidean distance between
the hyperplanes should be as large as possible to eliminate the influence of the
large errors resulting from the components of the channel noise orthogonal to the
hyperplanes. Furthermore, the transmission power should be as low as possible.

It is not obvious how to find the optimal compromise between these requirements.
Since in the previous section, the observation is made that a nonlinear analog
transmission system can be described in terms of discrete and analog dimensions,
the design criteria from purely digital transmission systems (Section 2.3) can be
used for the digital dimensions: As many points as possible should be positioned
as such that the minimum distance between any pair of points is maximum while
exhibiting a low transmission power. In the analog dimensions a large hypersphere
is desired, also with a low transmission power. These insights are used in the design
of Hybrid Digital-Analog (HDA) codes in Chapter 6.
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Chapter 3

Performance Bounds

3.1 Introduction

Theoretical performance bounds are useful to assess the performance of practical
transmission systems in order to evaluate the potential of further improvement.

First, in Section 3.2, the performance of linear analog transmission systems is
analytically derived. One candidate, the Linear Analog Block Codes (LABCs) is
analyzed for different estimators, namely the Maximum Likelihood (ML) and the
Linear Minimum Mean-Square Error (LMMSE) estimator.

To assess the performance of a source encoder, the rate-distortion function is
a widely used instrument. A source encoder always strives to use as few bits as
possible to find a description of the content with the smallest possible distortion.
The rate-distortion function gives the minimum rate (bits/symbol) necessary to
describe source symbols with a given probability density function (pdf) and a given
distortion (usually the mean-square error distortion). Well known rate-distortion
functions and a new approach for a rate-distortion bound (Section 3.3.3) are
described in Section 3.3.

The Optimum Performance Theoretically Attainable (OPTA) combines the
concept of the rate-distortion function with the transmission over a channel. OPTA
gives the minimum distortion for the transmission of source symbols with a given
pdf using multiple or partial channel uses of a specific transmission channel with
a certain channel quality. In Section 3.4 this bound is evaluated for the Additive
White Gaussian Noise (AWGN) channel, the Binary Symmetric Channel (BSC)
for bipolar hard decision transmission, the Binary-Input Additive White Gaussian
Noise (BIAWGN) channel for bipolar soft decision transmission and combinations
of these channels to model Hybrid Digital-Analog (HDA) transmission channels.

The different variants of OPTA and the performance of LABCs are compared
in Section 3.5.

Usually, the performance of a transmission system is influenced by its coding
rate and its block length, i.e., the number of channel uses which are considered at
once. In Section 3.6 the idea of the Sphere Packing Bound (SPB) is briefly reviewed
and the general influence of finite block lengths is evaluated.
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3.2 Linear Analog Codes
Linear analog codes only employ continuous-amplitude linear operations such as
sums of source vector entries and multiplications with constants. All linear analog
codes can be described by matrix multiplications at the transmitter and at the
receiver. The source vector u with dimension1 M × 1 is multiplied with the
encoding matrix P with dimension N ×M . The decoding of the received vector
z is conducted by a multiplication with Q with dimension M ×N . This coding
scheme is called Linear Analog Block Code (LABC) with the following encoding,
transmission and decoding relations:

y = P · u, (3.1)
z = y + n, (3.2)
û = Q · z. (3.3)

To facilitate the following analysis, an arbitrary, but fixed energy constraint is
imposed. After multiplication with P , the total energy of the zero mean channel
input vector y shall be the same as of the zero mean source vector u:

E
{
‖u‖2

}
= E

{
uT · u

}
= M · σ2

u = N · σ2
y = E

{
yT · y

}
= E

{
‖y‖2

}
.

(3.4)

To normalize an arbitrary given matrix P ′ to meet (3.4), a scalar factor α is used

P = α · P ′, (3.5)

which is calculated as follows:

E
{

uT · u
}

= E
{

yT · y
}

⇔ M · σ2
u = E

{
α2 · uT · P ′T · P ′ · u

}

⇔ M · σ2
u = α2 · E

{
P ′T · P ′

}
· σ2

u

⇔ α =
√

M

trace (P ′T · P ′) . (3.6)

Using this normalization, the following relationships w.r.t. the matrix P and the
cSNR hold:

trace
(
P T · P

)
= M, (3.7)

cSNR =
σ2
y

σ2
n

= M · σ2
u

N · σ2
n
. (3.8)

1In this dissertation, usually row vectors are used, but in Section 3.2, column vectors are
employed to conform with the formulas in [RSV09].
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3.2.1 Maximum Likelihood Estimator
The properties and performance bounds of LABCs for an arbitrary choice of P and
a Maximum Likelihood (ML) decoder are derived in, e.g., [RSV09]. For Gaussian
additive noise, a Least Squares (LS) estimator is also the ML decoder [Kay93].
Thus, it suffices to use the pseudo inverse of P as the decoder matrix Q, since this
is the LS optimal solution. Additionally, since no probabilistic assumptions about
the data (and the noise) can be made, the estimator is independent of the channel
quality. The decoding matrix is defined as follows:

Q = (P T · P )−1 · P T, (3.9)

and the end-to-end pSNR of the system can be calculated in dependency of the
encoding matrix [RSV09]:

pSNRLABC,ML = cSNR · 1
1
M

∑M

i=1
1
γi

· N
M

, γi =
∣∣eig(P T · P , i)

∣∣ . (3.10)

To achieve the maximum performance by choosing the best P , Lagrange opti-
mization is conducted [RSV09], leading to the result that all eigenvalues γi should
be 1: γi =

∣∣eig(P T · P , i)
∣∣ = 1. This is given, e.g., for the identity matrix with

padded zeros, a repetition code or a Hadamard matrix. The maximum performance
achievable with LABCs, thus, is:

pSNRLABC,ML,max = cSNR · N
M

(3.11)

= cSNR · 1
r

(2.9)= Eu/N0. (3.12)

Equation (3.11) supposes that for a constant cSNR, the performance is increased
with a rising N/M . Doubling the number of channel uses per source symbol yields
a gain of 3 dB in terms of pSNR. The same gain of 3 dB could be achieved, if the
transmission energy could be doubled, thus, increasing the channel quality by 3 dB.

This effect is incorporated in the Eu/N0 channel quality measure2 (Section 2.2)
which allows a fair comparison of systems with different rates. Then, (3.12) shows,
that independently of the rate r, the performance in terms of pSNR just depends
on the channel quality. Therefore, for a given noise power spectral density N0/2 on
the channel, and a fixed transmission energy per source symbol, the performance
does not increase if the rate r is lowered. Thus, in case of LABCs, coding and
hence employing more channel uses and energy is not favorable to just increasing
the transmission energy. In total, with LABCs and considering the Eu/N0 measure,
the performance is the same for a system transmitting the source symbol just once
without more channel uses or repetitively transmitting the source symbol with
more channel uses.

2Here, the definition of Eu/N0 is by 3 dB different to [RSV09,Rü09]
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3.2.2 Linear Minimum Mean-Square Error Estimator
An Linear Minimum Mean-Square Error (LMMSE) estimator employs only linear
operations using first and second order statistics of the data and the noise to
yield a minimum mean-square error. For a linear transmission model, Gaussian
source symbols and Gaussian additive noise, the LMMSE estimator yields the same
performance as an Minimum Mean-Square Error (MMSE) estimator [Kay93]. The
LMMSE estimator is also known as the Wiener filter.

For zero mean source and noise symbols and for a certain channel quality, which
is known at the receiver, the decoding matrix for an LABC can be derived as
follows [Kay93, p. 391]

Q =
(
C−1
u + P T ·C−1

n · P
)−1 · P T ·C−1

n

=
(
1M×M · σ−2

u + P T · 1N×N · σ−2
n · P

)−1 · P T · 1N×N · σ−2
n

=
(
1M×M · σ

2
n

σ2
u

+ P T · P
)−1

· P T

=
(
1M×M · M

N · cSNR + P T · P
)−1
· P T, (3.13)

using the covariance matrices of the source and noise symbols:

Cu = 1M×M · σ2
u, (3.14)

Cn = 1N×N · σ2
n. (3.15)

The covariance of the estimation error and, thus, the MSE are given by [Kay93, p.
391]

e = u− û, (3.16)

Ce =
(
C−1
u + P T ·C−1

n · P
)−1 (3.17)

=
(
1M×M · σ−2

u + P T · P · σ−2
n

)−1
, (3.18)

MSE = E
{

eT · e
}

= trace (Ce) (3.19)

=
M∑

i=1

1
λi

(3.20)

=
M∑

i=1

1
σ−2
u + σ−2

n · γi
(3.21)

=
M∑

i=1

σ2
u

1 + cSNR · N
M
· γi

, (3.22)
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with the eigenvalues

λi =
∣∣eig

(
1M×M · σ−2

u + P T · P · σ−2
n , i

)∣∣ (3.23)

= σ−2
u + σ−2

n · γi γi =
∣∣eig

(
P T · P , i

)∣∣ . (3.24)

For an arbitrary choice of P , the overall performance of the LABC with an LMMSE
estimator is, thus:

pSNRLABC,LMMSE =
E
{

uT · u
}

MSE (3.25)

= M · σ2
u∑M

i=1
σ2
u

1+cSNR· N
M
·γi

(3.26)

= 1
1
M

∑M

i=1
1

1+cSNR· N
M
·γi

. (3.27)

Also here, the best transmission fidelity can be achieved with a matrix P with
γi =

∣∣eig
(
P T · P , i

)∣∣ = 1 ∀1 ≤ i ≤M , yielding the maximum performance:

pSNRLABC,LMMSE,max = M
M

1+cSNR· N
M

(3.28)

= 1 + cSNR · N
M

(3.29)
(2.9)= 1 + Eu/N0. (3.30)

The decoding matrix and the overall performance of the LMMSE approach their
equivalent of the ML estimator with increasing cSNR. But for low channel qualities,
the LMMSE estimator outperforms the ML estimator and additionally yields a
performance which is always greater than 0 dB.

3.3 Rate-Distortion Function
The rate-distortion function states the minimum rate R(D) which is necessary
to describe one source symbol with a limited distortion D [CT06]. Here, for the
distortion the mean-square error distortion is used and the rate is measured in bits
or nats, while the latter will be used in all derivations. To convert between bits
and nats, the following relations are used:

Rbit = Rnat · ld(e), (3.31)
Rnat = Rbit · ln(2). (3.32)

The mean-square error distortion is defined as follows for the source symbol u and
its estimation û:

D = E
{

(u− û)2} . (3.33)
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The rate-distortion function is dependent on the source statistics such as the pdf
or correlation. Here, just independent identically distributed (i.i.d.) symbols are
considered and, thus, only the source pdf is of importance to obtain the rate-
distortion function.

3.3.1 Shannon Upper Bound
For Gaussian source symbols u with variance σ2

u and the mean-square error distor-
tion D, the rate-distortion function can directly be stated, e.g., [CT06, Theorem
10.3.2]:

R(D) =

{
1
2 ln
(
σ2
u
D

)
for 0 ≤ D ≤ σ2

u

0 for D > σ2
u

. (3.34)

This rate-distortion function holds for Gaussian source symbols and additionally is
an upper bound for the rate for non-Gaussian source pdfs for a given distortion
[Sha48]. Therefore, (3.34) is also denoted as Shannon upper bound.

3.3.2 Shannon Lower Bound
Shannon also published a lower bound for the rate-distortion function for arbitrary
source pdfs pU (u) [Sha59a]:

R(D) ≥ h(U)− 1
2 ln (2πeD) , (3.35)

with the differential entropy

h(U) =−
∫

pU (u) · ln (pU (u)) du, (3.36)

while the integral is taken over the support of the random variable.

3.3.3 New Rate-Distortion Upper Bound
In 2005, Guo et al. published a relationship (Guo-Shamai-Verdú (GSV) theorem)
between the mutual information and the MMSE achievable over an AWGN channel
[GSV05]. In [RSV10b], this relationship is used in the context of rate-distortion
theory. These findings were proven to be a new quite tight upper bound for the
rate-distortion function [DRM12] for arbitrary source pdfs.

To calculate the new rate-distortion upper bound for source symbols u with the
pdf pU (u), first, u is regarded as the input of the AWGN channel (c.f. Figure 2.2,
y = u, pY(y) = pU (u)). Then, the mutual information I(Y;Z) of the AWGN
channel z = y + n with noise variance σ2

n is calculated and finally using the GSV
theorem, the MMSE is derived from the mutual information. Taking the MMSE as
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3.3 Rate-Distortion Function

the distortion D and the mutual information as the rate R(D), different operating
points on the rate-distortion bound can be attained, while varying the noise variance
of the AWGN channel.

The aim is to state the input-output mutual information I(Y;Z) of the AWGN
channel as the sum of the Gaussian channel capacity and a Kullback-Leibler distance
(KLD). For that, an auxiliary variable Z ′ is introduced which follows a zero-mean
Gaussian pdf pZ′ with the same variance as Z (σ2

z′ = σ2
z). Furthermore, the KLD

is defined as KLD(f(a)||g(a)) =
∫
f(a) ln

(
f(a)
g(a)

)
da [CT06, (8.46)] and the steps

from (3.37) to (3.38) are detailed further down:

I(Y;Z) =h(Z)− h(Z|Y)
=h(Z)− h(Y +N|Y)
=h(Z)− h(N|Y)
=h(Z)− h(N )

=−
∫

pZ(z) · ln (pZ(z)) dz − h(N )

=−
∫

pZ(z) · ln
(
pZ(z)pZ′(z)pZ′(z)

)
dz − h(N )

=−
∫

pZ(z) · ln (pZ′(z)) dz −
∫

pZ(z) · ln
(

pZ(z)
pZ′(z)

)
dz − h(N )

(3.37)

=−
∫

pZ′(z) · ln (pZ′(z)) dz −
∫

pZ(z) · ln
(

pZ(z)
pZ′(z)

)
dz − h(N )

(3.38)
=h(Z ′)−KLD(pZ ||pZ′)− h(N ). (3.39)

The conversion from (3.37) to (3.38) can also be found in [CT06, (8.72)-(8.76)] but
is elaborated with more detail for convenience in the following.

−
∫

pZ(z) · ln (pZ′(z)) dz =−
∫

pZ(z) · ln
(

1√
2πσ2

z′
· e
−z2
2σ2
z′

)
dy

= ln
(√

2πσ2
z′
)
·
∫

pZ(z) dz
︸ ︷︷ ︸

=1

+ 1
2σ2

z′
·
∫
z2pZ(z) dz

︸ ︷︷ ︸
=σ2

z

= ln
(√

2πσ2
z′
)
·
∫

pZ′(z) dz
︸ ︷︷ ︸

=1

+ 1
2σ2

z′
·
∫
z2pZ′(z) dz

︸ ︷︷ ︸
=σ2

z′

=−
∫

pZ′(z) · ln (pZ′(z)) dz. (3.40)
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Equation (3.39) can be further reformulated using the differential entropy of a
continuous-amplitude Gaussian random variable [CT06]:

I(Y;Z) =h(Z ′)− h(N )−KLD(pZ ||pZ′)

=1
2 ln

(
2πeσ2

z′
)
− 1

2 ln
(
2πeσ2

n

)
−KLD(pZ ||pZ′)

=1
2 ln

(
σ2
z′

σ2
n

)
−KLD(pZ ||pZ′)

=1
2 ln

(
σ2
n + σ2

y

σ2
n

)
−KLD(pZ ||pZ′)

=1
2 ln (1 + cSNR)−KLD(pZ ||pZ′). (3.41)

The first term of (3.41) is the well known channel capacity for AWGN channels.
The output pdf pZ of the AWGN channel which is needed to calculate the KLD
is the convolution of the input pdf pY and the Gaussian pdf pN of the noise
(pZ = pY ∗ pN ). Therefore, the KLD and hence the mutual information can be
obtained analytically for pdfs which allow closed form convolution and integration.
For other pdfs, convolution and integration are carried out semi-analytically.

In [GSV04] an analytical relationship between the mutual information in nats
and the MMSE of arbitrarily distributed input symbols y and their observations z
through an AWGN channel (GSV theorem) is derived:

MMSE(cSNR) = 2 · ∂

∂cSNRI(Y;Z, cSNR). (3.42)

Inserting (3.41) into (3.42) yields:

MMSE(cSNR) = 1
1 + cSNR − 2 ∂

∂cSNR KLD(pZ ||pZ′ , cSNR). (3.43)

For a varying channel quality cSNR, the mutual information in equation (3.41) and
the MMSE in equation (3.43) are used as the rate R and the distortion D for the
operating points of the rate-distortion upper bound, respectively.

In the following, the new upper bound is evaluated for different source pdfs.
For comparison, the Shannon upper bound (3.34), the Shannon lower bound (3.35)
and the numerical results for the rate-distortion function calculated by the Blahut-
Arimoto [Bla72,Ari72] algorithm are shown. Figure 3.1a shows the results for a
uniform source pdf, Figure 3.1b for a Laplacian source pdf, and Figure 3.2 for a
bipolar source pdf, respectively. The properties of the employed pdfs are listed in
Appendix D for convenience. For the bipolar source symbols, the Shannon lower
bound cannot be evaluated, since the differential entropy h(Y) is not defined here.

All figures show, that the new upper bound is quite tight to the rate-distortion
function obtained by the Blahut-Arimoto algorithm.
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(a) Uniform source pdf.
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(b) Laplacian source pdf.

Figure 3.1: Rate-distortion functions and bounds for different source pdf.
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Figure 3.2: Rate-distortion functions and bounds for a bipolar source pdf.

A Matlab tool to calculate the new upper bound can be found on the authors
institute website http://www.ind.rwth-aachen.de.

3.4 Optimum Performance Theoretically Attainable
The Optimum Performance Theoretically Attainable (OPTA) describes the maxi-
mum performance in terms of pSNR for a given source pdf for the transmission
over a channel with a given quality cSNR and partial or multiple channel uses per
source symbol [BT67].

To obtain this bound, three components are combined. First, the corresponding
rate-distortion function R(D) for the given source pdf is necessary. This function
describes the number of information bits R necessary to describe the source symbols
with a limited distortion D. Second, the capacity C(cSNR) of the channel for a
given channel quality is required. The capacity states the maximum number of
bits C which can be transmitted error-freely with one real-valued (in contrast to
complex-valued) channel use. Third, the number N of channel uses for transmitting
M source symbols has to be stated:

R(D) ·M = C(cSNR) ·N. (3.44)

No transmission system, for which the three components from above hold, can
obtain a lower D than stated in (3.44), thus, OPTA is an upper bound for the
end-to-end performance pSNR.
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3.4 Optimum Performance Theoretically Attainable

In the following sections, the channel capacity for different channel models are
calculated to lay the basis for Section 3.5 where several examples for OPTA are
calculated and depicted for different channel models and for different ratios of M
and N .

3.4.1 Additive White Gaussian Noise Channel
The capacity in bits per real-valued channel use of an Additive White Gaussian
Noise (AWGN) channel can be stated as [Sha48]:

CAWGN = 1
2 ld (1 + cSNR) . (3.45)

For Gaussian source symbols, the rate-distortion function matches the Shannon
upper bound (3.34). With (3.44), for an AWGN channel and Gaussian source
symbols, OPTA can be derived as:

1
2 ld

(
σ2
u

D

)
·M = 1

2 ld (1 + cSNR) ·N (3.46)

⇔ ld
(
σ2
u

D

)
= ld (1 + cSNR) · N

M
(3.47)

⇔ σ2
u

D
= (1 + cSNR)

N
M (3.48)

The fraction σ2
u
D

describes the pSNR which can optimally be achieved for a Gaussian
source and an AWGN channel:

pSNROPTA, Gaussian, AWGN = (1 + cSNR)
N
M . (3.49)

The separation theorem [Sha48] states that a transmission system using infinite
block sizes and, thus, has an infinite delay, can achieve error-free transmission by
separate source and channel coding with an intermediate representation of the
source symbols in bits. Interestingly, there are some very few special cases in which
OPTA can be reached without infinite delay [Gas02] and, thus, with a limited
block size. One example is directly transmitting Gaussian source symbols over
an AWGN channel with one channel use per source symbol (N = M). With an
MMSE estimator at the receiver, which in this case can be realized by a simple
linear estimator [Kay93], OPTA is reached at every channel quality even for a fixed
transmitter [Gal68,Gas02]. This scheme is optimal also for tiny block sizes such as
N = M = 1. A derivation of the performance of such a transmission system can be
found in Section 3.2.2.

For non-Gaussian source symbols, the pSNR of OPTA is higher than the pSNR
of OPTA for Gaussian source symbols, since a lower distortion D can be achieved
for a given number of information bits (e.g., Figure 3.1a). For the exact derivation
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of OPTA for non-Gaussian source symbols the rate-distortion function for this
source pdf is necessary. Unfortunately, the new (quite tight) rate-distortion upper
bound (Section 3.3.3) cannot be used to calculate OPTA for non-Gaussian source
symbols. It upper bounds the distortion and, thus, the pSNR is lower bounded, but
OPTA is defined to be an upper bound for the pSNR. However, the Shannon lower
bound, can be used to calculate OPTA for non-Gaussian source symbols, since it
provides a lower bound for the distortion and, thus, an upper bound of the pSNR.

3.4.2 Binary Symmetric Channel

The Binary Symmetric Channel (BSC) assumes a binary input of the channel and
a binary output. This is a model for a bipolar modulation scheme such as Binary
Phase Shift Keying (BPSK) for real-valued channel uses, or Quadrature Phase Shift
Keying (QPSK) for complex-valued channel uses and hard decision demodulation
at the receiver.

The capacity in bits per real-valued channel use of a BSC with a probability of
error p is given by [Pro95, p. 381]:

CBSC = 1 + p · ld(p) + (1− p) · ld(1− p). (3.50)

For an AWGN channel with a channel quality cSNR the probability of error for a
hard decision decoder can be stated using the Q function as:

p = Q
(√

cSNR
)

= 1√
2π

∫ ∞
√

cSNR
exp
(
−n

2

2

)
dn

= 1
2 erfc

(√
cSNR

2

)
. (3.51)

The maximum capacity per channel use of a BSC is 1 bit. For higher modulation
schemes, e.g., 8-PSK or 16-QAM, more complex channel models [OL07] with higher
maximum capacity have to be employed. These are not considered in this work,
since the general concepts and effects can also be described employing a BSC.

3.4.3 Binary-Input Additive White Gaussian Noise Channel

The Binary-Input Additive White Gaussian Noise (BIAWGN) channel assumes a
binary input transmitted over an AWGN channel. This is a model for a bipolar
modulation scheme such as BPSK for real-valued channel uses, or QPSK for
complex-valued channel uses and soft decision demodulation at the receiver, e.g.,
using L-values.
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The transition probability for an AWGN channel can be stated as

p(z|y) = 1√
2πσ2

n

· e−
(z−y)2

2σ2
n , (3.52)

and the capacity for equiprobable input symbols y = ±1 and an AWGN channel
z = y + n with cSNR = 1

σ2
n
is [Pro95, p. 385]:

CBIAWGN = I(Y;Z) = KLD(p(y, z)||p(y) · p(z)) (3.53)

=
∫ ∞

−∞
p(z|1) · ld

(
p(z|1)
p(z)

)
dz

=
∫ ∞

−∞

1√
2πσ2

n

· e−
(z−1)2

2σ2
n · ld

(
2

1 + e
− 2·z
σ2
n

)
dz. (3.54)

The maximum capacity per channel use of a BIAWGN channel is, as for a BSC
1 bit. Also here, for higher modulation schemes, e.g., 8-PSK or 16-QAM, more
complex channel models with higher maximum capacity have to be employed, which
are not considered in this work, since the general concepts and effects can also be
described employing a BIAWGN channel.

3.4.4 Hybrid Digital-Analog Channel
HDA transmission systems employ D channel uses for discrete transmissions and A
channel uses for analog transmissions. For bipolar modulation, the capacity of the
transmission channel of HDA systems can, thus, be modeled by the combination
of the BSC or BIAWGN channels for the discrete channel uses and the AWGN
channel for the analog channel uses.

If hard decision decoding is employed for the discrete channel uses, the average
capacity of one hybrid channel use can be stated using the BSC:

CBSC,AWGN = D

N
· CBSC + A

N
· CAWGN. (3.55)

In case of soft decision decoding, the average capacity of one hybrid channel use
can be stated using the BIAWGN channel:

CBIAWGN,AWGN = D

N
· CBIAWGN + A

N
· CAWGN. (3.56)
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3.5 Examples of the Optimum Performance Theoretically
Attainable

Figure 3.3 shows Optimum Performance Theoretically Attainable (OPTA) for
different source pdfs and one channel use N = 1 per source symbol M = 1. To
obtain OPTA, the channel capacity of an AWGN channel (3.45) and the rate-
distortion function for the specific source symbol pdf with the ratio between
channel uses and source symbols (3.44) has to be evaluated. For Gaussian source
symbols, the Shannon upper bound (3.34) gives the exact results. For uniform
or Laplacian source distributions, there is no closed form expression, thus, the
rate-distortion function is calculated using the numerical iterative Blahut-Arimoto
algorithm [Bla72, Ari72]. Figure 3.4 depicts the differences in terms of pSNR
between OPTA for non-Gaussian and Gaussian source symbols.

The different behavior of OPTA for different source pdfs can also be observed
in the rate-distortion functions in Figures 3.1a and 3.1b. For high distortions
(low pSNR), the rate-distortion functions for all source distributions converge.
Thus, also OPTA converges to the Gaussian case for all source distributions
for bad channel qualities as can be observed in Figure 3.4. For low distortions
(high pSNR), the gap between the rate-distortion functions of a specific source
distribution and the Gaussian case converge to a constant. E.g., in Figure 3.1a for
a uniform source distribution the gap of the distortion at a constant rate in the
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Figure 3.3: OPTA for different source pdfs for M = 1 and N = 1.
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Figure 3.4: Difference of OPTA for different source pdfs to OPTA of
Gaussian source.

low distortion region is around 1.5 dB in terms of distortion or pSNR. The same
distance ∆pSNR|dB = 1.5 dB between OPTA for the uniform source distribution
and the Gaussian case can be noted in Figure 3.4 for high channel qualities. For the
Laplacian source distribution, OPTA is in between the uniform and the Gaussian
case.

Figure 3.5 shows OPTA, calculated for a Gaussian source with the channel
capacity for different channel models. Additionally the performance of LABCs with
ML and LMMSE estimators is depicted. OPTA is a performance bound, hence,
just in very rare constellations (Section 3.4.1) or for infinite block length and delay,
this performance can be reached. The depicted performance for the LABCs can
be reached by using, e.g., direct unprocessed transmission of the source symbols
(Section 3.2) or in case of r = M

N
< 1 a repetitive transmission of the symbols.

In Figure 3.5a one source symbol (M = 1) and two channel symbols (N = 2)
are employed. The performance bound for the purely digital transmission systems
which can be modeled by BSC or BIAWGN channels saturates at pSNR|dB = 12 dB
following the 6 dB-per-bit rule at around cSNR|dB = 10 dB, when the maximum
capacity of 1 bit per channel use is reached. Here, for increasing channel qualities,
the performance cannot be further improved.

The performance bounds which include soft decision demodulation and therefore
are modeled using a BIAWGN channel outperform the bounds for hard decision
demodulation with a BSC. This effect is especially prominent for channel qualities
where the decoding performance has not yet saturated (cSNR|dB < 10 dB).

For LABCs, the LMMSE estimator surpasses the ML estimator, especially for
bad channels. Additionally, the performance of the LMMSE estimator always
stays above pSNR|dB = 0 dB. For increasing channel qualities, the performance
of both estimators converge as already noted in Section 3.2.2. Above around
cSNR|dB = 10 dB, the linear analog block codes outperform the bounds for purely
digital transmission.
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Figure 3.5: OPTA for Gaussian source symbols and the performance of
LABCs.
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In Figure 3.5b, ten channel uses (N = 10) are employed which yield a significantly
increased performance by 48 dB for the bounds employing discrete channel models.
The LABCs increase their performance only by around 6 dB.

In both figures, it can be observed that for systems employing non-discrete
channel models (AWGN channel in combination with BSC or BIAWGN channel)
and for the LABCs, the performance bound improves for an increased channel
quality with 1 dB in pSNR for 1 dB in cSNR. Most interestingly, the performance
bound of systems employing both, discrete and non-discrete channel models is
always higher or equal than for systems employing only discrete channel models.
This can be explained by the unbounded capacity increase of the AWGN channel
for rising channel qualities which is not given for the discrete channel models which
are, for BSC and BIAWGN, bounded by 1 bit per channel use.

In Figure 3.5a for good channels, the difference in terms of pSNR of the systems
consisting of both non-discrete and discrete channels to the LABC is only 3 dB. But
for N = 10 channel uses per source symbol (Figure 3.5b), the difference increases
to 44 dB. This shows the potential of systems employing nonlinear operations for
encoding.

3.6 Influence of Block Length – The Sphere Packing
Bound

For a finite block size, the rate-distortion function and the capacity of a channel can
only be reached for a very few special cases [Gas02]. E.g., for the mean-square error
distortion (Mean-Square Error (MSE)) and a power constrained AWGN channel,
only for a Gaussian source with one channel use per source symbol and a LMMSE
estimator at the receiver, OPTA can be reached for finite block size and in this
case even a block size of 1 [Gal68].

In general, for finite block sizes, the rate-distortion function and the channel
capacity cannot be reached.

The aim of channel coding and modulation is to transmit bits with a minimum
error rate over a channel. For finite block sizes, the Sphere Packing Bound (SPB)
gives the maximum achievable performance [Sha59b]. The idea behind the derivation
of the SPB is the following: In Section 2.3 it is described that digital channel
coding (and modulation) is the art of positioning points (which correspond to the
code vectors) in the N -dimensional channel space. The aim is to position as many
points, spend as less energy as possible and still maximize the Euclidean distance
between the points such, that after adding Gaussian channel noise, the points still
can be separated with high probability. Consequently, one important measure is
the (squared) Euclidean distance between the points and the energy of the channel
noise (i.e., the squared length of the noise vector) in the N -dimensional channel
space.

For short block lengths, i.e., few channel dimensions, there are only a few
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samples of the channel noise which contribute to the energy of the noise vector.
Thus, there are great variations of the energy of the samples from one block to the
other around the mean channel noise energy. To achieve a certain error rate after
decoding, the distance between the points has to be increased such, that the blocks
with higher noise energy still can be decoded. Therefore, less points are possible to
position or a certain error rate can only be reached for a sufficiently high channel
quality.

For larger block lengths, more samples of the channel noise contribute to the
energy of the noise vector and, thus, smaller variations around the mean channel
energy occur. In the limit of infinite block lengths, every noise vector has the same
energy. In this case, the points can be packed more densely. In the limit of infinite
block lengths, the received points all lie on a hypersphere around the sent point and
have the same distance to the sent point. One way to derive the channel capacity
of an AWGN channel is to take the available volume in the channel space which
can be used under a given power constraint and divide it by the volume of the
hyperspheres around the points.

Modeling this intuition, the SPB calculates the minimum word error probability
which theoretically could be achieved, for finite block sizes, for a given channel
coding rate and a given channel quality [Sha59b].
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Figure 3.6: The minimum required cSNR according to the SPB for varying
channel block sizes for a rate of 1/2 and code word error
probability Pw = 10−4. Additionally, the limit for infinite
block size, the Shannon bound, is depicted.

Figure 3.6 shows the minimum required channel quality for rate- 1
2 channel

coding and modulation system and a target word error rate of Pw = 10−4. The
solid line is calculated using the exact derivation and the dashed line uses an
approximation which holds for larger block lengths [DDP98]. The exact derivation
would be too complex to be calculated for large block lengths. Additionally, the
limit for infinite block size, i.e., the Shannon bound is depicted.

The SPB proves that codes with short block lengths (i.e., N = 10) cannot
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Chapter 3 – Performance Bounds

facilitate a transmission at Pw = 10−4 below a channel quality of cSNR|dB = 2.9 dB.
On the other hand, codes with block lengths of N = 1000 could already operate at
cSNR|dB = −1.9 dB.

In [DDP98], the performance of several channel codes ranging from very short
codes such as Hamming codes to very long codes such as Turbo codes is depicted
and compared to the SPB of the corresponding block size. The very interesting
result is, that all good codes are very close to the SPB of their block size. The
performance gain of, e.g., Turbo codes compared to Hamming codes is not due to
the different design, but due the ability to allow decoding at a reasonable complexity
and, thus, allow for longer block lengths.

The SPB is a very descriptive method to connect the error rate with the number
of input bits, the channel dimension and the channel quality. In [PPV10] a new
bound for the capacity of transmission systems with a finite number of channel
uses and given channel quality and error rate is proposed. The missing component
to construct a block size dependent OPTA is a block size dependent rate-distortion
theory, which has not been found, yet.

Another approach is published in [FRW07] where for transmission systems using
only continuous-amplitude operations, a similar effect as in the derivation of the
SPB is shown, where an increased performance for longer block lengths can be
observed.

In [ILZF08] another completely different approach is proposed to calculate
OPTA for finite block sizes. Here, a different entropy, namely the Rényi information
measure is used, which unlike the “normal” entropy is dependent on the block
size. The derivation is only valid for high-SNR channels and high resolution source
representations. Figures 3.7a and 3.7b show the difference of OPTA in (3.49) for a
Gaussian source transmitted over a power constrained AWGN channel with the
squared error distortion measure to the new bound in [ILZF08]. The bounds are
calculated for rates of M

N
= 1

2 and M
N

= 1
10 and to meet the high-SNR requirement,

a channel quality of cSNR|dB = 100 dB.
Both figures indicate that the bound obtained in [ILZF08] yields lower values as

OPTA, especially for small block sizes and low rates (Figure 3.7b). This underlines
the effect described by the SPB of Shannon, that an increased block size is necessary
to yield a higher potential transmission performance.
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Chapter 4

Compander and Space Filling Curves

4.1 Introduction

In this chapter, compander and space filling curves are considered. A compander
consists of a compressor and an expander which usually are nonlinear functions
with a scalar input and a scalar output. These functions can be generalized to
operate on vectors, also with different input and output dimensions. A space filling
curve describes the resulting subspace in the channel space when applying, e.g., a
compressor or another (non)-linear function to all admissible source symbols.

In general, any transmission system which operates on continuous-amplitude
source symbols and outputs continuous-amplitude channel symbols can be described
by a nonlinear function (e.g., a compander), but usually the word “compander” is
only used in the 1:1 case (i.e., one channel symbol for one source symbol).

Nonlinear functions with more than one output symbol per input symbol may
provide a means of error protection to combat channel noise (Section 2.4.2). One
very beautiful example is the Archimedes spiral [FR06,RSV10a] which maps one
source symbol to two channel symbols. A variant of the Archimedes spiral which
yields, independent of the source probability density function (pdf), the same output
power as the input power for each symbol, has been used to protect the prediction
error in a speech encoder [HV06].

Other systems which provide more than two channel symbols per source symbol
are, e.g., curves on a sphere [CTC13,VC03] or orthogonal polynomials [WSR09].
Unfortunately, the gap to Optimum Performance Theoretically Attainable (OPTA)
grows with an increased number of channel symbols per source symbol.

In this chapter, some examples of nonlinear functions are described and their
performance is assessed. First, in Section 4.2 the system model using nonlinear
functions as a compressor and an expander is introduced. Then in Section 4.3, the
scalar 1:1 case for different source pdfs is investigated using a numerical optimization
of the compressor and expander function to maximize the pSNR. In Section 4.4,
first, two variants of the Archimedes spiral are compared and then a numerically
optimized mapping is generated and assessed.
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Chapter 4 – Compander and Space Filling Curves

4.2 System model
A continuous-amplitude mapping of the source symbol u to the channel vector y

can also be described by a compressor function. The inverse process, namely the
mapping of the noisy received value z to the estimated symbol û consequently is an
expander. A compander (compressor and expander) is typically used in the context
of scalar values in which the source and the channel symbols are scalars and hence
the compressor function y = g(u) and the expander function û = h(z) are one-
dimensional functions. The case of mappings which add redundancy (N > M), e.g.,
for N = 2 and M = 1 can also be described by a compander. As the compressor, N
one-dimensional compressor functions yi = gi(u), 1 ≤ i ≤ N are used for mapping
the source symbol to the entries yi of the channel vector y. The compressor
functions can be combined to y = g(u). The expander is a single function with N
input variables and one scalar output variable û = h(z). This concept can be easily
generalized to higher-dimensional source symbols, but this is not considered here
for simplicity. The whole transmission system with a compressor and an expander
is depicted in Figure 4.1. Here, the aim of the compander system is achieving the

u
1×1

Compressor
y = g(u)

Expander
û = h(z)

n

û
y

1×N

z

Figure 4.1: General transmission system with compressor and expander
function for scalar source symbols.

lowest possible Mean-Square Error (MSE) D between the source symbols u and
the estimated symbols û while using as little average power P for transmission as
possible.

The average power P for transmission depends on the compressor function and
the source pdf:

P (g) = 1
N
· E{||y||2} = 1

N
· E{yyT} = 1

N
·
∫

g(u) · g(u)T · p(u) du. (4.1)

The MSE is additionally a function of the expander and the pdf of the noise n:

D(g, h) = E{(u− û)2}

=
∫

RN

∫
(u− h (g(u) + n))2 · p(u) · p(n) du dn. (4.2)

With the power of the source symbols, the pSNR can be stated as:

pSNR = E{u2}
D(g, h) . (4.3)
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4.3 1:1 Mapping

4.3 1:1 Mapping
With 1:1 mappings, M = 1 source symbol u is mapped to N = 1 channel symbol y.
Nonlinear mappings may lead to a superior performance than linear mappings. Since
closed form expressions are not known for most source distributions, a numerically
optimized compressor and expander is presented.

4.3.1 Numerically Optimized Mappings
For most source distributions, an optimal compressor and expander cannot be
derived analytically. Therefore a numerical optimization has to be applied. The
numerical iterative approach proposed in [Aky11, ARR10] is considered in the
following. After an initialization of the compressor, the optimal expander can be
stated as the Minimum Mean-Square Error (MMSE) estimator. Then, given this
expander, the optimal compressor can be calculated using a numerical optimization
method. Then again, the first step is repeated to find the optimal expander. This
process is repeated until convergence is reached.

In the Appendix A, the expressions needed for this optimization are derived.
The optimal expander for a given compressor is stated in Section A.2 as (A.6). To
optimize the compressor for a given expander (Appendix A.3.2), the transmission
power on the channel and the resulting overall MSE have to be jointly minimized.
This joint minimization is facilitated with a Lagrangian cost functional (A.10) using
the steepest decent method. Therefore, the derivative of the functional with respect
to each discretized point on the compressor function is calculated (A.24) and the
minimization of the cost functional is achieved by following the derivative (A.25).

For the case of M = 1 and N = 1, the minimization of the cost functional
is a convex problem [AVRR13], hence, the initialization of the compressor is of
minor importance. Here, a linear compressor is used in the first step which is also
motivated by the observation that for any source pdf and bad channels, a linear
compressor is the optimal compressor anyways [AVRR13].

4.3.2 Simulation Results
In the subsequent sections, the optimal compressor and expander pairs and simula-
tion results for the 1:1 case, the Additive White Gaussian Noise (AWGN) channel
and for different source pdfs are given. Figure D.1 in the Appendix shows the
employed source pdfs for convenience.

Gaussian

One well known and yet surprising result from information theory is that uncoded
transmission of Gaussian symbols over an AWGN channel is optimal. Thus, in
the case of M = 1 and N = 1 a linear compressor and a linear estimator which
can be derived using the Linear Minimum Mean-Square Error (LMMSE) yield
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Chapter 4 – Compander and Space Filling Curves

optimal performance. The performance of an LMMSE estimator as the expander
for a linear compressor is the same as for a purely linear transmission system such
as Linear Analog Block Codes (LABCs) which is calculated in (3.29):

pSNRLABC,LMMSE,max = 1 + cSNR. (4.4)

The same performance is predicted as the OPTA in (3.49). Thus, the optimal
compressor and expander pairs for a Gaussian source pdf are well known to be just
linear functions.

Uniform

For source samples with a uniform source pdf, no closed form solution is known,
therefore, a numerical optimization is applied. Figure 4.2 shows the resulting
compressor and expander functions for different channel qualities. Also the linear
compressor and expander are shown for comparison. The compressor functions in
Figure 4.2a do not deviate significantly from the linear function. For cSNR|dB =
0 dB, the compressor function first bends a little upwards and for higher values
downwards. Interestingly, for higher channel qualities (cSNR|dB = 30 dB), this
effect is inverted, first the compressor function bends down a little and then tilts up
for higher signal values. At around cSNR|dB = 10 dB, the result of the numerically
optimized compressor is very close to a linear compressor.

The expander functions in Figure 4.2b show the typical behavior of an MMSE
estimator. For low channel qualities, the noise significantly increases the power of
the received values and, thus, the range of the received values z is increased. The
MMSE estimator reduces the influence of the noise by nonlinearly damping the
received values by smoothly limiting the range of û to the range of the sent values
u. Additionally, the effect of the compressor is inverted.

Figure 4.3a shows the performance of different compander systems. The first
two systems employ a linear compressor and either a linear (LMMSE, (3.29))
or a nonlinear (MMSE) expander. The third line depicts the performance of a
system using the optimized compressor and expander functions. The theoretical
performance limit OPTA for a uniform source distribution (see Section 3.5) is shown
for comparison. At first sight, all systems do not differ significantly in performance
but exhibit a significant gap to OPTA.

Figure 4.3b shows the gain of the MMSE and the optimized system in comparison
to the LMMSE solution. The maximum gain of the MMSE system is around 0.37 dB
at cSNR|dB = 9 dB while the gain approaches 0 dB for lower and higher channel
qualities. The effect at lower channel qualities is due to the optimality of linear
systems at low channel qualities and at higher channel qualities where the MMSE
estimator converges to the linear estimator. The optimized compressor and expander
supersede the MMSE solution and show a constant gain at high channel qualities.
Here, the gain approaches 0.4 dB which is maintained for rising channel qualities.
Interestingly, this gain over the MMSE solution is caused only by the small tilt of
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4.4 1:2 Mapping

the compressor curve in comparison to the linear compressor (Figure 4.2a). Yet,
the gain of this system does not approach OPTA which is around 1.5 dB away from
the LMMSE estimator for high channel qualities (Figure 3.4 in Section 3.5).

Laplace

As for source symbols with a uniform pdf, also for Laplacian source symbols a
numerical optimization is applied. The pdf of Laplacian source symbols (Figure D.1)
contains many symbols with low absolute values and a long tail at larger absolute
values. Therefore the range of the source symbols is significantly larger than for
source symbols with a uniform pdf. These properties of the Laplacian pdf also
impact the optimized compressor in Figure 4.4a. For cSNR|dB ≥ 10 dB, small values
with high probability of occurrence are stretched apart (small bump for |u| < 2) to
increase the robustness and larger values are shifted to smaller values to compensate
for the higher power needed for the stretched values. The expander in Figure 4.4b
inverts this process while considering the different strength of the channel noise.
The performance of different compander system is shown in Figure 4.5a. As for the
uniform case, the linear system with an LMMSE estimator, the MMSE estimator
with a linear compressor and the system with optimized compressor and expander
show comparable performance while OPTA for the Laplacian source is not reached.
Figure 4.5b shows the gain of the MMSE estimator and the optimized system in
comparison to the LMMSE estimator. Also here the MMSE estimator exhibits
a peak of the gain at around cSNR|dB = 3 dB of 0.23 dB. For lower and higher
channel qualities the gain converges to 0 dB. Again the numerically optimized
compander supersedes the MMSE solution for all channel qualities and achieves
a constant gain of around 0.26 dB for rising channel qualities. All in all, the
optimized system shows comparable properties as shown in the uniform case, but
for a Laplacian source, the achievable gains are even smaller. Yet, the gain of
this system also does not approach OPTA which is around 0.6 dB away from the
LMMSE estimator for high channel qualities (Figure 3.4 in Section 3.5).

4.4 1:2 Mapping
With 1:2 mappings, M = 1 source symbol u is mapped to N = 2 channel symbols y1

and y2. The motivation is to exploit the potential pSNR improvement enabled by the
additional channel use which can be used for additional redundancy. The optimum
achievable pSNR for a fixed channel quality cSNR is given by OPTA in Section 3.4
and is significantly higher than using just one channel symbol for one source symbol
(1:1). All 1:2 mappings can be described by two 1:1 compressor functions as used
in the previous section. There exist an infinite number of continuous-amplitude 1:2
mappings whose performance cannot be predicted without numerical simulations.
In the following two different approaches will be described. The first approach uses
compressor functions which can be described and parametrized analytically. Two
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Figure 4.2: Optimized compressor and expander with M = 1 and N = 1
for a uniform source pdf for different channel qualities.
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Figure 4.3: Performance and gains of different compander systems with
M = 1 and N = 1 for a uniform source pdf.
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variants of spirals are presented. The second approach uses numerically optimized
compressor functions.

4.4.1 Archimedes Spirals
This 1:2 mapping is described by two compressor functions g1 and g2 as in the
previous section for the 1:1 case. The compressor functions can be parametrized and
described analytically, but even for a fixed power of the source symbols E{u2} = 1,
depending on the pdf of the source symbols, the power after the usually nonlinear
mapping g̃1|2 cannot be stated analytically. Hence a normalization factor d is used
to ensure E{y2

1|2} = 1:

y1 = g1(u) = d · g̃1(u), (4.5)
y2 = g2(u) = d · g̃2(u), (4.6)

d = 1√
1
2 · E {g̃1(u)2 + g̃2(u)2}

. (4.7)

Very common and beautiful 1:2 mappings are spirals. The Archimedes spiral has
been introduced in [FR06]. Later, it was shown that spiral-like structures emerge
after using a numerical optimization for 1:2 mappings [FRW07]. The Archimedes
spiral used here has the property that any two source symbols which have the
same Euclidean distance in the source space exhibit the same Euclidean distance in
the channel space, walking along the spiral (hence, this type of Archimedes spiral
is denoted “equidistant Archimedes spiral” in the following). This is desirable
to achieve statistical independence between the channel noise and the source
symbols [FR06]. The Archimedes spiral is parametrized with ∆ which leads to
denser spirals with smaller ∆:

g̃1(u) =
√

∆ · |u|
0.16 · π2 · sign(u) · cos

(√
|u|

0.16 ·∆

)
, (4.8a)

g̃2(u) =
√

∆ · |u|
0.16 · π2 · sign(u) · sin

(√
|u|

0.16 ·∆

)
. (4.8b)

Another variant of the Archimedes spiral is proposed in [HV07]. This 1:2 mapping
can be interpreted as a mapping from a real to a complex value while the absolute
value is kept constant, but the phase is modified according to the input value.
A parameter c varies the density of the spiral with denser spirals for smaller c.
Therefore this spiral is called amplitude/phase spiral in this work. The advantage
of this mapping compared to the equidistant Archimedes spiral is the independence
of the output power from the input pdf. This is especially useful in case of unknown
densities with a given power when a normalization after the mapping should be
avoided. In [HV07] this spiral is used in the context of a predictive speech codec
for the analog transmission of the residual signal.
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4.4 1:2 Mapping

The definition of the amplitude/phase spiral is as follows with the density
parameter c:

g̃1(u) = u · cos
(
|u|
c

)
, (4.9a)

g̃2(u) = −u · sin
(
|u|
c

)
. (4.9b)

In Figure 4.6 the space filling curves of these two approaches are compared. An
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Figure 4.6: Comparison of the equidistant Archimedes spiral and the
amplitude/phase spiral with uniform source pdf.

input signal with uniform pdf with E{u2} = 1 and, thus, −
√

3 < u <
√

3 is encoded
and the resulting channel values are depicted. At some channel symbols, their
corresponding source value is annotated. In Figure 4.6a, the equidistant Archimedes
spiral is depicted. The Euclidean distance between the channel symbols (walking
along the spiral) is in accordance to the Euclidean distance of the corresponding
source symbols. The amplitude/phase spiral in Figure 4.6b exhibits much denser
symbols at low channel values which increase the decoding errors since after
transmission over a noisy channel, these symbols are harder to separate.

Figure 4.7 shows the performance of the equidistant Archimedes spiral and
the amplitude/phase spiral for uniform and Gaussian source pdfs and different
spiral densities. For these simulations, the expander which converts the received
noisy channel symbols z to the source estimate û is a Maximum Likelihood (ML)
estimator.

For both pdfs, it can be seen that the equidistant Archimedes spiral exhibits a
superior performance. For example, the equidistant Archimedes spiral with ∆ = 0.2
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Figure 4.7: Performance of equidistant Archimedes spiral and ampli-
tude/phase spiral. Linear mapping with LMMSE estimator
for comparison.
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shows the same high-cSNR performance as the amplitude/phase spiral with c = 0.1,
but the waterfall region is at a cSNR which is 5.5 dB lower. The gain in pSNR is
especially prominent for dense spirals as, e.g., the ones with ∆ = 0.05 and c = 0.1.
It seems that the equidistance property of the equidistant Archimedes spiral leads to
the superior performance compared to the amplitude/phase spiral. For comparison
a linear compressor and expander with LMMSE estimation is depicted. For channel
qualities above the waterfall region, the performance of all spirals is superior to the
linear solution.

The performance of the overall 1:2 compressor and expander system depends
not only on the compressor function, but also on the employed expander function.
The expander can be designed using different statistical estimators as, e.g., ML,
LMMSE or MMSE estimators. The LMMSE estimator is usually just defined
for linear systems, but for nonlinear systems a concatenation of the LMMSE
(as a preprocessing) and an ML estimator can be used (see Section 6.3.3 and
[FVACGF13]). Figure 4.8 shows the performance of the different estimators for
an equidistant Archimedes spiral with ∆ = 0.3 and a uniform and a Gaussian
source pdf. As expected, the performance of the ML estimator is the worst of all
employed estimators. Since the source statistics and the channel quality cannot be
considered during the estimation, the performance only show marginal differences
for both source pdfs. The LMMSE estimator which has knowledge of the cSNR
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increases the performance, especially for low channel qualities and ensures a pSNR
which is always higher than 0 dB. Again, the performance is independent of the
source statistics. The MMSE estimator achieves a further performance gain, also
here particularly for the low channel qualities. This effect for an Archimedes
spiral is also shown in [RSV10a]. Since the MMSE estimator also incorporates
the source statistics, the performance is different for uniform and Gaussian source
pdfs. Since the Gaussian distribution is the hardest to estimate [CT06], the system
with a uniform source pdf exhibits a higher performance than the Gaussian system.
For high channel qualities, the performance of all estimators converges and in
the uniform case, the pSNR is around 0.4 dB higher as for the Gaussian case.
Considering the complexity and the performance of the employed estimators the
most feasible solution probably is the LMMSE estimator.

4.4.2 Numerically Optimized Mappings
In the previous section different nonlinear 1:2 compressor functions which can be
analytically described have been analyzed. In the following, a numerically optimized
compressor is proposed which leads to a superior performance.

Problem Formulation

As in the 1:1 case, also in the 1:2 case an optimal compressor and expander pair is
not known for any given source distribution. Therefore a numerical optimization
has to be applied. The same approach as in Section 4.3 is employed which has been
proposed in [Aky11,ARR10].

In the Appendix A, the expressions needed for the optimization are derived.
The optimal expander for a given compressor is stated in Section A.2 as (A.7). To
optimize the compressor for a given expander (Appendix A.3.1), the transmission
power on the channel and the resulting overall MSE have to be jointly minimized.
This joint minimization is facilitated with a Lagrangian cost functional (A.10) using
the steepest decent method. Thus, the derivative of the functional with respect to
each discretized point on the compressor function is calculated ((A.18) and (A.19))
and the minimization of the cost functional is achieved by following the derivatives
(A.20) and (A.21).

Challenges

Unlike as in the 1:1 case, the optimization problem is not convex anymore. Thus,
the cost functional (A.10) exhibits local minima and the initialization is of crucial
importance. If an optimized mapping is sought for several channel qualities, often,
a heuristic approach for the initialization is used: The outcome of the optimization
for a bad channel quality is used as the initialization for the mapping for a higher
channel quality. This “noisy relaxation” is motivated by the observation that the
mappings only gradually change for rising channel qualities. The problem of the

50



4.4 1:2 Mapping
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(a) cSNR|dB = 5.5 dB, pSNR|dB = 10.2 dB.
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Figure 4.9: Numerically optimized compressor and expander. The spiral
depicts the compressor y1|2 = g1|2(u) for |u| ≤ 2.5 and the
colors depict the expander, which corresponds to the source
estimate û for received values z1 and z2.
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Chapter 4 – Compander and Space Filling Curves

initialization for the first channel quality (the worst considered channel quality)
remains. In total, even after achieving a seemingly nice and well performing
mapping, the question remains if this mapping is a global optimum. Furthermore,
the steepest decent method used here is extremely sensitive to the optimization
parameters such as the resolution of the discretization of the source and channel
symbol range or the thresholds for switching between optimizing the encoder or
the decoder.

Simulation Results

In this section the results for a numerically optimized compressor and expander
are presented. A Gaussian source is assumed while for the optimization of the
compressor, while values above |u| = 2.5 are omitted. The optimization is initialized
with an Archimedes spiral with ∆ = 2 at cSNR|dB = 5.5 dB. The outcome of one
optimization is used for the next higher channel quality (noisy relaxation). As
the expander an MMSE estimator is employed. To calculated the expander, the
compressor function is linearly extrapolated to allow for a larger source range.

Figure 4.9 shows the result of the optimization for two channel qualities
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Figure 4.10: Performance of the numerically optimized mapping and an
equidistant Archimedes spiral with MMSE estimator and
different densities for Gaussian source symbols. Lower ∆
correspond to smaller distances between the spiral arms which
lead to a better pSNR at high channel qualities.
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4.5 Discussion

(cSNR|dB = 5.5 dB and cSNR|dB = 11.6 dB). The black curve is the compres-
sor function, while source symbols above |u| = 2.5 are omitted. 50 circles are drawn
for each increment of 0.1. It is interesting to note that the equidistance property
also holds for the numerically optimized compressor. The curve which emerges after
the numerical optimization resembles a spiral, yet its shape is not the same as the
Archimedes spiral. The arms of the spiral for the better channel are closer together
than the arms of the spiral for the worse channel and the equidistant symbols are
further apart which leads to a higher pSNR.

The expander, i.e., the MMSE estimator, is depicted for each symbol z1 and z2

which could possibly be received after transmission over an AWGN channel. The
value for the estimate û of the expander is identified by different colors. Between
the arms of the spiral, a transition region between the corresponding values of
each arm occurs. For a higher channel quality, the transition is more abrupt,
since the estimator relies more on the received symbols than the a-priori known
source statistics. This observation has already been made for Archimedes spirals
in [RSV10a].

To evaluate the performance of the optimized mapping, Monte Carlo simulations
are employed. A Gaussian source is used while values exceeding the range of the
compressor are clipped, but the distortion in MSE is still calculated using the
original source symbols. The performance of the optimized mapping is depicted in
Figure 4.10. For comparison, the performance of several equidistant Archimedes
spirals with different densities and MMSE estimators are shown. The numeri-
cally optimized compressor and expander exceeds the performance of the all the
Archimedes spirals by approximately 0.7 dB in terms of pSNR. The gap to OPTA
at cSNR|dB = 10 dB has shrunk to 2.4 dB in terms of cSNR and 4.28 dB in terms
of pSNR.

4.5 Discussion

For several scenarios, nonlinear compander and space filling curves achieve a gain
compared to linear mappings. In case of the 1:1 mapping and a uniform source
distribution a maximum gain of 0.4 dB in terms of pSNR is achieved. For a
Laplacian distribution, the gain is smaller and for a Gaussian source, a linear
mapping is already optimal. Closed form solutions for the compressor and expander
functions are not known, hence, numerical optimization is necessary. Fortunately,
in case of the 1:1 mapping, the problem is convex and therefore optimal solutions
are found using, e.g., steepest decent methods.

In case of higher-dimensional mappings (1:2), two variants of the Archimedes
spiral are compared which both can be described analytically. The Archimedes
spiral with equidistant symbols exhibits a superior performance than the spiral
which has the same output and input power for each symbol. Both variants are
superior to a linear transmission system. The same numerical optimization as
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Chapter 4 – Compander and Space Filling Curves

above is applied to the 1:2 case and here a gain of 0.7 dB in terms of pSNR over
the equidistant Archimedes spiral can be achieved. In contrast to the 1:1 case, the
numerical optimization algorithm has to solve a non-convex problem which greatly
increases the sensitivity to the initialization and other simulation parameters and
additionally does not guarantee finding the optimal solution.

The numerically optimized mappings exhibit a slightly higher performance than
analytically describable mappings, but the question remains if a gain of 0.4 dB (1:1
case) or 0.7 dB (1:2 case) can justify a complex offline optimization and a higher
complexity due to the necessary lookup tables during transmission.

In theory, higher gains are expected for higher-dimensional mappings in which
vectors of source symbols are nonlinearly mapped to vectors of channel symbols
[FR07]. So far, conventional optimization approaches have lead to unsatisfactory
results, e.g., for the 1:3 case in [FRW07]. Therefore, other numerical optimization
strategies such as, e.g., deterministic annealing [MAR13] are promising candidates
to optimize more complex mappings with longer block lengths.
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Chapter 5

Analog Modulo Block Codes

5.1 Introduction

In Section 3.2 and in [RSV09], the performance of Linear Analog Block Codes
(LABCs) has been derived. A source vector is multiplied with a non-square matrix
to generate more channel symbols than source symbols to exploit the available
channel uses to increase the performance. As already argued in Section 2.4.2, a
purely linear encoding system cannot attain capacity when using redundancy, which
is demonstrated by the poor performance of LABCs. The linearity of the LABCs is
the limiting factor to achieve a higher performance (Section 2.4.2). In this chapter,
a nonlinear modulo operation is appended to the matrix multiplication and the
resulting Analog Modulo Block Codes (AMBCs) are analyzed.

Continuous amplitude systems employing similar operations such as a modulo
operation are known in literature. E.g., in [TK12] systems similar to AMBCs
operating with just one source symbol, called shift maps, are proposed. A com-
bination of the shift maps with a spherical mapping are introduced in [VC03].
Another system first quantizes one source symbol and uses the quantized value as
a channel symbol. Then it repeatedly quantizes the quantization error from the
last quantization to generate more channel symbols. In the end the quantization
error itself is transmitted as one channel symbol [KR09].

In this chapter, the approach of multiplying the source vector with a non-square
matrix and applying a modulo operation to the result is proposed. It offers more
degrees of freedom than the above mentioned systems, since several source symbols
can be combined to one code vector to potentially improve the overall performance
compared to single symbol systems.

In Section 5.2 the system model of AMBCs is introduced. The analysis in
Section 5.3 reveals that after a rotation of the generated code vectors, discrete-
valued (discrete part) and continuous-amplitude (analog part) dimensions emerge.
The code vectors in the discrete part form a regular lattice which can be exploited
for the design of efficient decoders (Section 5.4). The question how to design the
new codes is tackled in Section 5.5 while many supporting simulation results are
presented.

Most of the results described in this chapter are based on [Sch13] and [SRV15].
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5.2 System Model
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Figure 5.1: System model of an AMBC.

Figure 5.1 shows the system model of AMBCs. A source vector u with dimen-
sions 1×M is multiplied with a real-valued code (generator) matrix A ∈ RM×N

leading to the auxiliary vector ẏ:

ẏ = u ·A. (5.1)

This part of the transmitter strongly resembles an LABC (Section 3.2). The
necessity of nonlinear operations to improve the performance compared to purely
linear transmissions systems is already stated in Section 2.4.2, thus, the AMBCs
employ a modulo operation as the nonlinearity.

A special modulo operation smodm(·) is employed which is defined in (5.2) and
visualized in Figure 5.2. It is applied to each element of ẏ to yield y. The modulo
operation generates output values in the range of (−m,m) and is symmetric around
0 (hence, “smod”):

smodm(y) =
(
(y +m) mod 2m

)
−m. (5.2)

To ensure unambiguousness, in this work the range of the input values u is limited

−2m 2m

−m

m

y

smodm(y)

Figure 5.2: Modified (symmetric) modulo function.

to (−m,m) and a systematic coding matrix is used, i.e., part of A is an identity
matrix:

A = [1 Ã]. (5.3)

The whole encoding operation can be stated as:

y = smodm(ẏ) = smodm(u ·A) . (5.4)
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5.2 System Model

The first M entries of ẏ are not affected by the modulo operation, since the input
values of u are limited to (−m,m) and the first M columns of A are formed by
an identity matrix. A transmission with A0 as the code matrix and m0 as the
parameter for the modulo operation is equivalent to employing A = 1

m
A0 and

m = 1, since the power of the channel symbols y is considered for evaluating the
channel quality cSNR. In the following, without loss of generality,

m = 1 (5.5)

is employed for simplicity, but in many derivations m is explicitly stated to keep
track of its influence.

After encoding, the channel symbols y are transmitted over an Additive White
Gaussian Noise (AWGN) channel which adds white Gaussian noise n to yield the
received vector z. A decoder generates an estimate û of the initially sent source
symbols u.

As a quick glance at the effect of encoding AMBCs, two examples are given in
the following. Figure 5.3 depicts the valid code vectors of an AMBC with A = [1 2],
i.e., of a [1 2]-AMBC. The range of the input values is (−1, 1) and m = 1. The
first dimension y1 of the channel vector is equivalent to the scalar source symbol u
while y2 = smod1(2 · u) is a scaled version (factor of 2 in u direction) of the modulo
function in Figure 5.2. In total, three parallel arms form the channel space of this
code. The box which encloses the valid code vectors is called unit hyper cube.

−1 0 1

−1

0

1

y1

y
2

Figure 5.3: Valid code vectors of the [1 2]-AMBC.

Figure 5.4 visualizes the valid code vectors of the [1 2 3]-AMBC. Here, three
channel uses are employed and therefore a 3-dimensional channel space1 is plotted
in Figure 5.4a. The correspondence of the input values u to the channel symbols is
visualized by their color. Again, a structure of five parallel arms emerges which

1The N-dimensional channel space consists of all points which can be described by an
N-dimensional channel vector y.
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Figure 5.4: Valid code vectors of the [1 2 3]-AMBC. The color of the
points in (a) denotes the corresponding input value u. Subfig-
ure (b) shows a rotated version of the valid code vectors which
is referred to as the discrete part.

all fit into the unit hyper cube with a maximum absolute value of m = 1 in each
dimension. Rotating this structure appropriately yields Figure 5.4b in which the
3-dimensional arms are projected to points in a 2-dimensional plane.

As already stated in Section 2.4, in nonlinear analog transmission systems,
discrete and continuous-amplitude dimensions emerge. Here, the discrete dimensions
are called “discrete part” of the AMBC and the continuous-amplitude dimensions
“analog part”. The points observed in Figure 5.4b are be denoted “discrete points”
of the AMBC and will play an important role in the analysis of the codes.

5.3 Analysis

In the following sections, systematic AMBCs as defined in (5.3) are analyzed. A
rotation matrix G is derived from the code matrix A in Section 5.3.1 which allows
to align the arms with the coordinate axis as in Figure 5.4b. This is especially
useful as shown in Section 5.3.2 to enable the independent analysis and decoding
of the discrete and the analog part of the code vectors. The emerging lattice in the
discrete part is described in Section 5.3.3. For high channel qualities (cSNR), the
discrete part can be decoded with negligible errors. In Section 5.3.4 it is shown
how the high-cSNR performance of an AMBC can directly be derived from the
code matrix A.
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5.3 Analysis

5.3.1 Rotation Matrix
The analysis and also the decoding of AMBC makes use of a rotation matrix,
while the rotation is conducted by multiplying the code vectors with the matrix
G ∈ RN×N . This matrix rotates the arms (Figure 5.4a) forming the valid code
vectors such, that they are in parallel to the coordinate axis (Figure 5.4b). Arms
in parallel to the coordinate axis are achieved if a multiplication of the code matrix
A with the rotation matrix G yields zeros in the last D (5.28) dimensions of the
resulting matrix:

A ·G = P =
[
P̃ OM×D

]
, (5.6)

with the zero matrix O with dimension M×D.
Since G is a rotation matrix, it is orthogonal (GT ·G = 1⇔ GT = G−1) and

it holds:

A = P ·G−1 = P ·GT (5.7)
⇒ AT = G · P T. (5.8)

The matrices G and P are usually ambiguous for a given matrix A. One possibility
to obtain a rotation matrix is the QR decomposition2of AT to Q and R:

AT = Q ·R ⇒ A = RT ·QT. (5.9)

The matrix R ∈ RN×M is an upper right triangle matrix and Q ∈ RN×N is an
orthogonal rotation matrix.

The rotation matrix G and the matrix P are defined as follows from the result
of the QR decomposition:

G = Q, (5.10)
P = RT. (5.11)

In the following, it is elaborated why a QR decomposition is especially suited for
finding an appropriate rotation matrix. It decomposes the matrix A into a rotation
matrix with dimension N ×N and a matrix which consists of zeros outside of the
leftmost square region with dimension M ×M (Equations (5.9) and (5.6)):

A = P ·GT =
[
P̃M×M OM×D

]
·GT. (5.12)

Thus, the effect of multiplying any vector with A is decomposed into two steps.
The first step is to multiply the vector with P̃ and add D dimensions which are set
to 0. The second step rotates the result with GT.

2The complete QR decomposition is employed, which yields a Q with dimension N×N .
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For analysis or decoding purposes, the last step, i.e., the rotation, can be
undone by applying the transposed GT which again is the original rotation matrix
G =

(
GT)T:

A ·G = P ·GT ·G = P =
[
P̃ OM×D

]
. (5.13)

Due to the modulo operation, the source symbols are distributed across parallel
arms (Figure 5.3), and the (back) rotation using G aligns them with the coordinate
axis.

Thus, any decomposition of A which yields a rotation matrix and a matrix with
zeros outside the M ×M square can be used for finding an appropriate rotation
matrix for analysis and decoding.

Using the Singular Value Decomposition

Another method to obtain the matrices G and P is the Singular Value Decomposition
(SVD) [GVL96]:

A = U ·Σ · V T (5.14)

with

U ∈ RM×M , Σ ∈ RM×N , V ∈ RN×N . (5.15)

The matrices U and V are orthogonal and, thus, act as rotation (and/or mirror)
matrices. The matrix Σ is composed of a diagonal matrix and a zero matrix. The
diagonal entries γ1 ≥ γ2 ≥ . . . γM ≥ 0 are the singular values of A:

Σ =
[
Σ̃ OM×D

]
with Σ̃ =




γ1 0 . . . 0
0 γ2 . . . 0
...

...
. . .

...
0 0 . . . γM



. (5.16)

The rotation matrix G and the matrix P are chosen as follows from the result
of the SVD decomposition:

G = V , (5.17)
P = U ·Σ. (5.18)

From (5.16) it can easily be seen that P is zero outside a square region with
dimension M ×M .

The pseudoinverse

A+ = AT ·
(
A ·AT)−1 with A ·A+ = 1 (5.19)
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of A = U ·Σ · V T can be calculated using the results from the SVD:

A+ = V ·Σ+ ·UT with Σ+ =

[
Σ̃−1

O

]
. (5.20)

5.3.2 Rotated Code Vectors – Discrete and Analog Part
Valid code vectors can be described using the modulo operation (5.4), but also
by adding a scaled vector s consisting of integers to the argument of the modulo
operation:

y = smodm(u ·A) = u ·A + 2m · s, (5.21)

with the jump vector

s = −
⌈

u ·A
2m

⌋
∈ Z1×N . (5.22)

The jump vector s results directly from the modulo operation, while the notation d·c
denotes rounding the argument element-wise to the nearest integer.

After transmission of y over an AWGN channel with additive noise n the
received vector z may be described as follows:

z = y + n = smodm(u ·A) + n = u ·A + 2m · s + n (5.23)
(5.7)= u · P ·GT + 2m · s + n, (5.24)

and after rotating with G, the vector zrot is given as:

zrot = z ·G = u · P ·GT ·G + 2m · s ·G + n ·G (5.25)
= u · P + 2m · s ·G + nrot, (5.26)

with nrot = n ·G.
After the rotation, the arms in the channel space are in parallel to the coordinate

axis and therefore the points of the discrete part and the components in parallel
to the coordinate axis (analog part) can be analyzed separately. For the further
derivations, the rotation matrix G is partitioned into submatrices:

G =
[

Gan︸︷︷︸
∈RN×M

Gdis︸︷︷︸
∈RN×D

]
and Gdis =

[
G12

B′

]
with B′ = B

2m ∈ RD×D. (5.27)

The submatrix Gan influences only the analog part of the rotated code vectors (see
(5.36)) while Gdis influences the discrete part (see (5.38)). The submatrix Gdis is
further partitioned to G12 and B′, a scaled version of the base matrix B which

61



Chapter 5 – Analog Modulo Block Codes

generates a lattice in the discrete part (see Section 5.3.3). The base matrix B has
the dimension D×D which corresponds to the number of discrete dimensions:

D = N −M. (5.28)

After partitioning the rotation matrix, the code matrix A may be expressed as:

A = P ·GT =
[
P̃ O

]
·
[

GT
an

GT
dis

]
= P̃ ·GT

an. (5.29)

The rotated received vector zrot in (5.26) can also be partitioned into an analog
part and a discrete part:

zrot =
[
zan zdis

]
(5.30)

= z ·G (5.31)
= u ·

[
P̃ O

]
︸ ︷︷ ︸

P

+2m · s ·
[
Gan Gdis

]
︸ ︷︷ ︸

G

+
[
nrot,an nrot,dis

]
︸ ︷︷ ︸

n·G

. (5.32)

The rotated noise vector nrot can also be partitioned in one part which influences
the analog part and one which influences the discrete part3. Consequently, also for
the rotated valid code vectors, a discrete and an analog part can be defined:

yrot =
[
yan ydis

]
(5.33)

= y ·G (5.34)
= u ·

[
P̃ O

]
︸ ︷︷ ︸

P

+2m · s ·
[
Gan Gdis

]
︸ ︷︷ ︸

G

. (5.35)

Analog part The analog part, thus, is:

zan = z ·Gan = uP̃ + 2m · s ·Gan + nrot,an ∈ R1×M , (5.36)
yan = u · P̃ + 2m · s ·Gan ∈ R1×M . (5.37)

Discrete part For the discrete part it holds:

zdis = z ·Gdis = u ·O+ 2m · s ·Gdis + nrot,dis

= 2m · s ·Gdis + nrot,dis ∈ R1×D, (5.38)
ydis = 2m · s ·Gdis ∈ R1×D. (5.39)

Equation (5.38) and (5.39) show that the discrete part of the rotated received
vector just depends on the vector s with integer entries and the submatrix Gdis of
G. The length of the vector is D and the channel noise is expressed as nrot,dis.

3Although, the noise has the index dis, the noise itself is not discrete but continuous-
amplitude.
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5.3.3 Lattice in the Discrete Part

The discrete part of the code is a subspace of all code vectors which are perpendicular
to the arms of the code. By rotating the code vectors with Gdis, the discrete part is
in parallel to the last D dimensions. Thus, the discrete part is obtained by rotating
the code vectors and then ignoring the first M dimensions which form the analog
part.

The discrete part is crucial for the performance of AMBCs for bad channels. The
larger the Euclidean distance between the points, the more robust is the detection
of the points against channel noise (Section 2.4.4).

Figure 5.5b shows the discrete part of the code in Figure 5.5a.
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Figure 5.5: Valid code vectors of the [1 6 −20]-AMBC. Subfigure (b)
shows a rotated version of the valid code vectors which is the
discrete part.

The discrete part follows a periodic structure, a lattice. For systematic AMBCs
all valid discrete points are integer linear combinations of D base vectors.

Due to the modulo operation and the limited input range, the valid code vectors
of the channel symbols y are bordered by the unit hyper cube with an edge length
of 2 ·m. After the rotation with Gdis, the discrete points are still bordered by the
projection of the rotated version of the unit hyper cube (Figure 5.5b).

Since systematic AMBCs (A =
[
1 Ã

]
) are employed, for the first M entries

of ẏ the modulo operation has no effect (for an m greater than the absolute value
of u, which is always assumed here). Thus, the first M entries of s ∈ Z1×N (see
(5.21)) are zero, i.e.,

s =
[
O s̃

]
. (5.40)
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Hence, the discrete part of the valid code vectors can be expressed as

ydis
(5.39)= 2m · s ·Gdis (5.41)

(5.27)= 2m ·
[
O s̃

]
·
[

G12

B′

]
(5.42)

= 2m · s̃ ·B′ (5.43)
= s̃ ·B. (5.44)

All discrete points are integer linear combinations of the row vectors of B, as long
as they are within the projection of the rotated unit hyper cube (Figure 5.5b).
Thus, B is the base of the lattice describing the discrete part.

5.3.4 High-cSNR Performance

One figure of merit to compare different transmission systems is their performance
for a very good channel quality (high-cSNR). When using AMBCs with very good
channels, the power of the noise is sufficiently small to result only in negligible
numbers of decoding errors when choosing the lattice point in the discrete part.
Thus, (nearly) all arms are selected correctly at the receiver. The performance of
the transmission then only depends on the analog part of the AMBC.

Without loss of generality, in the following derivation the central lattice point in
the discrete part, i.e., the one in the origin (s = O), is considered. Then, applying
the modulo operation to ẏ = uA does not have any effect due to ‖ẏ‖∞ < m (all
entries in ẏ have absolute values smaller than m) such that y = ẏ. Consequently,
the AMBC is comparable to an LABC (Section 3.2) and a similar derivation may
be employed: For an AWGN channel, a Least Squares (LS) estimator achieves the
same performance as a Maximum Likelihood (ML) estimator [Kay93], which can be
realized by a simple multiplication with the pseudoinverse A+ of the code matrix A,
as shown, e.g., in [RSV09] for LABCs.

When applying the pseudoinverse A+ to the received noisy vector z with a
lattice point in the origin (s = O ⇒ y = ẏ), the estimated source symbol depends
on u, on the noise vector and the on pseudoinverse A+:

û = z ·A+ (ŝ=s)= (u ·A + n) ·A+ = u ·A ·A+
︸ ︷︷ ︸

1

+n ·A+ = u + n ·A+ (5.45)

⇒ û− u = n ·A+. (5.46)
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With (5.20), the pseudoinverse can be substituted by the matrices of its SVD:

E
{
‖û− u‖2

}
= E

{∥∥∥∥n · V ·
[
1M

OD×M

]
· Σ̃−1 ·UT

∥∥∥∥
2}

= E

{∥∥∥∥n ·
[
1M

OD×M

]
· Σ̃−1

∥∥∥∥
2}

=
M∑

k=1

σ2
n · γ−2

k = σ2
n ·

M∑

k=1

γ−2
k . (5.47)

The matrices V and U are orthogonal, thus, multiplying n just results in a rotation
and no change in the noise power. Thus, they can be omitted in the expectation

above. The term
[
1M

OD×M

]
deletes D out of the N dimensions of n and since the

noise power of n is distributed evenly with σ2
n per dimension over all dimensions

only M entries of n contribute to the sum. The terms γk with 1 ≤ k ≤M are the
singular values (5.16) of A and are the roots of the positive eigenvalues of A ·AT:

γ2
k = |eig

(
A ·AT, k

)
|. (5.48)

The resulting performance of an AMBC for high cSNRs is, thus:

pSNRAMBC,high-CSNR,ML =
E
{
‖u‖2

}

E
{
‖u− û‖2

} (5.49)

= M · σ2
u

σ2
n ·
∑M

k=1
1
γ2
k

(5.50)

≈ cSNR · 1
1
M

∑M

k=1
1
γ2
k

, γ2
k = |eig

(
A ·AT, k

)
|,

(5.51)

with cSNR = σ2
u

σ2
n

for σ2
u

σ2
y

= 1 which holds exactly for integer entries of A and
approximately for non-integer entries. The high-cSNR performance can be selected
arbitrarily by choosing an A with the appropriate singular values γk. However, the
performance (5.51) is only attained when the decoder chooses the correct lattice
point of the discrete part, which depends on the structure of the discrete part of
the code. Thus, the high-cSNR performance may be arbitrarily chosen, but (5.51)
only holds for high enough channel qualities.

Equation (5.51) and also its derivation resembles the performance (3.10) and its
derivation in Section 3.2.1 of LABC. The difference can be explained as follows. The
matrix P in (3.10) is normalized with (3.5) to yield a defined output power after
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the matrix multiplication. Due to the type of normalization, the sum of the inverse
eigenvalues is constant and the fraction N

M
appears in the result. For AMBCs, no

normalization occurs (just the modulo operation which can be neglected for the
performance in the high-cSNR case), the eigenvalues can be chosen arbitrarily and
therefore also the fraction N

M
does not appear in (5.51).

5.4 Decoding AMBCs
The aim of the decoder is to find the best estimate û of the initially encoded source
symbols u. In the following sections different types of decoders, tailored for AMBCs,
are presented. First a generic Minimum Mean-Square Error (MMSE) decoder is
briefly introduced in Section 5.4.1 and later the class of rotating decoders, which
benefit from the special structure of AMBCs, is presented in Section 5.4.2 with
three different variants.

5.4.1 MMSE Decoder
The Minimum Mean-Square Error (MMSE) decoder promises the smallest possible
mean-square error [Kay93] by considering the statistics of the source symbol vector u

and the noise vector n.
The MMSE estimator can be stated as the conditional expectation of the source

symbols u given the received vector z:

û = E {u|z} (5.52)

=
∫

u · p (u|z) du

=
∫

u · p (z|u) · p (u)
p (z) du

=
∫

u · p (z|u) · p (u) du∫
p (z|u) · p (u) du

. (5.53)

The complexity of the MMSE decoder is very high, since the integrals in (5.53)
have to be evaluated for each dimension M of u and their arguments have to be
calculated for each discretized point of u. Therefore, this estimator may usually
only be used for very small M .

5.4.2 Rotating Decoders
The rotating decoders are motivated by the observation shown in Figure 5.6. The
code vectors of AMBCs may be rotated with the matrix G (Section 5.3.1) to align
the arms of the code with the coordinate axis. After the rotation, the discrete
part can be decoded along the discrete dimensions (yrot,2 in Figure 5.6b), which
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are orthogonal to the arms, and the analog part along the analog dimensions (in
Figure 5.6b yrot,1) which are in parallel to the arms.

The two parts of the rotating decoder are visualized in Figure 5.7. The discrete
part first rotates the input symbols with a submatrix Gdis of the rotation matrix
G (5.38) to obtain a vector zdis only containing the discrete dimensions:

zdis
(5.38)= z ·Gdis.

Either the Discrete Maximum Likelihood (DML) or the Zero-Forcing (ZF) decoder
evaluates zdis and generates an integer estimate ˜̂s. This is concatenated with a
zero vector yielding an estimate ŝ =

[
O ˜̂s

]
of the jump vector s (5.22).

Starting with (5.23) the estimate û may be expressed in dependency of the
estimate of the jump vector and the received symbols z:

z = û ·A + 2m · ŝ ⇒ û ·A = z − 2m · ŝ. (5.54)

An ML estimate of the analog part can be achieved by using the pseudo inverse of
A. The pseudo inverse is motivated in Section 3.2.1 in Chapter 3 in the context of
linear analog transmission and is given as:

A+ = AT ·
(
A ·AT)−1

. (5.55)

With A ·A+ = 1, multiplying (5.54) with the pseudo inverse leads to

û = (z − 2m · ŝ) ·A+, (5.56)

as shown in the analog part of Figure 5.7.
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(a) Original code vectors y.

−1 0 1

−1

0

1
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y
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t,
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(b) Rotated code vectors
yrot = y ·G.

Figure 5.6: Valid code vectors with A =
[
1 3.5

]
and m = 1. The box

(unit hyper cube) visualizes the limitations by the modulo
operation and the limited range of input values.
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z
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arg min
ydis

‖zdis − ydis‖2

DML decoder

B−1 T −1 d·c T

ZF decoder

ŷdis
B−1

discrete part

˜̂s

[
O ·

] +×

2m

ŝ ++-
z

A+
û ·A û

analog part

Figure 5.7: Block diagram of rotating decoders. Two options of decoders
are depicted: Discrete Maximum Likelihood (DML) and Zero-
Forcing (ZF) decoding.

Discrete Maximum Likelihood Decoder

The aim of the decoders in the discrete part is to obtain the best ˜̂s from a received
zdis. The Discrete Maximum Likelihood (DML) decoder uses maximum likelihood
estimation in the discrete part to estimate ˜̂s. The received vector zdis is compared
to all rotated possibly sent code vectors ydis (5.39) while finding the pair with the
smallest Euclidean distance:

ŷdis = arg min
ydis

‖zdis − ydis‖2 . (5.57)

The found ŷdis can be reformulated with (5.27), (5.39) and (5.40) to the desired ˜̂s
(see also (5.44)):

ydis = y ·Gdis = 2m ·
[
O s̃

]
·
[

G12

B′

]
= 2m · s̃ ·B′

= s̃ ·B
⇔ s̃ = ydis ·B−1 (5.58)
⇒ ˜̂s = ŷdis ·B−1. (5.59)
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In total, the DML decoder, including the analog part (5.56) can be stated as (see
also Figure 5.7):

û =
(

z − 2m ·
[
O

(
arg min

ydis

‖zdis − ydis‖2
)
·B−1

])
·A+. (5.60)

This decoder does not require any knowledge about the noise and source statistics
and consequently shows a lower performance than the MMSE decoder. It is still
quite complex during runtime, since all possible ydis have to be evaluated, but
less complex than the MMSE decoder. A challenge is to find all valid ydis of the
employed AMBC, which fortunately may be done in advance. It may be noted
that with the DML decoder, the complete decoder including the analog part, does
not achieve an overall ML performance which could be achieved considering both,
the discrete and the analog part jointly. This is due to the two stage design of the
decoder. It achieves ML performance in the discrete part and then ML performance
in the analog part. However, the performance only may differ in the case when the
information of the analog part would lead to a different estimate in the discrete
part.

Zero-Forcing Decoder

The Zero-Forcing (ZF) decoder is motivated by the observation that the discrete
part of an AMBC forms a lattice (Section 5.3.3). This periodic structure can be
exploited to design a decoder with very low complexity compared to, e.g., the DML
or MMSE decoder.

In this work only systematic AMBCs are employed with a leading identity matrix
in the code matrix A =

[
1 Ã

]
and input values of u limited to (−m,m). Thus,

the modulo operation has no effect on the first M = N −D entries of ẏ = u ·A.
Therefore, only the last D entries s̃ of the jump vector s (5.22) are non-zero.

The discrete part zdis of the received vector z has the same number of entries (D)
as the non-zero part of the jump vector s̃, thus, with (5.27), (5.38) and (5.40) s̃

can be estimated as follows:

zdis = z ·Gdis = 2m ·
[
O s̃

]
·
[

G12

B′

]
+ nrot,dis (5.61)

= 2m · s̃ ·B′ + nrot,dis (5.62)
= s̃ ·B + nrot,dis. (5.63)

Multiplying with the inverse B−1 of B leads to:

zdis ·B−1 = s̃ ·B ·B−1 + nrot,dis ·B−1
︸ ︷︷ ︸

nZF

= s̃ + nZF with nZF = n ·Gdis ·B−1

⇔ s̃ = zdis ·B−1 − nZF. (5.64)
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Equation (5.64) is very similar to (5.58), if the noise is missing and the sent code
vectors are considered instead of the received code vectors:

s̃ = y ·Gdis ·B−1 = ydis ·B−1. (5.65)

In both equations, it can be noted that, using the base matrix B of the lattice,
the discrete part of the code vectors is transformed to integer values in the jump
vector. Thus, the zero-forcing decoder rounds the transformed received code vectors
zdis ·B−1 to the nearest integer to eliminate the channel noise:

˜̂s =
⌈
zdis ·B−1⌋ (5.66)

(5.38)=
⌈
z ·Gdis ·B−1⌋ (5.67)

(2.4)=
⌈
y ·Gdis ·B−1 + nZF

⌋
(5.68)

(5.65)= ds̃ + nZFc (5.69)
= ds̃ + dnZFc+ smod0.5(nZF)︸ ︷︷ ︸

‖·‖∞≤0.5

c = s̃ + dnZFc+O, (5.70)

while it has been used that the noise can be split in to an integer part and a
fractional part:

nZF = dnZFc+ smod0.5(nZF) . (5.71)

The estimation error of the jump vector for this decoder is:

˜̂s− s̃ = dnZFc =
⌈
n ·Gdis ·B−1⌋ , (5.72)

which is O for transformed noise symbols whose absolute values are smaller than 0.5
(‖nZF‖∞ =

∥∥n ·Gdis ·B−1
∥∥
∞ < 0.5). Thus, for good channel qualities, the discrete

part of AMBCs can be decoded without error and the high-cSNR performance
(Section 5.3.4) is reached.

In total, the zero-forcing decoder, including the analog part (5.56) can be stated
as (see also Figure 5.7):

û =
(
z − 2m ·

[
O

⌈
z ·Gdis ·B−1⌋]) ·A+. (5.73)

The decoder does not employ any knowledge of the noise and source statistics and
exhibits a very low complexity, since only matrix multiplications and no extensive
search operations or integrals are involved.

Zero-Forcing with Lattice Reduction Decoder

The Zero-Forcing with Lattice Reduction (ZFLR) decoder operates in the same way
as the above zero-forcing decoder but with one additional step. The zero-forcing
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decoder is based on the lattice structure in the discrete part of the AMBC. This
lattice may be described with different base matrices B. The performance of the
decoder depends on the lattice, but also on the way it is described by the base
matrix.

−1 0 1

−1

0

1

(a) Discrete part.

−1 0 1

−1

0

1

(b) Decision regions
and base vectors
without lattice
reduction...

−1 0 1

−1

0

1

(c) ... and with lattice
reduction.

Figure 5.8: Discrete part (yGdis) of a [1 2 4]-AMBC: valid code vectors
(lattice points) , decision borders of the zero-forcing
decoders, unit hyper cube and base vectors are
depicted.

Figure 5.8a shows the discrete part of a code with A = [1 2 4]. The dotted lines
describe the projection of the unit hyper cube which encloses all valid code vectors.
Figure 5.8b additionally depicts the base vectors of the base matrix B. It can be
seen, that all valid code vectors (lattice points) are integer linear combinations
of the base vectors. The borders between the decision regions of the zero-forcing
decoder are in parallel to the base vectors and exactly in the middle between the
lattice points.

A lattice reduction finds an alternative description of the same lattice using
another base matrix Bred with base vectors which are as close as possible to
orthogonal or exhibit the shortest possible difference in lengths. Here, a very
popular algorithm designed for arbitrary lattice dimensions introduced by Lenstra,
Lenstra, and Lovász in [LLL82] known as the LLL algorithm [WSJM11] is employed.
In Figure 5.8c the base vectors and their decision regions for a base matrix Bred
after lattice reduction are shown. The decision regions are a lot closer to the optimal
Voronoi region (a circle in two dimensions) than in Figure 5.8b and therefore a
better decoding performance is expected.

The transformation of the base matrix B to the reduced base matrix Bred is
conducted by multiplying with an integer unimodular matrix4 T which is derived

4The inverse of an integer unimodular matrix also has only integer entries.
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by the lattice reduction algorithm. Also the inverse of the reduced base matrix
may be expressed with T :

Bred = T ·B
B−1

red = B−1 · T−1. (5.74)

In [WSJM11]5 a comprehensive overview about the different algorithms for finding
the best T for any base matrix B is given.

The difference between the ZFLR decoder and the ZF decoder is that the base
matrix has to be transformed with T and after rounding the jump vector to the
nearest integer, the transformation has to be inverted. Thus, (5.67) and (5.73) can
be reformulated as follows (Figure 5.7):

˜̂s =
⌈
z ·Gdis ·B−1 · T−1⌋ · T (5.75)

û =
(
z − 2m ·

[
O

⌈
z ·Gdis ·B−1 · T−1⌋ · T

])
·A+. (5.76)

As the ZF decoder, the ZFLR does not require any knowledge about the statistics
of the source and noise. It exhibits the same low complexity as the ZF decoder, just
the additional multiplication with T is required. The lattice reduction to obtain
the optimal T for a given code matrix A can be conducted in advance.

5.4.3 Performance Comparison

The behavior of the different types of decoders for a [1 2 4]-AMBC are shown
in Figure 5.9. A [1 2 4]-AMBC maps M = 1 source symbol to N = 3 channel
symbols. For each possible rotated received vector z ·G in the 3-dimensional channel
space, a decoder assigns an estimate û of the sent scalar source symbol. To obtain
a 2-dimensional visualization showing only the discrete part, the 3-dimensional
channel space is sliced in parallel to the discrete dimensions. This can be done by,
e.g., setting the analog component of the rotated received vector to 0 and then
employ the decoder. The color in the figures represents the value of the estimate û
of the decoder and the black dots correspond to the rotated valid code vectors.

Figure 5.9a shows the behavior of an MMSE decoder. The channel quality is
cSNR|dB = 10 dB which corresponds to a noise standard deviation of σn = 0.3 and
a noise variance of σ2

n = 0.09. The standard deviation is depicted as the dotted
circle in the figure, while the gray circle encloses 50% of all noise symbols around
the central code vector. The MMSE estimator generates smooth transitions of the
estimated symbols between the black dots.

The DML decoder in Figure 5.9b performs ML estimation in the discrete part
of the AMBC. Thus, the discrete part of the rotated received vectors is mapped
to the valid code vector which has the smallest Euclidean distance and therefore,

5In contrast to this work, the base vectors in [WSJM11] are column vectors. Therefore, in
some derivations the expressions are transposed.
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(d) ZF with lattice reduction.

Figure 5.9: Comparison of different types of decoders for a [1 2 4]-AMBC.
The estimate û for a wide range of possible received rotated
vectors z ·G with an an analog part set to 0 is depicted.

many received vectors are assigned to the same code vector. The ensemble of these
vectors are denoted “decision region” and the edge between the decision regions
“decision borders”. For a DML decoder, these decision regions have different and
partially very complex shapes, always obeying the rule of the smallest Euclidean
distance.

Each decision region of the lattice based ZF decoder (Figure 5.9c) has the same
shape, following the base vectors described in B. The decision regions are not
necessarily very close to the optimum shape obtained by the DML decoder. Here
they form a relatively flat parallelogram. In contrast to the MMSE and the DML
decoder, the lattice based decoder repeats the decoding pattern beyond the unit
hyper cube. Thus, also estimated values beyond the range of the source symbols
|û| > 1 emerge.
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Figure 5.10: Simulation results for different types of decoders for a [1 2 4]-
AMBC and source symbols with a uniform probability density
function (pdf).

The ZFLR decoder in Figure 5.9d draws a similar picture as the ZF decoder, but
the parallelograms of the decision regions have a different shape. Here, optimized
base vectors are employed which generate parallelograms that are closer to circular
decision regions, but describe the same lattice.

Figure 5.10 shows the simulated performance for different types of decoders for
a [1 2 4]-AMBC and source symbols following a uniform pdf. As expected, the
MMSE decoder achieves the best performance of all decoders for all channel qualities.
Its superiority is especially pronounced for lower channel qualities (cSNR < 15 dB),
while for better channels the other decoders nearly reach the MMSE performance.

The DML decoder also achieves very good results with a maximum gap of
around 2 dB in terms of pSNR to the MMSE decoder.

The zero-forcing decoder which does not employ lattice reduction exhibits a
very poor performance, which for some channel qualities is around 10 dB below the
performance of the other decoders. This is due to the shape of the decision regions
which is very disadvantageous.

By adding the lattice reduction to the zero-forcing decoder (ZFLR) results
can be significantly improved. The same performance as for the DML decoder is
achieved for a channel quality which is at most 1 dB better in terms of cSNR. This
is a remarkable result for the ZFLR decoder because its complexity is a lot smaller
since the full search in the DML decoder is replaced with matrix multiplications.
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5.5 Code Design and Simulation Results
The performance of the AMBC transmission systems is, on one hand, dependent
on the type of decoder which is employed, but on the other hand, the code matrix
A and its dimensions are of paramount importance for the properties and the
performance of the code. In this section, approaches for designing codes with
different dimensions of A are briefly discussed and their performance is assessed
using simulation results with source symbols following a uniform pdf.

5.5.1 1x2 Codes
For systematic AMBCs with M = 1 source symbol and N = 2 channel symbols,
there is just one scalar value (t) which can be chosen to generate different codes:

A =
[
1 t

]
. (5.77)

With (5.51) and, thus, eig
(
A ·AT) = 1 + t2, the high-cSNR performance of these

codes can directly be stated:

pSNRAMBC,high-CSNR,ML ≈ cSNR ·
(
1 + t2

)
. (5.78)

Higher values of t lead to codes with more arms (Figure 5.3) and therefore a
higher cSNR is needed for successful decoding. Since also the source symbols are
distributed on more arms, the high-cSNR performance is also increased.

Figure 5.11 shows the performance of different 1x2 AMBCs. The tradeoff
between the high-cSNR performance and the channel quality needed for successful
decoding can be observed.

5.5.2 1x3 Codes
For codes which map M = 1 source symbol to N = 3 channel symbols, a
2-dimensional (D = 2) lattice (5.28) in the discrete part emerges. This lattice
influences the performance of the decoders for the discrete part as shown in Fig-
ures 5.9 and 5.10. A good lattice enables successful decoding at lower channel
qualities than permitted by a bad lattice. A good lattice positions the discrete
points as far as possible from each other on a given area to reduce the effect of
the channel noise on selecting the correct discrete point during decoding. For the
two-dimensional case this is achieved by a hexagonal lattice with base vectors of
equal length and an angle of 60◦.

In [Sch13] it is derived how for given base vectors the corresponding code
matrix A can be derived. As described in the context of lattice reduction (Sec-
tion 5.4.2), the same lattice can be generated with different base vectors. This is
achieved by applying a unimodular matrix T , which consists of integers, to the
chosen base vectors (5.74) (“reversed reduction”). The 5 missing coefficients to
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Figure 5.11: Simulation results for different 1x2 codes with DML decoding
and source symbols with a uniform pdf. The AMBC with
[1 1] yields the same performance as a LABC.

extend this 2x2 matrix to the 3x3 rotation matrix G (5.27) are selected such that G

is orthogonal and, thus, is a rotation matrix. With the triangular matrix P where
just one entry is non-zero which can be derived from G, the code matrix A can
directly be stated (5.7). Interestingly, for the 1x3 code, the high-cSNR performance
cannot be chosen arbitrarily for any given lattice. Depending on the unimodular
matrix used for the reversed reduction, different AMBCs with the desired lattice
structure may be designed, but only with discrete high-cSNR performances.

Figure 5.12 shows the simulation results for 1x3 codes which exhibit approx-
imately the same high-cSNR performance but use different base matrices. The
base vectors of the codes with an angle of δ = 60◦ and 90◦ have equal lengths.
With another approach, a code is designed which has base vectors with unequal
lengths and a base angle of δ ≈ 66◦. The codes with δ = 90◦ and δ ≈ 66◦ have
approximately the same performance, although the lengths and the angles between
the base vectors are different. The code with the hexagonal lattice (δ = 60◦) exhibits
a superior performance compared to the other codes. Thus, for codes with just one
source symbol, choosing a good lattice for the discrete dimensions and generating
the corresponding code matrix leads to good codes for the given code rate and
high-cSNR performance.
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Figure 5.12: Simulation results for different designed 1x3 codes with DML
decoding. All codes except for the code with δ ≈ 66◦ exhibit
equal lengths for the base vectors. Source symbols with a
uniform pdf are employed.

5.5.3 2x4 Codes

In this section systematic AMBCs with M = 2 input symbols and N = 4 channel
symbols are considered. Also here, the discrete part is 2-dimensional (D = 2),
thus, the same considerations as in the previous section for 1x3 codes for designing
a good lattice will be taken. Also here, two base vectors with equal length and
a given angle lead to a matrix B with dimension 2x2. This matrix is reversed
(inverse lattice reduction) with a unimodular T . Since for the expansion to the
rotation matrix G with dimension 4x4, more entries of G have to be chosen. Thus,
more degrees of freedom are available. E.g., for the 2x4 codes, the high-cSNR
performance can arbitrarily be chosen for any given base vectors and unimodular
matrix T . The details of the design of 2x4 codes are derived in [Sch13].

Figure 5.13 shows the simulation results for different 2x4 codes and one 1x2
code, all with r = 1

2 and the same high-cSNR performance. The base vectors of
the lattice of the 2x4 codes exhibit angles of 20◦, 60◦ and 90◦. DML decoding
is employed. The code with 20◦ shows a very poor performance and successful
decoding is only possible at high channel qualities (cSNR > 29 dB). The 2x4 code
with 90◦ shows exactly the same performance as the 1x2 code. This can be easily
explained with the code matrix of one 2x4 code with 90◦ (A = [ 1 0 4.29 0

0 1 0 4.29 ]), which
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Figure 5.13: Simulation results for different designed r = 1
2 codes with

DML decoding, i.e., designed 2x4 codes with different angles
between the base vectors of the lattice and a 1x2 code with
the same high-cSNR performance are shown. Source symbols
with a uniform pdf are employed.

is just a repetition of the 1x2 code with the code matrix A = [1 4.29]. Thus, for
a 2x4 code with 90◦, the shorter 1x2 code has the same performance with less
complexity and delay.

Interestingly, the code with 60◦, which employs the (expected to be) optimal
hexagonal lattice for the discrete part, shows a poorer performance than the code
with 90◦ and consequently also a poorer performance than the shorter 1x2 code.
The hexagonal lattice should lead to a superior performance when decoding the
lattice points, but there is another dominating effect.

Figure 5.14 shows a very promising hint for the effect of the superior performance
of the code with 90◦. The three subfigures correspond to three 2x4 codes with
different angles between the base vectors of the lattice. Here, not the discrete
lattice, but the 2-dimensional source space covered by all possible source vectors u

is shown. The areas (i.e., slices) cut by the lines correspond to all source vectors
which are mapped to one discrete point. The points on the slices are stretched by
the influence of A and are transmitted as the analog part in the channel space. For
a 20◦ code in Subfigure 5.14a it is shown how the source space is partitioned into 91
slices which are very pointy and narrow. For the 60◦ code in Subfigure 5.14b only
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Figure 5.14: Distribution of the source symbols for 2x4 codes to the dis-
crete points for varying angles between the base vectors of the
underlying lattice. Each slice describes the source symbols
which are mapped to one common discrete point. The black
dot describes the origin u1 = u2 = 0.
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35 slices are needed and 25 slices for the 90◦ code in Subfigure 5.14c are depicted.
It can be observed, that the angle between the base vectors of the lattice in the
discrete part influences the number and the shape of the slices in which the source
space is partitioned.

This has two effects. First, if for an angle lower than 90◦ more slices and, thus,
more discrete lattice points are needed to achieve the same high-cSNR performance,
these points have to be closer together in the discrete part. Therefore, a higher
channel quality is needed for successful decoding (Figure 5.13). It may be noted that
the base vectors of the lattice exhibit equal lengths, but their absolute length is not
given during the design and is derived from the required high-cSNR performance.
The second effect comes from the shape of the slices. An AMBC may be interpreted
as a concatenation of a vector quantizer, a mapping of the quantizer indices
to lattice points, and a transmission of the resulting quantization error as the
analog part, while the lattice points and the analog part are additionally rotated
in space. Here, each slice can be regarded as the Voronoi region of the vector
quantizer. From quantizer theory it is known that spherical Voronoi regions are
optimal [LG89] [Krü10] since the symbols in the “spikes” of the slices contribute
significantly to the quantizer distortion, i.e., to the required transmission power in
this context. Thus, the slice which is closest to a sphere is the square of the 90◦
code. The other codes, including the one with the hexagonal lattice (60◦), need a
higher transmission power in the analog part which is equivalent to the need of a
higher channel quality for operation.

Both effects lead to the observation that for all angles between base vectors of
equal length for the lattice in the discrete part the 2x4 code with 90◦ achieves the
best performance. As observed above, a 1x2 code can reach the same performance
as a 2x4 code with 90◦ at a lower delay and complexity.

5.6 Discussion

In this chapter, AMBCs, which are composed of a multiplication with a non-square
matrix and a subsequent modulo operation, are introduced and analyzed. In
contrast to the purely linear LABCs, which just consist of the matrix multiplication,
additional channel uses can be exploited to significantly improve the performance
of the transmission system. Thus, the idea of adding a modulo operation as a
nonlinearity to the LABCs resulting in the AMBCs is fruitful.

In Section 5.2, the system model is proposed, and in Section 5.3 the resulting
codes are analyzed. A rotation matrix can be found to facilitate the analysis and
to enable the special type of rotating decoders. Also, the high-cSNR performance
can directly be stated for any given code matrix and the analysis of the resulting
lattice is given.

Section 5.4 gives an overview of different decoder techniques including rotating
decoders, which decompose the received code vectors to a discrete and analog part
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in the first step to facilitate independent analysis of both parts. Discrete maximum
likelihood decoding and zero-forcing decoding with or without lattice reduction is
applied to the discrete part.

In Section 5.5, the crucial question of finding appropriate code matrices is
tackled. For codes operating on just one source symbol at a time, a guideline for
designing good codes can be given which is mainly finding a good lattice for the
discrete part. For codes which combine several source symbols, e.g., 2x4 codes,
surprising effects come into play which question applying the same guidelines also
for these codes. The choice of the lattice of the discrete part influences which source
vectors are jointly mapped to one common lattice points. The shape and number of
the resulting slices significantly impacts the performance of the transmission system
which motivates further studies. The crucial question is whether the shape and
number of slices can independently be designed from the lattice of the discrete part,
or if there are ways to combine good lattices and a favorable slicing for AMBCs.

As shown in [Sch13], for codes combining even more source symbols, more
degrees of freedom emerge for the design. Longer block lengths are crucial for an
increased performance (Section 3.6) and may provide the necessary flexibility in
the design of AMBCs to decouple the lattice in the discrete part and the slicing of
the source vectors. Another open question is how to transmit symbols following
source distributions without a limited range. Here, compressor functions which
map the source symbols to a limited range could be employed which will lead to
some loss in terms of pSNR compared to the case of uniform pdfs [Sak70].

As observed in Section 3.2.1, the performance of LABCs can be improved for
bad channel qualities using Linear Minimum Mean-Square Error (LMMSE) instead
of ML estimation. This is a promising enhancement for the analog part of LABCs.
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Chapter 6

Hybrid Digital-Analog Transmission

6.1 Introduction

In 2002, Skoglund et al [SPA02] answered the following question: “Can transmission
systems involving continuous-amplitude processing outperform purely digital trans-
mission systems?”. They combined a numerically optimized digital transmission
system with analog transmission of the quantization error to a Hybrid Digital-Analog
(HDA) transmission system. For the digital and analog branch, orthogonal channels
are used. In the digital branch, the quantizer, the generic channel code and the
modulation are numerically optimized jointly. The benchmark is a purely digital
system with a Linde, Buzo and Gray (LBG) quantizer and a generic numerically
optimized channel code which is realized as a mapper between the quantization
indices and the higher-dimensional code vectors. The HDA transmission system
outperforms the digital system for all channel qualities.

Although the performance of the HDA system is remarkable, the design is
very complex and unfeasible for long block lengths. The generic channel coding
requires lookup tables at the encoder as well as at the decoder whose complexity is
prohibitively high.

In this chapter a similar question is addressed: “Can HDA codes using conven-
tional digital codes outperform conventional purely digital codes?”. The design of
conventional digital codes is widely known and their complexity during operation
is manageable in real life systems.

In Section 6.2, purely digital and HDA transmission systems are introduced. In
the subsequent Section 6.3, the performance and design of HDA systems is derived.
After introducing different estimators for the digital (Section 6.3.2) and analog
branch (Section 6.3.3), the properties of a joint estimator of both branches are
elaborated (Section 6.3.4). In Section 6.3.5 it is shown that for every purely digital
transmission system, a corresponding HDA system can be designed which shows
superior performance for all channel qualities. Also the design guidelines for such a
system are given ( [RV13a] and [RBV14]).

The design of HDA transmission systems offers several new degrees of freedom
in comparison to purely digital transmission. The effects and benefits of these new
design parameters are derived in Section 6.4. Most interestingly, if the digital branch
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cannot be altered in an HDA system, the analog branch can still exploit additional
channel uses increasing the overall performance significantly (Section 6.4.4).

In purely digital transmission the Iterative Source-Channel Decoding (ISCD)
transmission has been shown to achieve close-to-capacity performance [Adr03]. In
Section 6.5 the benefits of HDA transmission and ISCD are combined which leads
to the surprising observation that the performance of the digital channel decoder
may benefit from the analog branch.

6.2 System Model

6.2.1 Purely Digital Transmission
Figure 6.1 shows a conventional digital transmission system. Also here, A/D and
D/A converters are necessary, but they exhibit a sufficiently high precision so the
quantization error introduced here can be neglected (Section 2.2). The source
emits continuous-amplitude, discrete-time symbols which are combined to an M -
dimensional source vector u following the probability density function (pdf) pu. The
source symbols are quantized (Q) with 2FD quantization levels. A bitmapper (BM)
transforms the quantized values to `vD source bits forming the bit vector vD with on
average FD bits per source symbol. The rate rsrc

D = M
`vD

describes the ratio between
the source dimension and the number of source bits. For non-redundant bitmapping,
the rate of the quantizer and bitmapper consequently is rsrc

D = 1
FD

. Subsequently,
a digital channel code followed by digital modulation transforms the source bits
into N real-valued channel symbols forming the vector yD. The channel vector has
an average power of E{||yD||2}/N = 1. Modulation schemes using complex-valued
symbols (QPSK, 8PSK) are also considered by noting the equivalence between one
complex-valued symbol and two real-valued symbols. Since channel coding and
modulation is combined in one step (ccm), the ratio between the number of bits
`vD and the number of real symbols N is denoted as the coding-modulation rate

rccm
D = `vD

N
. (6.1)

u
1×M

Q &
BM

rsrc
D

Channel encoder
& modulator

rccm
D

vD

1×`vD

yD

1×N

n

Demodulator
& channel decoder

zDBM−1

& Q−1

v̂D
ûD

Figure 6.1: Conventional purely digital transmission.
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Moreover, the ratio between the number of real source symbols and real channel
symbols is given by the source-channel rate r = M/N . Additive white Gaussian
noise n with variance σ2

n per dimension disturbs the channel symbols, thereby
yielding the received symbols zD. After demodulation, channel decoding and
reconstruction of quantized values, ûD gives an estimate of the initial source
symbols.

6.2.2 Hybrid Digital-Analog Transmission

Figure 6.2 illustrates the proposed HDA transmission system [RV13a]. Again, A/D
and D/A converters are necessary, but their sufficiently high precision allows to
neglect the introduced quantization error (Section 2.2). The general idea is to
use a conventional digital transmission system for u and additionally transmit the
quantization error ua

H using continuous-amplitude (pseudo-analog) discrete-time
processing. The upper branch of the hybrid encoder and decoder is referred to as
the digital branch and the lower branch as the analog branch. All operations, also
in the “analog” branch, are conducted by digital signal processing. The continuous-
amplitude symbols are floating or fixed point variables with a precision depending
on the digital processor. In a real-world system, only the source samples and the
symbols on the transmission channel are “truly” analog. The digital branch is

u
1×M

Q &
BM

Channel encoder
& modulator

rccm
H

vH

1×`vH

BM−1

& Q−1

−
ud

H

Analog mapper
g(·)
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H

rmapp
H

Mux

yd
H

1×D

ya
H

1×A

De-
mux

yH

1×N

n

zH

Demodulator
& channel decoder

zd
HBM−1

& Q−1

v̂H

Analog demapper
za

H

ûd
H

ûa
H

ûH

Figure 6.2: Hybrid Digital-Analog transmission.
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a purely digital transmission system; per frame of M source symbols u, D real
channel dimensions are used by the digital branch. The analog branch takes A > 0
channel uses. Thus, the total number of channel uses per HDA frame is

N = D +A, (6.2)

with D < N and the coding-modulation rate in the digital branch is

rccm
H = `vH

N −A = `vH

D
. (6.3)

In order to compare both systems, the respective numbers of channel uses (N) in
the digital system and in the HDA system are kept equal.

In the hybrid encoder, scalar quantization Q is applied to the elements of frame
u of length M . Alternatively a vector quantizer might be applied to the complete
frame or parts of the frame. Then a bit-mapper (BM) generates the bit vector vH
with on average FH bits per source symbol. The quantized source representation
ud

H is decoded locally in the transmitter. The quantization error ua
H = u− ud

H is
processed in the analog branch. The analog mapper uses the continuous-amplitude
function g(·) to map the M entries of the vector ua

H to the A entries of ya
H with

average power 1
A

E{||ya
H||2} = 1. The function g(·) is achieved by normalizing a

given mapping function g̃(·):

ya
H =

√
1

E{(g̃(ua
H))2}

· g̃(ua
H) = g(ua

H). (6.4)

The function g(·) can also be defined to work on several entries of ua
H in one step

and also output multiple entries of ya
H. The ratio between the input and the output

dimensions of the block is

rmapp
H = M

N −D = M

A
. (6.5)

This mapping g(·) could, in case of A = M , e.g., be a linear amplification (with
g̃(ua

H) = ua
H) or a nonlinear function (Chapter 4) with a rate of rmapp

H = 1 or in
case of A = 2 ·M an Archimedes spiral (Section 4.4.1, [FR06,RSV10a]) which maps
one symbol onto two symbols (rmapp

H = 1/2).
After multiplexing the symbols from the digital and analog branch and trans-

mitting over the AWGN channel, the symbols are demultiplexed and conveyed to
the digital and analog decoding branches. The analog demapper then gives ûa

H
as the estimate of the quantization error which can be facilitated using several
methods such as Maximum Likelihood (ML), Linear Minimum Mean-Square Error
(LMMSE) and Minimum Mean-Square Error (MMSE) estimators. The outputs of
the analog and digital branches are added, whereby ûH gives an estimate of the
initial source symbols.
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Additionally to the channel quality cSNR and the end-to-end parameters SNR
pSNR, the branch SNR (bSNR) is introduced for the HDA system. The bSNR
describes the signal to noise ratio between the symbols sent in each branch and the
corresponding estimates:

bSNRd =
E
{
||ud

H||2
}

E {||ud
H − ûd

H||2}
, (6.6)

bSNRa =
E
{
||ua

H||2
}

E {||ua
H − ûa

H||2}
. (6.7)

6.3 Performance and Design
In this section the performance and design of the HDA transmission system is
discussed. First, a quick glance at the main difference of the performance of purely
digital and hybrid transmission is given in Section 6.3.1 After introducing different
estimators for the digital (Section 6.3.2) and analog branch (Section 6.3.3), the
properties of a joint estimation of both branches are elaborated (Section 6.3.4) and
visualized with simulation results. In Section 6.3.5 it is shown that for every purely
digital transmission system, a corresponding HDA system can be designed which
shows superior performance for all channel qualities. Also the design guidelines for
such a system are given and their effectiveness is supported by simulation results.

6.3.1 Quick Glance at the Performance of HDA Transmission
For a first impression, Figure 6.3 shows a comparison between purely digital and
HDA transmission.

Scalar (M = 1) source symbols following a uniform pdf are uniformly quantized
with either 5 or 6 bits per symbol. A natural binary bitmapping is applied and the
resulting bits are transmitted without further channel coding using Binary Phase
Shift Keying (BPSK) modulation.

The solid red curve shows the performance of purely digital transmission using
FD = 6 bits per source symbol and hence N = 6 channel symbols. At a certain
channel quality (around cSNR|dB ≥ 13 dB) all bits are transmitted with negligible
error probability and, thus, the performance saturates at pSNR|dB = 36 dB. This
saturation effect is due to the unrecoverable distortion introduced by the quantizer.

The dashed red curve shows the same purely digital system using just FD = 5
quantization bits and, thus, N = 5 channel symbols. Here, the performance
saturates at pSNR|dB = 30 dB which is 6 dB lower due to the coarser quantization.

The solid blue curve shows the performance of HDA transmission which com-
bines the purely digital transmission with FH = 5 quantization bits per source
symbol and additional transmission of the quantization error leading to a total
of N = D +A = 5 + 1 = 6 channel uses. This system employs the same number
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Figure 6.3: HDA and digital transmission without digital channel coding.
Uniform source pdf. M = 1. HDA: A = 1, D = 5, N = 6,
LMMSE estimator in analog branch. Digital: N ∈ {5, 6}.

of channel uses and the same transmission power as the purely digital system
with the black solid curve. First of all, it can be observed, that the HDA system
does not show a saturation, but improves its performance for increasing channel
qualities. Second, the loss due to a coarser quantization in the HDA system is
overcompensated by the analog transmission of the quantization error. Thus, the
purely digital transmission is outperformed by the HDA transmission.

6.3.2 Estimators for the Digital Branch
The decoding and estimation techniques which can be applied in the purely digital
system and the digital branch of the HDA system are essentially the same. For a fair
comparison of a purely digital and an HDA system, the techniques should, of course,
be of the same type. For demodulation, channel decoding and reconstruction of the
quantized values, either hard or soft decision techniques can be applied. In case of
soft decision, the inverse bit mapper BM−1 obtains the probability of occurrence
p(v̂|Q(u)) for each quantization level Q(u) for the soft output v̂ by the channel
decoder. The function Q(u) refers to all possible quantization levels of the source
symbols. In the HDA case, the quantized values are denoted as ud

H, which replaces
Q(u) in equations related to the HDA case.

There are different estimators which convert these probabilities to an estimate
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û for u. The simplest estimator is the ML estimator which just takes the most
probable quantization level. The estimator is shown for the purely digital (ûD) and
the hybrid case (ûd

H):

ûD,ML = argmax
Q(u)

p(v̂D|Q(u)),

ûd
H,ML = argmax

ud
H

p(v̂H|ud
H)). (6.8)

The Maximum a Posteriori (MAP) estimator takes into account the a-priori known
probability of occurrence of each quantization level:

ûD,MAP = argmax
Q(u)

p(Q(u)|v̂D) = argmax
Q(u)

p(v̂D|Q(u)) · p(Q(u)),

ûd
H,MAP = argmax

ud
H

p(ud
H|v̂H) = argmax

ud
H

p(v̂H|ud
H) · p(ud

H). (6.9)

The estimator leading to the smallest Mean-Square Error (MSE) is the MMSE
estimator which weights the reconstruction points of all possible quantization levels
with their a-posteriori probability of occurrence:

ûD,MMSE = E {Q(u)|v̂D} =
∑

Q(u)

Q(u) · p(Q(u)|v̂D),

ûd
H,MMSE = E

{
ud

H|v̂D
}

=
∑

ud
H

ud
H · p(ud

H|v̂H). (6.10)

6.3.3 Estimators for the Analog Branch
In the analog branch, several different estimators can be applied. The performance
of the estimators can be assessed independently of the digital branch by considering
the branch SNR (bSNRa) of the analog branch (6.7), i.e., the SNR between the
quantization error ua

H and the estimate ûa
H of the same in the receiver.

Maximum Likelihood Estimator

The least complex estimator, which is considered here, is the Maximum Likelihood
(ML) estimator:

ûa
H,ML = argmax

ua
H

p(za
H|ua

H) = argmax
ua

H

p(za
H|ya

H)

= argmax
ua

H

p(za
H|g(ua

H))

= argmax
ua

H

pN(za
H − g(ua

H)), (6.11)
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while pN(·) is the pdf of the additive noise vector. In case of additive Gaussian
noise, or any other additive noise which has its maximum probability at n = 0, the
optimum ûa

H is found when the argument of pN(·) is 0:

za
H − g(ûa

H,ML) = 0
⇔ za

H = g(ûa
H,ML)

⇔ ûa
H,ML = g−1(za

H). (6.12)

Thus, ûa
H,ML is found by applying the inverted analog mapper function g−1(·) to

the received value za
H. The ML estimator does not require any knowledge about

the channel quality (cSNR) or the pdf of the quantization error p(ua
H). For a linear

analog mapper (g̃(ua
H) = ua

H) with rmapp
H = 1 the performance is derived in 3.2.1

and is

bSNRa
ML = cSNR. (6.13)

Minimum Mean Square Error Estimator

The Minimum Mean-Square Error (MMSE) estimator is, in general, a nonlinear
estimator which minimizes the MSE. The MMSE estimate ûa

H,MMSE can be stated
as the conditional expectation of ua

H given the received value za
H:

ûa
H,MMSE = E {ua

H|za
H} =

∫
ua

H · p(ua
H|za

H) dua
H

=
∫

ua
H ·

p(za
H|ua

H) · p(ua
H)

p(za
H) dua

H

= 1
p(za

H) ·
∫

ua
H · pN(za

H − g(ua
H)) · p(ua

H) dua
H

= 1
C
·
∫

ua
H · pN(za

H − g(ua
H)) · p(ua

H) dua
H, (6.14)

with C = p(za
H) =

∫
pN(za

H − g(ua
H)) · p(ua

H) dua
H as a normalization, so the

integral
∫
p(ua

H|za
H) dua

H is 1. The potentially nonlinear effects of the analog
mapper g(·), the pdf of the quantization error p(ua

H) and the pdf of the additive
noise are incorporated in the estimation and have to be available to the estimator.
This estimator shows the highest complexity, since, in general, an M -dimensional
integration has to be performed. It also shows the highest performance in terms of
pSNR which cannot be stated in closed form and has to be obtained by simulations.

Linear Minimum Mean Square Error Estimator

A less complex estimator which minimizes the MSE using only linear operations is
the Linear Minimum Mean-Square Error (LMMSE) estimator. This estimator just
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depends on the mean and variance of the quantization error and the noise. Since
only linear operations are permitted, the LMMSE estimator can just be used for
a linear analog mapper g(·). The LMMSE estimator can be derived using (3.13)
with an identity matrix as a mapper (P = 1) and the same dimensions before and
after the mapping (A = M):

ûa
H,LMMSE = za

H ·Q = cSNR
1 + cSNR · z

a
H. (6.15)

In case of a linear analog mapper, the performance can directly be stated as (3.29):

bSNRa
LMMSE = cSNR + 1. (6.16)

For a nonlinear analog mapper, it is also possible to concatenate the LMMSE
estimator and the ML estimator [FVACGF13]. The LMMSE estimator normalizes
the channel output variance and the ML estimator inverts the nonlinear mapping
leading to the following estimator:

ûa
H,LMMSE+ML = g−1

( cSNR
1 + cSNR · z

a
H

)
. (6.17)

As in the nonlinear ML estimator case above, the performance cannot be stated
directly.

For very good channels, the ML estimator performs as good as the LMMSE
estimator, but for bad channels, the LMMSE estimator is superior. For a Gaussian
source and an AWGN channel, the LMMSE performance reaches the MMSE
performance, while in any other case, the MMSE estimator outperforms all other
estimators [Kay93].

6.3.4 Joint and Independent Estimation
In Figure 6.2 two independent estimators for the digital and the analog branch are
used and their estimates are added up. In the following section, a joint estimator
which considers both, the digital and the analog branch, is derived [RV13a,RBV14].
In the subsequent section, the optimality of the initially presented independent
estimation is derived for statistically independent quantized values and quantization
errors. Simulation results are provided to visualize the performance difference of
both estimation techniques.

Optimal Joint Estimation

In the following, a joint MMSE estimator is considered, which incorporates the
information of both, the digital and the analog branch, to form one estimate.
Figure 6.4 shows the modified HDA transmission system with the joint estimator,
which replaces the analog demapper, the inverse bitmapping (BM−1), and the
summation in Figure 6.2. It is assumed that v̂H is a sufficient statistics [Kay93] of
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Figure 6.4: Hybrid Digital-Analog transmission with joint estimation.

zd
H, thus, the demodulator and channel decoder convert the received values to soft

values without losing information. Therefore, in the evaluation of probabilities, v̂H
and zd

H may be interchanged without changing the result. The effect of channel
coding, modulation, transmission over an AWGN channel, demodulation and
channel decoding is contained in the soft information of v̂H. The same holds for
zD and v̂D for purely digital transmission. The joint MMSE estimate of u for the
received values zd

H and za
H in the digital and the analog branch, respectively, can

be stated follows (see Section B.1 in the appendix for complete derivation):

ûH = E{u|za
H, z

d
H} (6.18)

= 1
C
·
∫

ua
H · p(za

H|ua
H) · p(zd

H|ua
H) · p(ua

H) dua
H

+ 1
C
·
∑

ud
H

ud
H · p(zd

H|ud
H) · p(za

H|ud
H) · P(ud

H). (6.19)

The constant C is C = p(za
H, z

d
H).

The formula shows that the joint estimator can be split up into two estimators.
The estimator for the digital branch (second line in (6.19)) incorporates knowledge
about the statistics of the quantization error p

(
za

H|ud
H
)
as does the estimator for

the analog branch (first line in (6.19)) about the quantized values p (za
H|ua

H).
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The cross terms p(zd
H|ua

H) and p(za
H|ud

H) in (6.19) indicate that the general
MMSE estimator cannot be calculated using separate estimators for the digital and
analog branches.

More details and insight about the derivation of the joint estimator can be
found in [Bun12].

Optimality of Independent Estimation

In several scenarios, the quantized values ud
H in the digital and the quantization

error ua
H in the analog branch are statistically independent. This holds, e.g., for a

uniform source pdf with a uniform quantizer and is approximately given in most
practical cases.

In case of statistical independence, the following relation holds:

p(ua
H,u

d
H) = p(ua

H) · p(ud
H). (6.20)

Using the statistical independence, the MMSE estimator can be stated as follows
(see Section B.2 in the appendix) while ûa

H and ûd
H are the independent MMSE

estimates in the analog and the digital branch respectively:

ûH = ûa
H + ûd

H. (6.21)

Equation (6.21) shows that, given statistical independence (6.20), independent
MMSE estimation in the digital and analog branches and adding up the results
yields the optimal MMSE estimation.

Simulation Results

In this section, the performance of joint and independent estimation will be com-
pared. The 80-dimensional (M = 80) source vector is quantized with varying fidelity
from FH = 1 to FH = 4 bits per source symbol. A rate- 1

2 recursive systematic
convolutional code with the generator polynomial {1, 15/13}8 – the same code
which is used as a component code in UMTS-LTE [3GP11] – is employed with a
BPSK modulation. Since no puncturing is used, the number of channel uses varies
from N = 160 to N = 640 and therefore just simulations with the same quantizer
fidelity can be compared. In case of independent estimation (Figure 6.2) an MMSE
estimator is used in both, the digital and the analog branch. The joint estimator
employs a joint MMSE estimator (6.19).

Figure 6.5 shows the performance for a uniform source pdf. For this source pdf,
the used uniform quantizer generates statistically independent quantized values and
quantization errors. In accordance with (6.21), the performance of the independent
and the joint estimator is the same for all quantization fidelities.

A different result is depicted in Figure 6.6. For a Gaussian source pdf, the
employed Lloyd-Max Quantizer (LMQ) generates statistically dependent quantized
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Figure 6.5: Independent and joint estimator for source symbols with a
uniform pdf for different quantizer fidelities.

values ud
H and quantization errors ua

H. For all quantization fidelities, the joint
estimator exhibits a superior performance to the independent estimator. The gain
vanishes for very low channel qualities, but as soon as the channel quality is high
enough for the digital branch to transmit with low error probability, a gain in
pSNR of up to 0.4 dB can be achieved.

6.3.5 Theoretical System Performance

In this section, the performance of HDA and purely digital transmission is as-
sessed [RV13a,RBV14] while it is assumed that both systems employ the same
type of digital quantization, coding, and modulation concepts. Since the overall
performance of the HDA system depends on the transmission errors in the digital
branch and the noise in the analog branch, different cases depending on the channel
quality can be distinguished. In the following the range of possible channel qualities
is partitioned into several regions (Fig 6.7). In the high-cSNR region, the “Good
channel conditions”, the digital branch transmits with negligible error probability
(starting at cSNRsat.

D ). Here, the performance of the transmission system is governed
by the analog branch. In the low-cSNR region region, the “Bad channel conditions”,
many bit errors in the digital branch occur. The channel quality at which an ideal
capacity achieving code would transmit without bit errors is cSNRideal,Pe=0. The
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Figure 6.6: Independent and joint estimator for source symbols with a
Gaussian pdf for different quantizer fidelities.

gap interval, here in dB,

∆ideal|dB = cSNRideal,Pe=0|dB − cSNRsat.
D |dB (6.22)

between the ideal code and the practical code is also depicted in Fig. 6.7.

Good Channel Conditions

The region of “Good channel conditions” comprises the cSNR above a certain
channel quality (cSNRsat.

D ) in which almost error-free transmission in the digital
branch is achieved. This channel quality assuring error-free transmission in the
digital branch can be lower bounded using the Shannon capacity. First, a source
encoder which yields equiprobable output bits and an ideal channel code is assumed.
This assumption facilitates error-free decoding employing rccm

D = `vD
N
≤ C bits per

channel use at cSNRsat.
D :

rccm
D ≤ C = 1

2 ld
(
1 + cSNRsat.

D

)
(6.23)

⇒ cSNRsat.
D ≥ 4r

ccm
D − 1 (6.24)

⇒ cSNRsat.
D ·∆ideal = 4r

ccm
D − 1. (6.25)

The factor ∆ideal equals 1 for ideal digital channel codes, and 0 < ∆ideal < 1 holds
for codes in practice. Thus, for cSNR ≥ cSNRsat.

D = 4r
ccm
D −1

∆ideal
error-free decoding in
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Figure 6.7: Illustration of different channel quality regions.

the digital branch can be achieved.
Digital codes show a waterfall behavior from erroneous to error-free transmission.

Comparing the same type of codes, the channel quality at which the waterfall
occurs depends on the coding rate rccm. To design an HDA transmission system
with the waterfall at the same or lower cSNR, the coding rate of the HDA system
rccm

H (6.3) has to be equal or better (lower) than that of the purely digital system
rccm

D (6.1) :

rccm
H ≤ rccm

D (6.26)
⇒ rccm

H = rccm
D −∆r, ∆r ≥ 0. (6.27)

Since the HDA system needs equal or lower coding rates for the digital branch
and A additional channel uses for the analog branch, the same number of channel
uses (N) in both systems can only be achieved by changing another parameter: the
number of bits (`vH) generated by quantizer and bit-mapper. This number of bits
can be decreased by reducing the fidelity of the quantizer in the HDA system.

The quantizer in the purely digital transmission system utilizes

FD = `vD/M = rccm
D ·N/M (6.28)

bits per source dimension while the quantizer in the HDA system utilizes

FH = `vH/M = rccm
H · (N −A)/M (6.29)

bits per source dimension.
Starting with (6.27), and using (6.28) and (6.29), the required difference ∆F =
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FD − FH in bits per dimension can be calculated as follows:

rccm
H = rccm

D −∆r

⇔ FH ·M
N −A = rccm

D −∆r

⇔ FH = N −A
M

· (rccm
D −∆r)

⇒ ∆F : = FD − FH (6.30)

= rccm
D · N

M
− rccm

D · N −A
M

+ ∆r · N −A
M

= rccm
D · A

M
+ ∆r ·

(
N

M
− A

M

)

∆F = rccm
D

rmapp
H

+ ∆r ·
(
N

M
− 1
rmapp

H

)
. (6.31)

Thus, given a match of the digital channel coding rates (∆r = 0) and an analog
branch with rmapp

H = 1 (A = M), the difference in quantization fidelity only depends
on the given channel coding rate of the purely digital system rccm

D .
The influence on the MSE of this lower fidelity of the quantization in the HDA

system is derived in the following. Since the channel quality is considered to be
high enough (cSNR ≥ cSNRsat.

D ) to facilitate error-free transmission in the digital
branch, the distortion in the digital branch is zero E{||ud

H − ûd
H||2} = 0.

Therefore, it can be shown that the end-to-end MSE of the HDA system just
depends on the performance of the analog branch:

E
{
||u− ûH||2

}
= E

{
||(ud

H + ua
H)− (ûd

H + ûa
H)||2

}

= E
{
||ud

H − ûd
H||2
}

+ E
{
||ua

H − ûa
H||2
}

+ 2 E
{

ud
H · ua

H
T}− 2 E

{
ud

H · ûa
H

T}

− 2 E
{

ua
H · ûd

H
T}+ 2 E

{
ûd

H · ûa
H

T}

ûd
H=ud

H= E
{
||ua

H − ûa
H||2
}
. (6.32)

With (6.32) and the SNR of the analog branch (6.7), the pSNR of the HDA
transmission system

pSNRH = E{||u||2}
E{||u− ûH||2}

(6.33)

can be reformulated for good channel qualities (cSNR > cSNRsat.
D ) to the following:

pSNRsat.
H (cSNR) = E{||u||2}

E{||ua
H − ûa

H||2}

= E{||u||2}
E{||ua

H||2}
· bSNRa(cSNR). (6.34)
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The fraction E{||u||2}/E{||ua
H||2} in (6.34) refers to the pSNR of the quantizer

(i.e., quantization noise) and bSNRa (6.7) refers to the SNR of just the analog
branch which is dependent on the current cSNR. Hence, for channels with no
transmission errors in the digital branch, the overall performance only depends
on the analog branch and the fidelity of the quantizer. Since fewer bits are spent
for the quantization in the HDA transmission system (6.31), the variance of the
quantization noise is higher than that of the purely digital system. This loss has to
be compensated by the analog branch of the HDA system and can be quantified
using the rate-distortion function.

The rate-distortion function R(D) is the minimum information rate in bits per
symbol which is needed to describe source symbols following a certain pdf with a
maximum distortion D (MSE) [CT06]. Here, the quantizers which operate in the
purely digital system and in the digital branch of the HDA system are regarded.
The quantizer in the purely digital system uses an information rate of RD bits per
symbol while the quantizer of the HDA system employs a lower fidelity, namely an
information rate of RH bits per symbol. The rate-distortion function can be stated
in closed form for Gaussian sources (3.34), but for other source pdfs and to account
for quantizer imperfection, a rate loss is introduced, RH,imp and RD,imp for the
HDA and purely digital system, respectively. Since both quantizers are of the same
type and operate on symbols with the same pdf and the same dimension, they have
the same space filling advantage and same shape advantage [LG89]. Furthermore,
the differences in quantizer fidelity are relatively small (< 1bit, (6.31)), thus, the
rate losses are approximately equal (RH,imp = RD,imp). The difference of the
information rates of the quantizers RD −RH is then equal to the difference of the
bit rates of the quantizers ∆F (6.30).

The bSNRa which needs to be achieved in the analog branch to compensate
for the quantizer with lower fidelity, is derived using (6.33) and employing the
rate-distortion function, which resembles the 6 dB-per-bit rule:

pSNRsat.
H (cSNR) ≥ pSNRsat.

D (cSNR)

⇒ 22·(RH−RH,imp) · bSNRa(cSNR) ≥ 22·(RD−RD,imp)

⇒ bSNRa(cSNR) ≥ 4RD−RH = 4∆F (6.35)
⇒ bSNRa(cSNR)|dB ≥ ∆F · 6 dB, (6.36)

while bSNRa(cSNR)|dB is denoting 10 log10(bSNRa(cSNR)).
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Combining Eqs. (6.25), (6.31), and (6.35) yields:

bSNRa(cSNR) ≥4
rccm

D
r

mapp
H

+∆r·
(
N
M
− 1
r

mapp
H

)

=
(

4r
ccm
D

) 1
r

mapp
H · 4

∆r·
(
N
M
− 1
r

mapp
H

)

=
(
cSNRsat.

D ·∆ideal + 1
) 1
r

mapp
H · 4

∆r·
(
N
M
− 1
r

mapp
H

)
. (6.37)

Equation (6.37) describes the required performance of the analog branch for cSNR ≥
cSNRsat.

D for channel codes with a given performance (∆ideal) and a given rate
difference ∆r to yield a superior HDA system.

Ideal Channel Coding In case of ideal channel codes, the Shannon capacity is
achieved and, thus, ∆ideal = 1. For the same channel coding rate (∆r = 0) in the
digital branch and the purely digital system, there is an analog transmission system
known to reach the required performance (6.37) for finite block lengths: A linear
encoder (g̃(ua

H) = ua
H) with no additional redundancy (rmapp

H = 1) and an LMMSE
estimator at the receiver.

The performance of the LMMSE estimator is [Kay93]

bSNRa(cSNR) = cSNR + 1. (6.38)

Using this estimator, the required performance (6.37) for cSNR ≥ cSNRsat.
D of the

analog branch is achieved at cSNR = cSNRsat.
D . Thus, (6.37) holds with equality at

cSNR = cSNRsat.
D . Consequently, using a quantizer which follows the 6 dB-per-bit

rule and channel codes with the same coding rate (∆r = 0) in the purely digital
system and in the digital branch and an LMMSE estimator in the analog branch,
even for ideal channel coding (∆ideal = 1), an HDA system can be built which
outperforms purely digital transmission.

Practical Channel Coding In the case of practical non-ideal digital codes, due to
0 < ∆ideal < 1, (6.37) holds with inequality for cSNR ≥ cSNRsat.

D and the above
mentioned requirements can be relaxed. The rates of the channel coding in the
digital branch may be chosen to be higher than in the purely digital system and
equality of the rates is not required anymore (∆r ≥ 0).

The design of the analog branch is of great importance for the performance of
the HDA system: The maximum bSNRa which can be achieved is described by
the optimum performance theoretically attainable (OPTA) (Section 3.4). OPTA
can be evaluated equating the channel capacity and the rate-distortion function
considering multiple or partial channel uses per source symbol. For transmitting
M Gaussian source symbols employing A = M/rmapp

H channel uses, OPTA can be
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stated as follows and cannot be exceeded by the analog branch (see (3.49)):

OPTA(cSNR) := (cSNR + 1)
1

r
mapp
H ≥ bSNRa(cSNR). (6.39)

In case of ideal channel codes (∆ideal = 1) and ∆r = 0, the analog branch needs to
achieve OPTA since then (6.37) is equal to OPTA (6.39) at cSNR = cSNRsat.

D . The
LMMSE estimator used above reaches this performance for all source symbol pdfs
and rmapp

H = 1. For rmapp
H 6= 1, no transmission system using finite block lengths

(A) achieves OPTA [Gas02], but with the relaxed requirement on the performance
due to practical channel codes (0 < ∆ideal < 1), other analog transmission systems
with rmapp

H 6= 1 exhibiting other desired properties can be employed (Section 6.4).
However, it has to be assured that bSNRa is large enough for cSNR ≥ cSNRsat.

D

to compensate for the loss in quantizer fidelity (∆F ) to still design an HDA system
which outperforms purely digital transmission.

If the design requirements for the HDA system cannot be met to ensure superior
performance at cSNR = cSNRsat.

D , nonetheless, the performance of the HDA system
improves with better channels and eventually surpasses that of the purely digital
system.

Bad Channel Conditions

In this section, the case of channel conditions worse than in the former section is
considered (cSNR < cSNRsat.

D ). In the digital branch, transmission errors occur and,
thus, the bit error probability is non-zero. For simplicity of the analysis, uniform
quantization is assumed. Also source symbols with a uniform pdf are considered
for clarity, other pdfs are covered by introducing loss factors. The influence of bit
errors on the Mean-Square Error (MSE) after uniformly quantizing source symbols
with a uniform pdf with variance 1, can be stated [OL07, p. 294] as

MSE(Pe, F ) = 4 · Pe · (1− 4−F ) (6.40)

with the bit error rate Pe < 0.5 after channel decoding and a number of quantizer
bits F per source symbol.

For statistically independent quantized values and quantization errors, according
to (6.20) the MSE of the two branches can be added. Thus, the performance of a
purely digital transmission system with FD quantization bits per source symbol is
given by the quantization noise (4−FD) and the MSE(Pe, FD) caused by bit errors:

pSNRD =
1
M

E{||u||2}
4−FD + 4 · Pe · (1− 4−FD ) . (6.41)

In the HDA system, the analog branch additionally transmits the quantization error.
The MSE of the quantization error is then lowered by the bSNRa of the analog
branch (6.34). With an LMMSE estimator (6.38) the MSE of the quantization
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error 4−FH with FH quantization bits per source symbol is attenuated by a factor
of 1

bSNRa = 1
1+cSNR :

pSNRH =
1
M

E{||u||2}
4−FH · 1

1+cSNR + 4Pe · (1− 4−FH )
. (6.42)

Since the HDA performance pSNRH improves with rising channel quality cSNR,
the lowest channel quality at which the HDA system outperforms a purely digital
system is of interest. If the difference in quantization fidelity ∆F = FD − FH is
given as well as the bit error rate Pe at which both systems operate (∆r = 0), this
channel quality is derived as follows:

pSNRH ≥ pSNRD

⇔ 4−FD + 4Pe(1− 4−FD ) ≥ 4−FH

1 + cSNR + 4Pe · (1− 4−FH )

⇔ 4−FD (1− 4Pe) + 4Pe ≥ 4−FH ·
( 1

1 + cSNR − 4Pe
)

+ 4Pe

⇔ 4−FD (1− 4Pe) ≥ 4−FH ·
( 1

1 + cSNR − 4Pe
)

⇔ 4−FD+FH (1− 4Pe) ≥ 1
1 + cSNR − 4Pe

⇔ 4−∆F (1− 4Pe) + 4Pe ≥ 1
1 + cSNR

⇔ cSNR ≥ 1
4−∆F · (1− 4Pe) + 4Pe

− 1

⇔ cSNR ≥ 1
4−∆F + 4Pe · (1− 4−∆F ) − 1 . (6.43)

In case of a given channel quality and ∆F , the minimum required Pe for a superior
HDA system (more bit errors lead to superior HDA system) can be obtained by
reformulating (6.43) accordingly. This bit error rate is denoted Pe,limit:

Pe ≥
1

cSNR+1 − 4−∆F

4 · (1− 4−∆F ) := Pe,limit. (6.44)

For error-free transmission in the digital branch, Pe = 0 holds and the minimum
cSNR at which the HDA system outperforms the purely digital system can be
obtained using (6.43) as cSNR ≥ 4∆F − 1 = cSNRideal,Pe=0. With results from
the previous section, it can be shown that cSNRideal,Pe=0 is at the same time the
minimum theoretically required channel quality for all possible digital transmission
systems to facilitate error-free transmission. For this, the same channel coding
rates in the HDA and digital system (∆r = 0) and rmapp

H = 1 is considered
and, thus, ∆F = rccm

D (6.31). Using (6.25), the same minimum channel quality
(cSNRideal,Pe=0) at which a channel code reaching Shannon capacity (∆ideal = 0)
leads to error-free transmission, can be calculated.
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Thus, no digital transmission system achieves error-free transmission below
cSNRideal,Pe=0. Practical systems achieve error-free transmission at a higher chan-
nel quality (cSNRsat.

D , see Figure 6.7). Since cSNRsat.
D ≥ cSNRideal,Pe=0 and HDA

transmission outperforms purely digital transmission for all channel qualities greater
than cSNRideal,Pe=0, all practical HDA systems outperform purely digital transmis-
sion. Furthermore, the HDA system further benefits from the analog branch (6.34)
and the gain to purely digital transmission further increases.

Ideal channel codes reaching the Shannon capacity, exhibit a “rectangular”
waterfall. Transmission at a channel quality below the design channel quality
leads to an abrupt breakdown of the code and consequently to a bit error rate
of 50%. Evaluating (6.43) with an even smaller bit error rate (Pe = 0.25 < 0.5)
leads to a minimum cSNR = 0 =̂ cSNR|dB = −∞dB at which the HDA system
outperforms the purely digital system. Thus, for ideal channel coding, the HDA
system outperforms the purely digital transmission for all channel qualities.

Figures 6.8a and 6.8b show the bit error rate Pe after channel decoding for a
given cSNR for ∆F = 1 and ∆F = 1

3 respectively. If after digital channel decoding
more bit errors than Pe,limit given in (6.44) occur, the HDA system outperforms
purely digital transmission. The performance of ideal codes reaching the Shannon
capacity (with a “rectangular” waterfall) shows more errors than Pe,limit for all
channel qualities as discussed above.

In case of transmission below capacity, error-free transmission is not possible
anymore. But for a given capacity, which minimum error probability for a given
coding rate is still possible?

If the source bits are protected using lossy channel coding, so that each bit
of the lossy encoded bits matches the original bit with probability 1 − Pe after
channel decoding, then the source can be described as follows: according to the
rate-distortion theory, this leads to a source with rate 1−H(Pe) per source bit with
H(Pe) as the entropy of a binary source with Pe as the probability of occurrence of,
e.g., “1”. If due to channel coding rccm

D = ∆F (6.31) information bits per channel
use are transmitted over, e.g., an AWGN channel, then it holds (e.g., [Moo05, p.
51])

∆F · (1−H(Pe)) ≤ CAWGN(cSNR). (6.45)

The performance of an optimal (in the sense of a lowest possible error rate) lossy
coding system is also shown in Figs. 6.8a and 6.8b. For most channel qualities,
the curve labeled “Lossy coding” is above Pe,limit. However, for a small range of
channel qualities, the lossy coding system curve is below Pe,limit. For the employed
LMMSE estimator, this gap for ∆F = 1

3 is equivalent to a maximum of 0.096 dB
in terms of pSNR.
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(a) Quantizer fidelity difference: ∆F = 1. Codes reaching the Shannon
limit, lossy coding and transmission with BPSK without a channel
code lead to superior HDA system, since their Pe is higher than
Pe,limit.
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lossy coding, at some cSNR digital coding may be superior.

Figure 6.8: Bit error rate Pe after digital channel decoding for given
cSNR and rccm

H = rccm
D . For systems with a higher Pe than

Pe,limit (6.44), the HDA system is superior to purely digital
transmission.
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Figure 6.9: Influence of lossy coding on required performance in analog
branch.

Converting the gap in Pe to a gap in terms of pSNR can be done as follows:
Equation (6.44) is derived using the LMMSE performance (6.38) in the analog
branch. Instead, the performance bSNRa in the analog branch can directly be
considered:

Pe ≥
1

bSNRa − 4−∆F

4 · (1− 4−∆F ) := Pe,limit. (6.46)

With (6.45) it can be derived at which cSNR a lossy coding system achieves Pe,limit.
Furthermore, with (6.46), the bSNRa which is at least required to build a superior
HDA system with this given Pe,limit can be calculated. This required performance in
the analog branch for a lossy coding system for a given channel quality is depicted
in Figure 6.9a for ∆F = 1

3 . For comparison, the performance which LMMSE
estimation in the analog branch achieves is also stated. It can be seen that for
building a superior HDA system, the lossy coding system requires a performance
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in the analog branch which is by 0.096 dB higher than by LMMSE estimation.
Figure 6.9b shows that a maximum gap of 0.099 dB is achieved for ∆F = 0.4. For
smaller and greater ∆F , the gap is tinier.

Still, the depicted performance of an optimal lossy coding system can only be
achieved for the design channel quality and only asymptotically in block length and
complexity. Thus, for any practical system in which a code would be optimized
for error-free transmission and not for lossy coding, the gap will vanish. Further-
more, replacing the LMMSE estimator by an MMSE estimator could also directly
compensate this gap (Section 4.3).

In Figure 6.8, two reference systems are also depicted. For rccm
D = ∆F = 1, the

performance of an uncoded BPSK transmission is shown. For rccm
D = ∆F = 1

3 an
LTE Turbo code with information block length 104 using a random interleaver
and BPSK modulation with 20 decoding iterations is plotted. For both codes, an
HDA transmission system outperforms purely digital transmission for all channel
qualities.

Design Guidelines

The following design guidelines for an HDA system ensure superior performance
also for digital channel codes reaching the Shannon limit (∆ideal = 1) for all channel
qualities: For the analog branch, A = M channel uses are employed (rmapp

H = 1).
A simple linear analog mapper with an LMMSE estimator at the receiver achieves
(6.37). Other systems with rmapp

H 6= 1 and finite block lengths are not known to
achieve this performance. Thus, in general it is best to use a system with rmapp

H = 1.
The fidelity of the quantizer in the HDA system is lowered by ∆F = rccm

D to ensure
the same coding rate rccm

H in the digital branch as well as in the purely digital system
(rccm

D ), hence ∆r = 0 and rccm
H = rccm

D . For a non-ideal practical channel code
(0 < ∆ideal < 1), the above requirements still lead to superior HDA transmission,
but the requirements can also be relaxed as long as the performance of the analog
branch bSNRa ensures (6.37). Hence, in the analog branch, other systems not
reaching OPTA can be employed which may have other desired properties and use
rmapp

H 6= 1 (Section 6.4). Also the fidelity of the quantizer in the HDA system can
be chosen with more flexibility as long as ∆F ≥ rccm

D
r

mapp
H

, i.e., (6.26) and (6.31) hold.

Simulation Results

Figure 6.10 shows simulation results for a Gaussian source with scalar LMQ
employing a rate- 1

2 recursive systematic convolutional code with the generator
polynomial {1, 15/13}8 — the same code which is used as a component code in
UMTS-LTE. The different rates for different quantizer fidelities are achieved by
puncturing only the parity bits, thereby with BPSK modulation always yielding
N = 560. The decoder uses soft information from the channel and the inverse bit-
mapper uses ML estimation. Since the scalar quantizer uses the same quantization

105



Chapter 6 – Hybrid Digital-Analog Transmission

0 2 4 6 8 10 12 14 16 18 20

0

10

20

30

40

cSNR / dB

pS
N

R
/

dB

FH=5, rccm
H =0.83

FD=6, rccm
D =0.86

FH=4, rccm
H =0.67

FD=5, rccm
D =0.71

FH=3, rccm
H =0.50

FD=4, rccm
D =0.57

Figure 6.10: HDA and digital transmission using convolutional codes.
Gaussian source pdf and scalar Lloyd-Max quantization.
M = 80, N = 560. HDA: A = 80, D = 480.

fidelity for all symbols, FD and FH can only be integers. According to (6.31), the
digital coding rates are not equal in the purely digital system and the digital branch
of the HDA system. The convolutional codes are not capacity achieving and
hence the gap to OPTA is quite large. For instance the FD = 4 simulation with
cSNRsat.

D |dB ≈ 5 dB yields ∆ideal ≈ 0.38 =̂−4.2 dB (6.25). Linear analog mapping
(g̃(ua

H) = ua
H) and an LMMSE estimator are used in the analog branch. This

results in a bSNRa at cSNRsat.
D which is greater than the loss due to the coarser

quantizer. Most interestingly, due to the different lower rate rccm
H of the digital

branch than the rate rccm
D of the purely digital system, the waterfall of the HDA

system is shifted to lower channel qualities. E.g., with the FH = 3 simulation, a
gain in cSNR of 1 dB can be achieved while the pSNR of the HDA system is also
improved. This is due to the lower channel coding rate rccm

H in the digital branch
as in the purely digital system (rccm

D ) while the analog branch overcompensates the
resulting higher loss due to the even coarser quantizer.

Figure 6.11 shows simulation results for Gaussian and uniform distributed
source symbols with dimension M = 714 which are quantized with either scalar
Lloyd-Max quantization or uniform quantization, respectively. A rate- 1

3 Turbo
code, the same code which is used in UMTS-LTE, is employed using an interleaver
size of D = 4284 or N = 4998 bits for the HDA or purely digital system respectively.
In all simulations, 20 decoding iterations are conducted. The different rates for
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(a) Gaussian source pdf and scalar Lloyd-Max quantization.
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Figure 6.11: HDA and digital transmission using Turbo codes. M = 714,
N = 4998. HDA: A = 714, D = 4284.
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different quantizer fidelities are achieved by puncturing only the parity bits, thereby
with BPSK modulation always yielding N = 4998. To benefit from the good
performance of the Turbo code, the size of the interleaver is chosen to be around
5000. For purely digital and HDA simulations which exhibit the same coding rates,
the interleaver size cannot be chosen arbitrarily while still obtaining integer vector
lengths (Appendix C). For an overall rate of M

N
= 1

7 , M has to be an integer
multiple of 42 (Table C.1). Therefore, therefore the number of channel symbols N
has to be an integer multiple of 42/r = 42 · 7 = 294. To achieve an interleaver size
of around 5000, the vector lengths are multiplied by a factor of 5000

294 ≈ 17 which
yield M = 42 · 17 = 714 and N = 294 · 17 = 4998. In the simulation, an integer
number of quantization bits FH per source symbol is chosen for the HDA simulation
which yields a non-integer FD for the purely digital case. Non-integer quantization
bits are achieved by averaging over several symbols, e.g., 2.33 bits can be achieved
by quantizing the first symbol with 3 bits and the next two symbols with 2 bits.

In the figures, also the Optimum Performance Theoretically Attainable (OPTA)
(Section 3.4.3) for the purely digital case with a Binary-Input Additive White
Gaussian Noise (BIAWGN) channel using N

M
= 7 channel uses per source symbol is

depicted. Since BPSK modulation with soft decoding is used, the BIAWGN channel
is a valid model for calculating the capacity. For the HDA case (Section 3.4.4) a
BIAWGN channel with D

M
= 6 channel uses per source symbol for the digital branch

and an Additive White Gaussian Noise (AWGN) channel with A
M

= 1 channel use
per source symbol for the analog branch is calculated. It can be observed that all
transmission systems do not achieve capacity, but attain the performance limits
quite closely (e.g., in Figure 6.11b only 1.14 dB in terms of cSNR for FH = 2).

The superior performance of the Turbo code in comparison to the convolutional
code above is expressed in ∆ideal ≈ 0.73 =̂− 1.36 dB. This ∆ideal can be obtained
with (6.25) for the FD = 2.33 simulation with rccm

D = 1/3 where the channel code
saturates at cSNRsat.

D |dB ≈ −0.95 dB (Figure 6.11a and 6.11b). Also for this good
channel code, the linear analog mapping (g̃(ua

H) = ua
H) and an LMMSE estimator

in the analog branch achieve a bSNRa at cSNRsat.
D which is greater than the loss

due to the coarser quantizer. Thus, also here the HDA transmission outperforms
purely digital transmission at all channel qualities.

6.4 New Degrees of Freedom

HDA transmission offers new degrees of freedom in the design which are not
available in purely digital transmission. While keeping the overall transmission
power constant, the available transmission power can be unevenly distributed to
the analog and digital channel symbols. The effects and benefits of this power
distribution are described in Section 6.4.1. In the previous sections, the analog
mapper usually consists of just a scalar factor to achieve power normalization of the
quantization error. Nonlinear mappings and also mappings leading to more analog
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channel uses (A) than source dimensions (M) can be employed (Section 6.4.2). For
a given number of channel uses, the optimal assignment of these to the analog and
the digital branch is not obvious. This aspect is discussed in Section 6.4.3. If the
design of the digital branch is fixed and additional channel uses are available just
for the analog branch, the design of the analog branch provides several options to
exploit these additional analog channel uses (Section 6.4.4).

6.4.1 Optimal Power Distribution
With HDA transmission, the distribution of the power between the digital and
analog channel symbols is a new degree of freedom. The overall transmission power
is, of course, kept constant while, e.g., for good channels more power can be assigned
to the analog symbols, while the digital channel symbols are attenuated. In this
case, the “experienced” channel quality of the digital branch is lower, since symbols
with less transmission power are disturbed with a constant noise power. If the
digital code is still in the saturation region, an improved overall performance can
be achieved, since the higher “experienced” channel quality in the analog branch
can be exploited.

There are different scenarios in which an optimized power distribution is of
interest. Usually the design of the digital branch is not very flexible, e.g., when the
quantizer fidelity can only be chosen in integer steps. If at a given channel quality,
the digital branch has already saturated for the coarser quantizer but still cannot
decode without error for the finer quantizer (with the resulting weaker channel
coding and modulation), the pSNR can still be improved by choosing a better
power distribution. If in a system, the quantization and coding parameters of the
digital branch cannot be adapted to a varying channel quality, still, a variation of
the power distribution can, in a certain range, adapt the transmitter to the channel
quality.

yd
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Power
distribution

Mux

Power
distribution
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H

α

yd’
H

ya’
H

De-
mux

n

y’H

Power
dedistribution zd

H
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zd’
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za’
H

Figure 6.12: Additional processing for power distribution.

Figure 6.12 shows the additional processing blocks which are necessary for
choosing an optimal power distribution. The output of the digital and analog
branch at the transmitter (yd

H and ya
H) and the input to the branches at the receiver

(zd
H and za

H) are the same as in Figure 6.2.
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Before transmission over the AWGN channel, it is assured that the average
power is 1 for all channel symbols. This leads to the following average energy (see
footnote 1 on page 8) of the vector y’H:

E
{
||y’H||2

}
= N. (6.47)

A new factor 0 < α < 1 controls the power of the analog and the digital channel
symbols. It describes the ratio between the energy of the analog transmission vector
ya’

H and the energy of the whole transmission vector y’H:

E
{
||ya’

H ||2
}

= α ·N. (6.48)

Consequently, the energy of the digital transmission vector is

E
{
||yd’

H ||2
}

= (1− α) ·N. (6.49)

Thus, a “neutral” power distribution as in the above sections and in Figure 6.2 can
be achieved by choosing α = A

N
.

The energy before of the digital symbol vector before the power distribution
is E

{
||yd

H||2
}

= D and for the analog symbol vector it holds E
{
||ya

H||2
}

= A.
Therefore, the scaling of the corresponding symbols can be described by:

ya’
H = ya

H ·
√
α · N

A
, (6.50)

yd’
H = yd

H ·
√

(1− α) · N
D
. (6.51)

The “experienced” channel quality cSNRa of the analog branch is as follows:

cSNRa =
E
{

(ya’
H )2}

E {n2} =
E
{
||ya’

H ||2
}

E {||n||2} · A
N

(6.48)= N · α
E {||n||2} ·

N

A

(6.47)=
E
{
||y’H||2

}

E {||n||2} · α ·
N

A

= cSNR · α · N
A
. (6.52)

The channel quality cSNRd of the digital branch is:

cSNRd = cSNR · (1− α) · N
D
. (6.53)

The overall performance of an HDA transmission system with an arbitrary power
distribution α can also be derived analytically. For this, the individual performances
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of the digital and the analog branch have to be available for all channel qualities,
for an arbitrary reference power distribution α0. In the following, the dependency
of the overall pSNR on the branch SNR is calculated and then the influence of α is
derived.

With (6.21) the MSE and, thus, the pSNR of an HDA system can be stated as
a function of the SNR of both branches (bSNR):

E
{
||u− û||2

}
= E

{
||ud

H − ûd
H||2
}

+ E
{
||ua

H − ûa
H||2
}

(6.6),(6.7)=
E
{
||ud

H||2
}

bSNRd +
E
{
||ua

H||2
}

bSNRa , (6.54)

leading to

pSNR (2.2),(6.54)=
E
{
||u||2

}

E{||ud
H||2}

bSNRd + E{||ua
H||2}

bSNRa

. (6.55)

For any HDA system and the reference α0, the SNR of each branch at the channel
quality cSNRα0 can be stated as bSNRa

α0 (cSNRα0 ) and bSNRd
α0 (cSNRα0 ). Using

(6.52) and (6.53), the channel qualities which are experienced by the individual
branches during the simulation are

cSNRa = cSNRα0 · α0 · N
A
, (6.56)

cSNRd = cSNRα0 · (1− α0) · N
D
. (6.57)

The experienced channel quality of each branch for a chosen α can be stated in
dependency of the channel quality cSNRα, analogously as above:

cSNRa = cSNRα · α · N
A
, (6.58)

cSNRd = cSNRα · (1− α) · N
D
. (6.59)

Equation (6.58) and (6.56) for the analog branch and (6.59) and (6.57) for the
digital branch, lead to a relation between the desired channel quality cSNRα for
the chosen α and the reference channel quality cSNRα0 at which the corresponding
bSNR is looked up. For the analog branch, it holds:

cSNRα0 = cSNRα · α
α0
, (6.60)

and for the digital branch

cSNRα0 = cSNRα · 1− α
1− α0

. (6.61)
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Thus, given the simulation results for just one reference α0, the performance of an
HDA system with an arbitrary α can be stated analytically as follows:

pSNR(α, cSNR) (6.55),(6.60),(6.61)=
E
{
||u||2

}

E{||ud
H||2}

bSNRd
α0

(
cSNR· 1−α

1−α0

) + E{||ua
H||2}

bSNRa
α0

(
cSNR· α

α0

)
.

(6.62)

Figure 6.13 shows the performance of three different HDA systems with varying
power distribution α. All systems use 100-dimensional (M = 100) source symbols
with a uniform pdf. Different scalar uniform quantizers with fidelities between
FH = 2 and FH = 4 bit per symbol are employed. A rate- 1

2 convolutional code with
puncturing and BPSK modulation leading to N = 400 channel uses is utilized. In
the analog branch an LMMSE estimator is employed.

The solid lines correspond to simulations with a neutral power distribution
(α = A

N
). The dashed lines and the solid black line depict simulation results with

the same FH = 3 and varying α. In Figure 6.13a, the dashed lines and the solid
black line correspond to simulations with an α ∈ {0.05, 0.1, 0.2, 0.4, 0.8} in which
the power in the analog branch is doubled from one curve to the other. This leads to
3 dB gains of the pSNR in the high-cSNR region. In Figure 6.13b, the dashed lines
and the black solid line correspond to simulations with an α ∈ {0.9, 0.8, 0.6, 0.2}
in which the power in the digital branch is doubled from one curve to the other
leading to 3 dB left shifts of the waterfall.

Especially interesting for this setup are the simulations with FH = 3 and
α ∈ {0.4, 0.6}. Without varying the fidelity of the quantizer (FH = 3), these
simulations achieve optimal operating points which lie in between the simulations
with FH = 3 and FH = 4 with α = A

N
. Thus, the power distribution with α ≥ A

N

provides a simple method to gradually adapt the performance of an HDA system.
Figure 6.14 shows the performance of the same system as above for Gaussian

sources and a fixed fidelity FH = 3 with α ∈ {0.05, 0.2, 0.8}. The solid lines show
the simulated performance while the crosses depict the performance obtained with
(6.62) using the simulation result with α0 = 0.2 as a reference for the branch SNR
of the digital and analog branch. The simulated and the theoretical performance
match perfectly.

6.4.2 Variants of the Analog Branch
The inherent difference of HDA transmission systems compared to purely digital
transmission is the additional analog branch which transmits the quantization error.
Many designs of an analog branch are possible while still ensuring a fair comparison
between HDA and purely digital transmission. In the previous sections only linear
analog mapper and demapper are employed. In Figure 6.15 nonlinear mapper and
demapper are compared and also mappings with two analog output symbols per
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Figure 6.13: HDA transmission using convolutional codes with a uni-
form source pdf and scalar uniform quantization. M = 100,
A = 100, D = 400, N = 500. The fidelity of the quantizer
and also the power distribution α are varied.
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Figure 6.14: HDA transmission using convolutional codes with a Gaussian
source pdf and scalar Lloyd-Max quantization. M = 100,
A = 100, D = 400, N = 500, FH = 3. Solid lines are obtained
with simulations and the crosses are calculated using (6.62)
with α0 = 0.2.

analog input symbol are shown. Puncturing in the digital branch facilitates the
same overall number of channel uses N = 56 for M = 8 source symbols for all
simulations.

In all simulations, source symbols with a uniform pdf are employed with different
scalar uniform quantizers with fidelities between F = 3 and F = 5 bit per symbol. A
rate- 1

2 convolutional code with puncturing and BPSK modulation is utilized. First,
a purely digital transmission system with FD = 4 is depicted for comparison which
is superseded by an HDA system with FH = 3 and a linear analog mapper with
an LMMSE estimator as the analog demapper. Instead of the LMMSE estimator,
also an MMSE estimator can be employed which slightly increases the performance
for around 5 dB < cSNR|dB < 25 dB. The convergence of the MMSE estimator to
the LLMSE estimator for increasing channel qualities has already been observed in
Section 4.3. In the analog branch of an HDA transmission system, also a numerically
optimized compander system, as described in Chapter 4, can be utilized. Again,
the performance is slightly increased and in contrast to the MMSE estimator, for
increasing channel qualities a constant performance improvement of the pSNR of
0.4 dB can be observed. The improvement is exactly the same as already observed
in Section 4.3.2 for a uniform source distribution, since the quantization error in
this simulation also has a uniform pdf.
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Figure 6.15: Purely digital and HDA transmission using a convolutional
code with a uniform source pdf and uniform scalar quantiza-
tion with M = 8 and N = 56 for all simulations. Different
quantizers and analog mappings are compared.

A very interesting configuration is the use of a nonlinear analog mapping with
two output symbols per source symbol. If well designed, this nonlinearity leads
to an improved performance in the high-cSNR region. The downside is the larger
number of channel uses for the analog branch which decreases the performance of
the digital channel code, since puncturing is employed. One simulation (FH = 3
Spiral, LMMSE) shows an HDA system with FH = 3 and an Archimedes spiral
(Section 4.4.1) with ∆ = 0.3 and LMMSE estimation. LMMSE estimation for
nonlinear mappings can be facilitated using a concatenation of LMMSE and ML
estimation (Section 6.3.3). The performance at high channel qualities is thereby
improved by 12 dB compared to a linear mapping with the same quantization
fidelity. Using a higher fidelity of FH = 5 and a linear mapper with LMMSE
estimation results in about the same high-cSNR performance, but the HDA system
with a linear mapper outperforms the one with Archimedes spiral at lower channel
qualities.

6.4.3 Optimal Partition of Channel Uses

The partition of a given (fixed) number of channel uses N to digital and analog
channel uses (D and A) is a new degree of freedom, which is introduced by the
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HDA concept. At first sight, it is not obvious, how many channel uses should be
given to the analog branch. The overall performance of an HDA system is governed
by the performance of both, the digital and the analog branch. Thus, it is most
favorable if both branches exploit the assigned channel uses in the most effective
way. In the analog branch, there exists just one analog mapper which achieves
the best possible performance per channel use. For Gaussian input ua

H, a linear
analog mapper (g̃(ua

H) = ua
H) with the same number of channel uses A as source

dimensions M and an LMMSE estimator achieves OPTA (Section 3.4). For any
mapping with rmapp

H = M
A
6= 1 and finite block lengths, the available analog channel

uses are not exploited efficiently, since OPTA cannot be reached anymore [Gas02].
In case of A < M channel uses for the analog branch (a compressing analog

mapper is used with rmapp
H > 1), more channel uses are available for the digital

branch. Unfortunately, since also the digital branch cannot reach OPTA for finite
dimensions, these additional dimensions are not used as effectively as they could
be with an analog system.

For A > M channel uses in the analog branch, a system has to apply nonlinear
elements in the analog branch (Section 2.4.2) in order to approach OPTA. As
already shown in Section 2.4.3 this analog mapper can be understood as another
HDA system. A system which uses a “small” HDA system as the analog mapper
for another “big” HDA system would have two digital branches: a digital branch
with a small block length and a digital branch with a long block length. Due to
the effects described by the Sphere Packing Bound (SPB) (Section 3.6) long block
lengths are favorable. Thus, these two digital branches should be combined to
jointly achieve a better performance due to the longer (combined) block length.
The resulting system with one digital branch and the remaining analog branch
from the “small” HDA system is equivalent to the above described HDA system
with an analog mapper with rmapp

H = 1.
In total, for a given fixed number of channel uses N , when no constraints

on the design of the HDA system are given, it is best to use an analog mapper
with rmapp

H = 1. It should use A = M dimensions for the analog branch and the
remaining D = N −A dimensions for the digital branch.

6.4.4 Exploiting Additional Analog Channel Uses
In the previous sections, a strong emphasis is placed on a fair comparison between
purely digital and HDA transmission. This is ensured by the same number of
source dimensions M and channel uses N in simulations. HDA codes may also be
used in a different scenario: If a digital transmission system is given and cannot
be adapted to exploit additional available channel uses, this digital system can be
taken as the digital branch of an HDA system and the additional channel uses can
be utilized by the analog branch. The analog branch acts as an enhancement layer
to the purely digital system.

At the channel qualities at which the performance of the digital branch has
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Figure 6.16: Purely digital transmission using a convolutional code with
a uniform source pdf and uniform scalar quantization with
FD = 3. M = 10, N = 60. Hybrid systems use the same
digital branch with FH = 3, D = 60 and additional channel
uses, either with a linear mapping, Archimedes spirals or
Analog Modulo Block Codes (AMBCs).

saturated, the performance gain due to the additional analog branch can easily
be stated as the sum of the cSNRsat.

D of the digital branch and the bSNRa of the
analog branch (6.34).

Figure 6.16 shows the performance of a purely digital transmission system and
HDA systems with additional channel uses for the analog branch. Symbols following
a uniform source pdf with M = 10 dimensions are quantized using FD = FH = 3
bits per symbol. A rate- 1

2 convolutional code and BPSK modulation leads to
N = 60 channel uses in the purely digital system and D = 60 channel uses in the
digital branch of the HDA system. The HDA systems use the same parameters in
the digital branch as in the purely digital transmission system but with additional
channel uses to improve transmission quality. The HDA system with rmapp

H = 1
uses a linear mapping with LMMSE estimation (N = 70). Two HDA systems
with Archimedes spirals are depicted with rmapp

H = 1
2 and different densities of the

spiral (∆ = 0.1 and ∆ = 0.4) using an LMMSE estimator and a total of N = 80
channel uses. Another variant of the analog branch are AMBCs as introduced in
Chapter 5. Here three different AMBCs with rates rmapp

H ∈
{ 1

2 ,
1
3 ,

1
4

}
are employed

with N ∈ {80, 90, 100}.
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The overall performance of the transmission system is significantly increased due
to the additional analog branch. Depending on the amount of available additional
channel uses, the pSNR at, e.g., cSNR|dB = 20 dB can be improved by 20 dB, 30 dB,
33 dB or even 40 dB.

Thus, also in the case of a given digital branch, additional channel uses can
be exploited by HDA transmission providing powerful means to still improve the
overall transmission quality.

6.5 Iterative Source-Channel Decoding
In Section 6.3.4 the statistical dependency of the quantization error ua

H and the
quantized values ud

H has already been introduced. For uniform source pdfs and
uniform quantizers these variables are statistically independent, but, e.g., for a
Gaussian source with an LMQ, statistical dependency can be exploited, e.g., by a
joint MMSE estimation at the receiver (Figure 6.4).

In, e.g., [Adr03,SACV11], a Iterative Source-Channel Decoding (ISCD) system
is introduced which consists of serial turbo-like decoding which exchanges extrinsic
information about the information bits between the Soft Decision Source Decoder
(SDSD) and the soft decision channel decoder. The SDSD exploits a-priori informa-
tion about the source statistics, e.g., the source pdf or correlation in time or space
to improve the reliability of the information received by the channel decoder. The
improved information is fed back to the channel decoder and enhances the reliability
even further by exploiting the structure of the channel code. The information
exchange is usually facilitated by L-values which represent the probability of a bit
being one or zero.

To design a powerful ISCD transmission system, usually a rate-1 convolutional
encoder and redundant bitmapping is used. Both are connected by an interleaver.

In the context of HDA transmission, the idea of ISCD can be developed even
further. In case of statistical dependency of the quantization error and the quantized
values, the received symbols in the analog branch carry information about the
received bits in the digital branch. Thus, they can be used as a-priori information
in the SDSD. As an intermediate step in the SDSD, the a-posteriori probability of
each quantization level is calculated using the L-values from the channel decoder
and a-priori information from the source statistics. If, e.g., an LMQ is used which
has very narrow quantization intervals at small values and very wide quantization
intervals at the tail of the pdf, a received analog symbol with a very high value will
most probably correspond to a quantization interval at the tail of the pdf. This
information is additionally combined in the SDSD to alter the probabilities of the
quantized values. The reliability of the analog received symbols, i.e., the influence
of the AWGN channel is considered, too.

Figure 6.17 shows the structure of an HDA system with ISCD. At the transmit-
ter, an interleaver (π) is inserted between the source encoder (quantization and
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Figure 6.17: Hybrid Digital-Analog (HDA) transmission system with Iter-
ative Source-Channel Decoding (ISCD).

redundant bitmapping) and the channel encoder. At the receiver, a de-interleaver
(π−1) is needed between the channel decoder and the SDSD. Furthermore, a feed-
back loop for the extrinsic information gained in the SDSD with an interleaver is
introduced. The received symbols from the analog branch are fed directly to the
SDSD.

Figure 6.18 shows simulation results for an 800-dimensional (M = 800) Gaussian
source which is quantized using a FH = 4 bit LMQ. Redundant bitmapping is used
which adds another 4 bits per source symbol by bit repetition. A rate-1 recursive
non-systematic convolutional code with the generator polynomial {1, 10/17}8 and
BPSK modulation is employed. Thus, the coding rate of the system is rccm

H = 1
2

and including the analog branch the channel dimension is N = 7200. A maximum
of 20 iterations is allowed for decoding. The employed interleaver is an S-random
interleaver with a minimum distance of 8 which is the number of bits after the
redundant bitmapping. The green curve shows the performance of an HDA decoding
system (Figure 6.2) with two independent MMSE estimators, one for the analog
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Figure 6.18: Performance of HDA with ISCD. The green curve shows
the performance of independent MMSE estimation in both
branches. The red curve uses joint estimation of both
branches. The blue curve additionally uses the Analog Side
Information (ASI) from the analog branch to improve the
performance.

branch and one for the digital branch. Here, in the digital branch a ISCD decoder
is used. The red curve shows the improved performance by using a joint MMSE
estimator for both branches as described in Section 6.3.4. Here, the statistical
dependency between the quantized values and the quantization error is exploited.

The blue line shows the best performance obtained by the system in Figure 6.17.
Here, the information of the analog branch (Analog Side Information (ASI)) is used
in the SDSD to improve the reliability of the quantized values and additionally
this extrinsic information is fed back to the channel decoder. Consequently, the
decoding performance of the channel decoder is also slightly improved, which results
in a shift of the waterfall to the left. Hence, exploiting the ASI, which is provided
by the analog branch of the HDA system in the context of ISCD, improves the
overall system performance.

More details, the complete derivations and also the influence of the ASI on the
so called Extrinsic Information Transfer (EXIT) chart are described in [Bun12].
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6.6 Discussion

6.6 Discussion
In this chapter, the following question has been considered: “Can HDA codes using
conventional digital codes outperform conventional purely digital codes?”

This question can be answered positively. HDA transmission systems which
use conventional digital codes are introduced in Section 6.2. It has been shown in
Section 6.3.5 that for every purely digital transmission system, a corresponding
HDA transmission system can be designed which exhibits superior performance
while using the same number of channel uses and the same transmission power.
Furthermore, for channel codes not achieving capacity, the HDA system can be
configured with a lower channel coding rate in the digital branch as in the purely
digital system. This moves the waterfall to lower channel qualities. Thus, without
increasing the complexity or using more powerful digital channel codes, the waterfall
region can be shifted to lower channel qualities while the pSNR is still superior.
Furthermore, the pSNR is superior for all channel qualities.

Explicit design guidelines have been presented with supporting simulation results
for AWGN channels. For fading channels, similar results are given in [RBV14]. The
complexity of an HDA transmission system compared to purely digital transmission
is only moderately increased since the analog branch just applies a scalar factor
(LMMSE estimator) and one additional summation per source symbol. Depending
on the implementation, the complexity of the HDA system may even decrease. This
is due to the fewer quantization bits and hence fewer bits which need to be encoded
and decoded in the digital branch.

Both, the analog and the digital branch of the system use independent estimators
which is suboptimal in some cases (Section 6.3.4). Using joint estimation leads to
an improved pSNR performance. However, the achievable gains are relatively small.
The reason is that quantizers generate only small statistical dependencies between
the quantized values and the quantization error. But, precisely these dependencies
are exploited by a joint estimator. Also a combination of HDA and ISCD which
exploit the statistical dependencies between the digital and the analog branch leads
to an even superior performance (Section 6.5). Interestingly, the information of
the analog branch can be used to improve the performance of the digital channel
decoder, thus, leading to successful decoding at smaller cSNRs. Though, the gains
are relatively small and may probably not justify the complexity increase.

A nice feature of HDA transmission systems is that they offer new degrees
of freedom (Section 6.4). The power between the digital and analog channel
symbols can be distributed unevenly. This provides a means to easily adapt the
performance of a system to a given channel quality. Furthermore, other analog
mappers besides simply a scalar factor, can be employed to increase the performance
or create other desired properties. Most interestingly, if the design of a purely
digital transmission system cannot be adapted to additionally available channel
uses, the overall performance can be significantly increased by adding an analog
branch, thus, designing an HDA system!
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Chapter 7

Application Example:
Hybrid Digital-Analog

Transform Coding

7.1 Introduction

In the context of a combined digital and analog transmission, there are, in general,
several methods which could be employed to exploit correlation in source signals.
In [HV06,HV07] a system optimized for speech signals is proposed. Predictive
source coding is employed, while the spectral envelope is transmitted digitally, and
the prediction error is transmitted using continuous-amplitude processing.

Skoglund et al. [SPA02] published an HDA system for sources with and without
correlation by using vector quantization and a redundant mapping of quantization
indices to channel vectors as the digital branch and uncoded transmission of the
quantization errors as the analog branch. The digital and analog channel symbols
are multiplexed and transmitted over an additive white Gaussian noise (AWGN)
channel. The vector quantizer, the decoder codebook at the transmitter side (to
calculate the quantization error), the decoder codebook at the receiver side, the
redundant mapping and normalization factors for the analog branch are optimized
jointly using numerical methods. For an 8-dimensional Gaussian vector source
whose symbols are transmitted with 16 channel symbols, Monte Carlo simulations
show [SPA02] the superiority of the HDA system over a purely digital system which
uses the same numerical optimization strategy.

Nonetheless, the aforementioned system has drawbacks: the design of the
HDA codes is complex and, thus, infeasible for long block lengths. Additionally,
exhaustive search in the decoding algorithms is required for the general vector
quantization and the redundant mapping (look-up table decoding).

In the following sections, the use of transform coding to exploit correlation of
the source in the context of HDA transmission is described [RV13b]. The ideas
of the design of HDA codes for independent identically distributed (i.i.d.) sources
as in Chapter 6 inspire a new Hybrid Digital-Analog transform coding system. It
is based on a block transform to exploit source correlation and a simplified HDA
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design employing well-known digital codes and potentially long block lengths with
analog transmission of the quantization error.

First, the purely digital transmission system with block transform is briefly
discussed in Section 7.2 as well as block transform and bit allocation techniques are
reviewed in Section 7.3. Section 7.4 introduces the Hybrid Digital-Analog extension
for block transform coding with its simulation results in Section 7.5. The chapter
is concluded with a short discussion (Section 7.6).

7.2 Purely Digital Transmission System
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Figure 7.1: Purely digital transmission system with transform coding.

Figure 7.1 shows a conventional digital transmission system with transform
coding. The system is very similar to the purely digital transmission system
described in Section 6.2.1. Additional functionality is added by a block transform
which performs a decorrelation of the source symbols. The source emits continuous-
amplitude and discrete-time source symbols s with dimension 1×M following the
probability density function (pdf) pS and correlation ρ of successive symbols. At the
receiver, after reconstruction of the quantized values, the inverse block transform
gives an estimate ŝD of the initial source symbols s.

The end-to-end symbol SNR for the purely digital and the Hybrid Digital-Analog
(HDA) systems are described by the sSNR defined in (2.1).

7.3 Block Transform and Bit Allocation
The block transform can be described by a matrix multiplication:

(uj·L, ..., uj·L+L−1) T = T · (sj·L, ..., sj·L+L−1) T ∀j ∈ N. (7.1)

The matrix T has the dimension L×L. If M > L, the vector s is partitioned to an
integer number of blocks of the length L, T is applied to each block and the results
are concatenated to yield u with length M . If the transform matrix T is orthogonal
(i.e., unitary, but real-valued), then the subsequent bit allocation works best and
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the matrix used for the inverse block transform is T T. A well known orthogonal
transform yielding optimal results is the Karhunen-Loève Transform (KLT). Here,
the transform matrix is adapted to the source statistics and has to be send to
the receiver as side information. To avoid sending this additional information,
a fixed transform is sought. The Discrete Cosine Transform (DCT) is a good
approximation of the KLT and yields reasonable performance without transmitting
any side information. Unfortunately, also for a source without correlation the first
coefficient of the DCT transform has twice the variance of the other coefficients.
Thus, this transform is not orthogonal. But with a normalization by 1/

√
2 of the

first coefficient ensures orthogonality. Here, this normalized DCT (DCTN) will be
employed to use a orthogonal transform and to avoid sending the source specific
KLT matrix as side information.

For the bit allocation, the well known water filling technique is used. First,
the variance of each vector entry is computed. Then single bits are repetitively
assigned to the quantizer of the vector entry with the highest variance. Then, the
corresponding variance is lowered by 6 dB and the assignment is repeated until all
bits are spent [JN84]. The maximum gain in dB which can be expected exploiting
a source correlation with the correlation factor ρ is given by 10 · log10

(
(1− ρ2)−1)

[JN84].

7.4 Hybrid Digital-Analog Transmission System
Figure 7.2 illustrates the HDA transmission system (Section 6.2.2) which is extended
by transform coding. Here, a block transform and the inverse block transform are
added.

Due to the bit allocation and the resulting different quantizers for different
entries of u, the power of the quantization error ya

H is not the same for all entries.
Therefore, for each entry ya

H,i, a different normalization has to be applied:

ya
H,i =

√
1

E{(g̃i(ua
H,i)

2}
· g̃i(ua

H,i) = gi(u
a
H,i) ∀ 0 ≤ i < M. (7.2)

In case of a very small power or too few bits, the bit allocation may choose to
allocate zero bits to one entry. Then no information about this entry is transmitted
using the digital branch and the original entry is send using only the analog branch.

After adding the outputs of the analog and digital branches and after the inverse
block transformation, ŝH gives an estimate of the initial source symbols.

7.5 Simulation Results
Figure 7.3a shows the performance of several HDA and purely digital transmission
systems. A Gaussian source with correlation ρ = 0.8 and dimension M = 120 is
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Figure 7.2: HDA transmission system with transform coding.

transformed by a DCTN with L = 120 and quantized using a scalar Lloyd-Max
Quantizer (LMQ) whose fidelity is assigned by water filling. In both systems, a
parallel concatenated Turbo code using convolutional component codes with the
generator polynomial {1, 15/13}8 and random interleaving is used with 20 decoding
iterations. The Turbo code is the same code which is used in UMTS-LTE [3GP11],
though the input block length is `v. The modulation is chosen to be BPSK. All
simulations employ N = 720 channel uses, while the HDA system utilizes a linear
mapper (g̃(ua

H) = ua
H) with A = M = 120 dimensions for the analog branch and

D = N − A = 600 dimensions for the digital branch. Puncturing of parity bits
facilitates the adaptation of the channel code rate of the digital branch for the HDA
(rccm

H ) and the purely digital (rccm
D ) system. The analog demapper is a LMMSE

estimator. For each shown purely digital system, a corresponding HDA system
is designed transmitting on average fewer quantization bits per source dimension
FH < FD to ensure the same channel coding rate rccm

H = rccm
D (design guidelines

in Section 6.3.5). In contrast to the simulations using the same scalar quantizer
for each symbol (e.g., Figure 6.10), the water filling employed here facilitates the
use of, on average, fractional bits per source dimension to ensure the same channel
coding rate for HDA and purely digital systems. Most interestingly, all HDA
systems surpass the corresponding purely digital system for all channel qualities
and additionally improve the sSNR for increasing channel qualities cSNR.
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(a) DCTN transform and Turbo coding.
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(b) Envelopes for simulations with and without DCTN transform.

Figure 7.3: HDA and digital transmission for a Gaussian source with cor-
relation ρ=0.8 and Turbo coding. M=120, L=120, N=720.
FH and FD are the number of quantization bits per source
symbol for the HDA and purely digital system, respectively.
Purely analog transmission system for comparison.
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In Figure 7.3b, the same simulation parameters are used as above, but here, only
the upper envelope of the curve array for varying quantizer fidelities is shown. Two
experiments use the DCTN and two are conducted without transform coding. For
comparison, a purely analog transmission system is depicted in which the source
vector is transmitted N/M = 6 times and at the receiver a LMMSE estimator
combines the received symbols (Section 3.2.2). Again all simulations use the same
source and channel dimensions.

Transform coding using the DCTN improves the sSNR of the transmission
system. For both, the purely digital and the HDA transmission system, the
performance increases by around 4.2 dB which is quite close to the theoretical limit
of 10 · log10

(
(1− ρ2)−1) = 4.4 dB [JN84]. All envelopes of HDA systems surpass

the envelopes of their corresponding purely digital transmission systems for all
channel qualities.

7.6 Discussion
In this chapter, a new Hybrid Digital-Analog (HDA) transmission system for sources
with correlation is proposed. A block transform is used to perform a decorrelation
of the source symbols to exploit its potential to improve the overall end-to-end
fidelity. In addition to the digital representation of the transform coefficients,
the HDA system also transmits the quantization error in the transform domain
using continuous-amplitude methods. Thus, the inherent error introduced by the
quantizer is compensated by additional analog transmission. With improving
channel qualities, thereby, the saturation of the transmission fidelity is eliminated
as in the HDA system described in Chapter 6.

In comparison to a purely digital system, the transmission fidelity of the HDA
system is superior for all channel qualities while the overall number of channel uses
is kept constant. Moreover, since well-known, excellent digital codes are employed,
long block lengths can be supported.

Simulations comparing purely digital and HDA transmission systems employing
Gaussian source pdfs with correlation, an orthogonal transform with water filling
as the bit allocation technique and Turbo codes show the superiority of HDA
codes over purely digital codes for all channel qualities. These simulations also
indicate that the performance of HDA codes additionally rises for increasing channel
qualities (graceful improvement). Ultimately, the proposed HDA transmission
system surpasses the purely digital transmission system at all channel qualities.
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Chapter 8

Comparison of Proposed Systems

8.1 Introduction
In the preceding chapters, several transmission systems employing continuous-
amplitude techniques are analyzed. Each of these systems has its specific strengths
and weaknesses in its specific fields of application. The properties of the proposed
systems are summed up in Section 8.2.

For one common very specific field of application, all proposed systems may be
parametrized accordingly. In Section 8.3 simulation results are given to enable a
performance comparison.

8.2 Properties of Proposed Systems

8.2.1 Linear Analog Block Codes
Linear Analog Block Codes (LABCs) (Section 3.2 and [RSV09]) employ only linear
operations to transmit a source vector and to decode the received vector. This very
low complexity scheme just employs one matrix multiplication at the transmitter.
It has been shown that even this multiplication can be omitted, since appropriately
repeating the input vector is already optimal. Decoding may be conducted using
again just a matrix multiplication, or in case of repetition simple averaging is
sufficient. The scheme supports single letter codes (M = 1). For a rate of
r = M

N
= 1 and Gaussian input symbols, LABCs achieve capacity.

For rates r < 1, LABCs cannot exploit the additional channel uses to significantly
improve the transmission quality. Doubling the number of channel uses just leads
to an improvement of 3 dB in terms of pSNR (3.11).

8.2.2 Compander and Space Filling Curves
In Chapter 4 compander and space filling curves are analyzed. Here, a compressor
function y = g(u) (non)-linearly maps the source symbols u to (several) channel
symbols y. The received symbols z are (non)-linearly mapped to the estimate û by
an expander û = h(z). The scheme supports single letter codes (M = 1). For a
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1:1 system (N = M = 1) and input symbols which are not Gaussian, a nonlinear
mapping improves the overall performance. For Gaussian symbols, again a linear
mapping is optimal as in the case of LABCs. For a 1:2 mapping which nonlinearly
maps one source symbol to two channel symbols, significant gains compared to
linear systems can be observed. Especially mappings with closed form expressions
such as the Archimedes spiral are well suited.

The compressor and expander may be further optimized using iterative numerical
methods. This helps to further improve the performance compared to, e.g., a
linear mapping in the 1:1 case or the Archimedes spiral in the 1:2 case, but is
computationally very complex during design time. During runtime these optimized
mappings and estimators have to be realized with lookup tables which is infeasible
for longer block lengths. Also, there are no mappings known in literature for longer
block lengths exhibiting a good performance.

8.2.3 Analog Modulo Block Codes
In Chapter 5 Analog Modulo Block Codes (AMBCs) are introduced. They are
inspired by LABCs with an additional modulo operation as a nonlinearity. Single
letter codes are supported and systematic AMBCs exhibit the nice property that
the source symbols are sent unchanged as the first channel symbols. Different
types of decoders may be employed including Zero-Forcing with Lattice Reduction
(ZFLR) decoding which nearly achieves Maximum Likelihood (ML) performance,
but with significantly lower complexity. The idea of adding the modulo operation
as a nonlinearity to the LABCs is very fruitful, since the performance of AMBCs is
significantly higher than the performance of purely linear systems.

So far, only for very specific rates and block lengths, a good design strategy is
proposed, e.g., for M > 1 the optimal design is still to be found. Thus, AMBCs
are not yet suited for longer block lengths but with an appropriate design strategy
longer block lengths are feasible with, e.g., ZFLR decoding. Additionally, so far,
only uniform source probability density functions (pdfs) are considered. For other
source distributions, compressor functions would have to be employed [Sak70] to
map the source symbols to a limited range.

8.2.4 Hybrid Digital-Analog Transmission
Hybrid Digital-Analog (HDA) transmission is analyzed in Chapter 6. These systems
exploit the insight that the channel space of any nonlinear continuous-amplitude
transmission system can be decomposed into a subspace in which only discrete
values occur and a subspace with continuous values (Section 2.4.3). In HDA
transmission systems, this insight is transformed to the design rule. A purely digital
transmission system (digital branch) occupies part of the channel uses and the
quantization error occurring in the digital branch is additionally transmitted using
continuous-amplitude means (analog branch).
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HDA systems benefit from the advantages of purely digital transmission systems.
It can be selected from a huge variety of channel codes, each with its specific prop-
erties. Long block lengths with capacity approaching performance are supported.
In Section 6.3.5 it has been shown that HDA systems achieve the same or superior
performance as purely digital systems, with the additional advantage that the
end-to-end SNR increases for rising channel qualities and does not saturate as in
any purely digital system. In the analog branch, the above mentioned transmis-
sion systems such as Archimedes spirals or AMBCs can be employed to add even
more flexibility. Single letter codes are supported by HDA systems, but there are
only very few possible variants and not an infinite number of setups as in case of
Archimedes spirals or AMBCs.

The complexity of HDA systems is only marginally higher than of purely digital
systems. Therefore all block lengths and performance limits reached by purely
digital transmission systems in practice can also be reached with HDA transmissions
with the additional benefit of an increased performance for rising channel qualities.

8.3 Simulation Results
It is not trivial to compare the different transmission systems described in the
previous chapters, since all of them have their individual strengths and weaknesses.
For the special case of a uniform source pdf with M = 1 source symbol and N = 2
channel symbols, all systems can be designed. In Section 8.3.1 all systems are
compared for the rate r = M

N
= 1

2 . First, systems with the shortest possible block
length (M = 1) are considered. Later, HDA system which offer a much higher
flexibility, since they can be designed with long block lengths with, e.g., M = 5000
source symbols. With these systems, the gap to capacity is reduced.

Thanks to their flexibility, HDA systems may be designed for such rates. But,
since these rates are rather unusual, further HDA transmission systems are evaluated
in Section 8.3.2 and compared to purely digital transmission.

8.3.1 Two channel symbols per source symbol (r = 1/2)

Very Small Block Length (M = 1)

In Figure 2.3 in Chapter 2, different examples of 1:2 systems are depicted. Here, each
system is parametrized to yield the same high-cSNR performance. In Figure 8.1
their performances are compared. Additionally, the upper performance bound
Optimum Performance Theoretically Attainable (OPTA) for a uniform source pdf
(Section 3.4) is shown.

The performance of a purely linear system, i.e., an LABC is given in (3.11). Also,
the equidistant Archimedes spiral (Section 4.4.1) with ∆ = 0.25 and an AMBC
(Chapter 5) with A = [1 3.9] is depicted. As HDA system, a uniform quantizer
with FH = 2 bits per symbol, no channel coding and 4-ASK modulation is chosen.
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Figure 8.1: Performance comparison of the systems shown in Figure 2.3,
with ML decoding. Scalar source symbols (M = 1) with a
uniform pdf are transmitted using N = 2 channel uses with a
linear system, an equidistant Archimedes spiral with ∆ = 0.25,
an AMBC with A = [1 3.9] and an HDA system with FH = 2
quantization bits, no channel coding and 4-ASK modulation.

In the HDA system, an ML estimator is used as analog demapper. All systems use
N = 2 channel symbols for M = 1 source symbol and ML estimation. The AMBC
uses the Discrete Maximum Likelihood (DML) estimator. For the Archimedes spiral
and the AMBC, the high-cSNR performance can be arbitrarily chosen. For the
HDA system with such a small block length, the high-cSNR performance can only
be parametrized by the resolution of the scalar quantizer. For this small block
length, the strengths of HDA transmission systems cannot be fully exploited.

The purely linear system cannot be parametrized at all and shows the poorest
performance at high channel qualities. The HDA and AMBC transmission systems
achieve a similar performance, while the HDA system is marginally better. The
performance of the Archimedes spiral decreases more heavily for lower channel
qualities than the other transmission systems.

The similar performance of the HDA transmission and the AMBC can be
explained by the similar structure of the valid code vectors in the channel space
(Figure 2.3). Both systems exhibit parallel arms while a rotation of the code
vectors of the AMBC (nearly) yields the same code vectors as the HDA system.
This interesting property is exploited by several types of decoders of AMBCs
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Figure 8.2: Performance comparison of several systems for source symbols
with a uniform pdf with M = 1 source symbol and N = 2
channel symbols. HDA systems with FH = {1, 2} quantization
bits, BPSK or 4-ASK modulation are given. Also, the envelope
of all 1x2 AMBCs and of all equidistant Archimedes spirals is
shown.

(Section 5.4.2).
In Figure 8.2 a similar comparison is conducted as above. Still, just N = 2

channel symbols are employed for (M = 1) source symbol. Compared to the above
figure, better estimators are employed in all systems. In detail, for the linear system,
a Linear Minimum Mean-Square Error (LMMSE) estimator is used. For the AMBC
system and the equidistant Archimedes spiral, the envelope of the performance of
all possible variants with M = 1 and N = 2 with Minimum Mean-Square Error
(MMSE) estimator is shown. Here, the envelopes of the Archimedes spiral and the
AMBCs are very similar while it seems that again the AMBC is slightly better.

Two HDA systems with M = 1 are shown which both use LMMSE estimation
in the analog branch. One uses a quantizer with FH = 1 bit per source symbol and
BPSK modulation and the other uses FH = 2 bits with 4-ASK modulation. Both
do not employ any channel coding. The HDA system with the higher quantizer
resolution exhibits a high-cSNR performance which is 6 dB better, but a successful
decoding is not attained until higher channel qualities compared to the case of
FH = 1. These HDA systems achieve the envelope of the performance of the
Archimedes spiral and the AMBC. All in all, in terms of flexibility and complexity,
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for a uniform source pdf, the AMBC is the best choice for such a small block length.

The Benefit of Long Block Lengths

In Figure 8.3 a similar comparison is conducted as above. The overall code rate
r = M

N
= 1

2 is the same for all systems, while the number of source symbols M is
varied. Again, the source symbols follow a uniform pdf.

The two HDA systems with M = 1 are the same as shown in Figure 8.2. One
uses a quantizer with FH = 1 bit per source symbol and BPSK modulation and the
other uses FH = 2 bits with 4-ASK modulation. Both do not employ any channel
coding. In their analog branch, LMMSE estimation is applied.

To give a glance at the flexibility and potentially better performance of HDA
codes, two other systems which with a longer block length are evaluated.

These HDA systems combine M = 5000 source symbols, employ scalar uniform
quantization, and use higher order modulation, namely 16-QAM and 256-QAM
with gray mapping. Redundant bitmapping which simply repeats the output bits
of the quantizer and a rate-1 recursive non-systematic convolutional code with the
generator polynomial {1, 10/17}8 and Iterative Source-Channel Decoding (ISCD) is
used (Section 6.5). Here, MMSE estimation is chosen. The redundant bit mapping
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Figure 8.3: Performance comparison of several systems for source symbols
with a uniform pdf. HDA systems with a rate of r = 1

2 with
FH = {1, 2} quantization bits per source symbol are shown.
The block length of the systems are varied for comparison.
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and channel encoding converts, e.g., in the FH = 2 case, the 10000 quantization bits
to 20000 bits which are fed to the modulator. The 256-QAM mapping generates
2500 complex channel symbols which is equivalent to D = 5000 real channel symbols.
With A = M = 5000 quantization error symbols, N = D +A = 10000 channel uses
are employed in total, leading to a code rate of r = 1

2 .
The system achieves the same high-cSNR performance as the HDA system with

just M = 1 source symbol, but thanks to the greater block length and the employed
channel coding, successful decoding is possible at lower channel qualities and yields
a steep waterfall.

The HDA system with FH = 1 just exhibits a gap of just 1.18 dB in terms of
cSNR to OPTA. This gap could be further reduced by optimizing the bitmapping,
the interleaver or by employing a vector quantizer instead of a scalar quantizer.
This flexibility and the usage of known techniques employed in digital systems is
the strength of HDA transmission systems.

8.3.2 Hybrid Digital-Analog Transmission Outperforming Purely
Digital Transmission

In the following, two examples from Chapter 6 are recapitulated which outline the
key benefits of HDA transmission over purely digital transmission.
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Figure 8.4: HDA and digital transmission using convolutional codes. Gaus-
sian source pdf and scalar Lloyd-Max quantization. M = 80,
N = 560, r = 1

7 . HDA: A = 80, D = 480.
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The first example (Figure 8.4, more details on page 106) uses an 80-dimensional
(M = 80) Gaussian source with scalar Lloyd-Max Quantizer (LMQ) employing a
rate- 1

2 convolutional code. The different rates for different quantizer fidelities are
achieved by puncturing only the parity bits, thereby with BPSK modulation always
yielding N = 560. The overall rate is r = M

N
= 1

7 to demonstrate an HDA system
which may operate at lower channel qualities than in the example above. Linear
analog mapping and an LMMSE estimator are used in the analog branch. Several
modes are considered which differ in the fidelity of the scalar quantizer. Since the
fidelity of the quantizer can only be varied in integer steps, the channel coding
rates of the HDA (rccm

H ) and the purely digital system (rccm
D ) are not equal. The

channel coding of the HDA system is stronger and, thus, leads to decodability at
lower channel qualities, improving the waterfall region by up to 1 dB! Additionally,
the HDA systems always exhibit a superior end-to-end transmission quality plus
an increasing performance for rising channel qualities.

In the second example (Figure 8.5, more details on page 107), the convolutional
encoder is replaced by rate- 1

3 Turbo coding and the block length is increased to
N = 4998. The overall rate is unchanged (r = 1

7 ). Again, only parity bits are
punctured, BPSK modulation is employed and the analog branch consists of linear
analog mapping and an LMMSE estimator. For the uniformly distributed source
symbols, alternating quantizers with different fidelities are employed enabling a
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Figure 8.5: HDA and digital transmission using Turbo codes. Uniform
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7 . HDA: A = 714, D = 4284.
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fractional average number of quantization bits per source symbol. Thus, the rates
of the channel coding in the HDA (rccm

H ) and the purely digital system (rccm
D ) can

be chosen to be equal. The waterfall region of the HDA and the purely digital
system is, thus, at the same channel quality. In comparison to the convolution
code above, the Turbo code greatly improves the coding performance, such that,
e.g., the HDA system with FH = 2 just exhibits a gap of only 1.14 dB in terms of
cSNR to OPTA. As above, for the relevant channel qualities, all HDA systems are
superior to purely linear transmission with LMMSE decoding.

It can be seen that for all fidelities, the HDA system achieves a superior
performance compared to the purely digital system and additionally continuously
improves the end-to-end transmission quality for rising channel qualities.
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Chapter 9

Summary

During the last 25 years, most of the communication systems have been converted
to purely digital technology, while the transmitted content is, to a large extent,
analog by nature. The quantizer inside the source encoder limits the resolution of
the reproduction of the content in the receiver due to the inevitable quantization
noise. Depending on the available resources for transmission – channel bandwidth,
transmission power, and channel quality – a compromise has to be found between
the resolution, i.e., the bit rate of the source encoder, and the strength of the channel
coding. Digital systems are usually designed for worst case channel conditions.
However, often the channel quality is much better, which is not reflected in an
improved end-to-end transmission quality due to inevitable quantization noise
produced by the source encoder.

Adaptive Multi Rate (AMR) systems have been developed to tackle this problem.
They open up the possibility to choose the best setup for source, channel coding, and
modulation to benefit from better channel conditions to improve the reproduction
quality. However, the AMR systems rely on the availability of a feedback channel for
channel quality measurement which is often not given. For this reason, alternative
concepts which improve their end-to-end transmission quality with increasing
channel qualities also for non-adaptive transmitters are of interest.

In this thesis, the focus is set on systems with a fixed transmitter which still
benefit from an increased channel quality and circumvent the saturation effect of
the end-to-end transmission quality. Purely analog (discrete-time and continuous-
amplitude) transmission systems are considered, both with linear and nonlinear
components. The performance of linear systems is derived analytically. Linear
Analog Block Codes (LABCs) are considered as one representative. Computer
simulations assess the performance of Companding Systems and Space Filling
Curves including the famous Archimedes spiral, showing the performance gain due
to the employed nonlinearities. Based on the conducted studies, a new class of
nonlinear analog codes, i.e., the Analog Modulo Block Codes (AMBCs) is proposed.
Their structure enables a rich variety of analyses and decoder concepts while
performing competitively with a lower complexity as, e.g., Archimedes spirals.
Still, all considered systems operate on very short block lengths and exhibit a
considerable gap to capacity.
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Besides avoiding the saturation effect, the design flexibility of the transmission
systems and the overall performance is of major importance. A very promising
approach with a flexible design and high performance is Hybrid Digital-Analog
(HDA) transmission. Here, sophisticated conventional digital transmission systems
are combined with analog transmission techniques for continuously improving
performance for rising channel qualities. In contrast to other systems employing
continuous-amplitude processing, also long block lengths are supported enabling a
performance approaching capacity. In an HDA system with a not capacity achieving
digital branch, e.g., due to complexity or delay constraints, the analog branch of
the HDA system partially compensates the imperfectness of the digital branch and
leads to decodability at lower channel qualities. Furthermore, HDA transmission
can even be combined successfully with the AMR concept.

General Aspects and Performance Bounds

The general properties, differences and similarities of purely digital and analog trans-
mission systems are outlined. A focus is set on the consequences of nonlinearities in
analog transmission systems which lead to discrete-valued and continuous-amplitude
dimensions in the channel space. It could be shown that these nonlinearities are
essential for a superior performance compared to purely linear analog transmission
systems. The performance of linear analog transmission is developed analytically
for several types of estimators at the receiver.

To bound the performance of different transmission systems, the Optimum
Performance Theoretically Attainable (OPTA) for digital and analog channel models
is derived. By combining the models for digital and analog channels, OPTA can also
be derived for HDA transmission. Interestingly, OPTA for HDA channel models is
higher than for purely digital channel models. This effect comes from the limitation
of the capacity of digital channel models while analog channel models experience
an increased capacity for rising channel qualities.

A key aspect for achieving an improved performance up to capacity is the block
size of a transmission system. One way to grasp its influence is given by Shannon
with the Sphere Packing Bound [Sha59b] for digital transmission systems. Here,
this intuition is adopted to nonlinear analog or HDA transmission and the need for
long block lengths is justified.

In the context of source encoding, the rate-distortion function states the mini-
mum information rate (number of bits) necessary to encode source symbols with a
given probability density function (pdf) at a certain mean-square error distortion.
The usually applied method to obtain the rate-distortion function is the very costly
Blahut-Arimoto algorithm which relies on a numerical optimization. In this thesis
a new upper bound for the rate-distortion function is proposed. The new bound
can be calculated at very low complexity and results to be quite tight.
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Continuous-Amplitude Transmission

The simplest modulation schemes for continuous-amplitude transmission systems
are companding and space filling curves. They usually map just one source symbol
via (non)-linear functions to one or more channel symbols and hence operate with
very small block lengths. In this thesis, the companding functions for a system
mapping one source symbol to one channel symbol (1:1 mapping) are considered
and numerically optimized for non-Gaussian source symbols to assess the potential
performance improvements in comparison to linear transmission.

Also 1:2 systems are considered which transmit one additional redundancy
symbol and hence employ two channel uses per source symbol. The use of nonlinear
mappings, such as the Archimedes spiral leads to significant performance gains
compared to linear transmission systems. Also here, numerical optimization of this
mapping is conducted to achieve further performance improvements. Unfortunately,
the corresponding optimization problem is non-convex and, thus, finding a good
maximum is not trivial.

Motivated by the insights in the previous chapters, a new class of continuous-
amplitude transmission systems, the Analog Modulo Block Codes (AMBCs) is
proposed. A real-valued matrix multiplication and a modulo operation are con-
catenated, where the former creates the necessary redundancy and the latter the
essential nonlinearity. The analysis reveals that after a rotation of the generated
code vectors, discrete-valued (discrete part) and continuous-amplitude (analog
part) dimensions emerge. The code vectors in the discrete part form a regular
lattice which can be exploited in the design of efficient decoders. Zero-forcing
decoding with lattice reduction in the discrete part and separate estimation in the
analog part leads to near Maximum Likelihood (ML) performance with a very
low complexity. AMBCs slightly supersede the performance of, e.g., Archimedes
spirals and are a promising candidate for high performing continuous-amplitude
transmission systems with low complexity and very small block lengths.

Hybrid Digital-Analog Transmission

HDA transmission turns the necessity of nonlinear transmission and the emergence
of discrete-valued and continuous-amplitude dimensions into a design principle. It
benefits from the advantages of both, the digital and the analog world. In the
digital branch, digital transmission is employed, while the inevitable quantization
error is additionally transmitted using continuous-amplitude methods in the analog
branch.

A new design method is introduced which uses conventional digital transmission
systems with its flexibility and potentially capacity achieving performance. Thus,
HDA transmission systems can be designed for the same scenarios for which
purely digital transmission is employed, as long as the source content and the
channel exhibit a continuous-amplitude nature. Needless to say, when comparing
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purely digital and HDA transmission, the same resources – channel bandwidth,
transmission power, and channel quality – are assumed. The investigation results in
design guidelines for competitive HDA systems: The key is to employ, in comparison
to a purely digital transmission system, a coarser quantizer. This leads to fewer bits
to be transmitted and hence fewer channel uses in the digital branch. The channel
uses which are, thus, saved in the digital branch, are then utilized for additional
transmissions in the analog branch.

It is shown that for every purely digital transmission system, a superior HDA
system can be found. Furthermore, constructive design guidelines are formulated.

These guidelines are turned into practice by implementing several HDA trans-
mission systems which are thoroughly assessed. In one example Turbo coding is
considered: At the worst channel quality at which the purely digital transmission
system still can operate, the corresponding HDA system improves the transmission
fidelity (pSNR) by 3 dB. Moreover, unlimited gains are theoretically possible for ris-
ing channel qualities. Depending on the quantization fidelity, at cSNR|dB = 10 dB
gains of 6.2 to 9.2 dB in terms of pSNR are measured. At cSNR|dB = 20 dB, the
gains increase up to 16.2− 19.2 dB.

Furthermore, different types of receivers are considered: Joint Minimum Mean-
Square Error (MMSE) estimation using symbols from both branches is proposed
while usually separate estimation in both branches is employed. It is shown that,
for statistically independent quantization levels and quantization errors, separate
MMSE estimation yields the same performance as joint MMSE estimation. Even
very sophisticated transmission concepts, such as iterative source-channel decoding
for digital transmission systems can be extended to HDA transmission by using the
received analog symbols as additional side information in the iterative decoding
process.

In HDA transmission, the separation into a digital and an analog branch offers
several new degrees of freedom in the design: The transmission power of both
branches can be distributed optimally to yield more flexibility in the design. Also
continuous-amplitude systems adding redundancy, such as Archimedes spirals or
AMBCs lead to further gains in terms of pSNR, if the additional channel uses cannot
be utilized by the digital branch. Combining a purely digital system with a 1:2
Archimedes spiral yields, e.g., a gain of 29 dB in terms of pSNR at cSNR|dB = 20 dB,
adding a 1:4 AMBC in the analog branch yields a gain of even 37 dB.

When using digital transmission systems with channel codes which are not
capacity achieving, e.g., due to short block lengths, the HDA system can be
designed with a lower channel coding rate in the digital branch compared to the
purely digital system yielding a “waterfall” at lower channel qualities. Thus, without
increasing the complexity or using an enhanced design of the digital channel code,
the waterfall region can be shifted to lower channel qualities while the pSNR is still
superior. Using, e.g., a convolutional code, the HDA system lowers the channel
quality for successful transmission by 1 dB in terms of cSNR.
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Initially, HDA transmission has been intended for scenarios without feedback of
the current channel quality measured at the receiver. But, as HDA transmission
outperforms purely digital systems, the concept is also an interesting candidate for
AMR transmission with feedback. Different quantizer resolutions are considered
leading to different “modes” which could compose a potential AMR system. For
the turbo coding example, it is shown that the overall performance of an AMR
system using HDA transmission is improved by, e.g., up to 3 dB in terms of pSNR.

The comparisons demonstrate the superiority of HDA transmission systems
for all channel qualities with the advantage of an improved performance for rising
channel qualities.

Furthermore, the application of the HDA concept to the transmission of cor-
related source symbols is evaluated. A block transform performs a decorrelation
while the transform coefficients are transmitted the HDA concept. As in a purely
digital system, the correlation can be exploited with the additional benefits of HDA
transmission showing a superior performance at all channel qualities.

Comparison of Different Systems

For the comparison of the different transmission systems discussed in this thesis,
one common scenario has been specified. The Archimedes spirals can only be
employed for transmitting one source symbol employing two channel symbols,
while the AMBCs just operate on uniform source distributions. Linear analog
transmission and HDA systems can be parametrized accordingly. Thus, a scenario
with a uniform source pdf and two channel uses and source symbol is employed.
As expected, the by far worst performance is obtained with the linear system. The
nonlinear candidates show a significantly better performance, while the HDA and
AMBC system are slightly better than the Archimedes spiral. If long block lengths
are permitted, the HDA system increases its performance and outperforms all
other systems. The Archimedes spiral cannot be designed for longer block lengths
and different rates, while the AMBC system still has the potential for finding
appropriate designs. Here, its flexibility makes HDA transmission the superior
choice.

By combining both worlds – digital and analog transmission systems – new
concepts emerge which fuse the advantages of both systems. These Hybrid Digital-
Analog (HDA) transmission systems supersede purely digital concepts and are
an attractive solution for wireless systems such as microphones, loudspeakers or
distributed sensors.
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Appendix A

Numerical Optimization Method for
Compressor and Expander

A.1 System model

u
1×1

Compressor
y = g(u)

Expander
û = h(z)

n

û
y

1×N

z

Figure A.1: General transmission system with compressor and expander
function for scalar source symbols.

Figure A.1 shows the general transmission system with compressor y = g(u)
and expander û = h(z). In [Aky11] an approach for a numerical optimization of
the compressor and expander function has been proposed which alternates between
optimizing the expander for a given compressor and then optimizing the compressor
for the given expander until convergence is reached.

Here, the steps of the optimization are elaborated in more detail. The special
cases of M = 1 with N = 1 and N = 2 are explicitly considered and the discretized
versions of the formulas are given.

A.2 Optimal Expander h for a Given Compressor g

For a given compressor function g, the best expander function h in terms of Mean-
Square Error (MSE) is a function which facilitates Minimum Mean-Square Error
(MMSE) estimation. The MMSE estimator is the conditional expectation of the
received values:

û = h(z) = E{u|z} (A.1)

=
∫
u · pU|Z(u|z) du. (A.2)
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Bayes’ rule yields:

pU|Z(u|z) =
pZ|U (z|u) · pU (u)

pZ(z) =
pZ|U (z|u) · pU (u)∫
pZ|U (z|u) · pU (u) du

. (A.3)

Since additive noise is used, the channel transition probability can be easily stated
in terms of the noise probability density function (pdf):

pZ|U (z|u) = pN(z − y) = pN(z − g(u)). (A.4)

Plugging everything together yields the expander function for any received vector
z:

h(z) =
∫
u · pN(z − g(u)) · pU (u) du∫
pN(z − g(u)) · pU (u) du

. (A.5)

In a practical implementation the above integrals have to be discretized using sums.
One possibility is an approximation which sums over rectangles with the width ∆γ

at discrete points γi, if it is integrated over γ. The width of the rectangles and
the range of values γi over which the sum is taken has to be carefully chosen to
avoid large numerical errors and hence significant differences to a description with
integrals.

In case of a compander with M = 1 and N = 1, the optimal expander for a
given compressor can be calculated as:

h(z) =
∑

i
ui · pN (z − g(ui)) · pU (ui) ·∆u∑
i
pN (z − g(ui)) · pU (ui) ·∆u

=
∑

i
ui · pN (z − g(ui)) · pU (ui)∑
i
pN (z − g(ui)) · pU (ui)

.

(A.6)

In case of using M = 1 and N = 2, two compressor functions, namely g1 and g2
are employed which yield the following expression as the optimal expander:

h(z1, z2) =
∑

i
ui · pN (z1 − g1(ui)) · pN (z2 − g2(ui)) · pU (ui)∑
i
pN (z1 − g1(ui)) · pN (z2 − g2(ui)) · pU (ui)

. (A.7)

A.3 Optimal Compressor g for a Given Expander h
For a given expander function h, the best compressor function g in terms of MSE
cannot be stated in a closed form expression as in the section above. Instead,
a different approach is used which allows for a successive approximation of the
optimal compressor function.

The aim is to find the best compressor function g for a given expander function
h while the optimization criterion is the MSE:

D(g, h) = E{(u− û)2}

=
∫

RN

∫
(u− h (g(u) + n))2 · p(u) · p(n) du dn. (A.8)
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A second figure of merit is the power used for transmission which shall be as small
as possible:

P (g) = 1
N
· E{||y||2} = 1

N
· E{yyT} = 1

N
·
∫

g(u) · g(u)T · p(u) du. (A.9)

Since the MSE and the power depend on each other, a compromise has to be found
which can be facilitated using a Lagrangian cost functional. The variable PT defines
the power which should be achieved by P (g), but PT will vanish after deriving
J(g) anyway:

J(g) = D(g) + λ · (P (g)− PT ) . (A.10)

Instead of optimizing the MSE and the transmission power independently, now,
J(g) can be minimized in order to optimize both figures of merit jointly. For that,
the noise variance of n is set to 1 and, thus, the channel quality is governed by
the transmission power P . The variable λ weights the importance between the
transmission power and the MSE which leads to different operating points and, thus,
different channel qualities of the transmission system. A small λ gives the MSE a
high importance and hence decreases the MSE with the cost of a higher transmission
power and therefore a higher channel quality. A high λ weights the transmission
power higher and, thus, decreases the same which results in an increased MSE at a
lower channel quality.

For a fixed λ, the channel quality can also be varied by choosing a noise pdf
with a higher variance. A higher noise variance then yields a higher MSE at a lower
channel quality.

A.3.1 1:2 Dimensional Expander
For M = 1 and N = 2, the terms for the transmission power and the MSE can be
stated explicitly without vector integrals as follows:

P (g) =1
2 ·
∫ (

g1(u)2 + g2(u)2) · p(u) du, (A.11)

D(g) =
∫∫∫

(u− h (g1(u) + n1, g2(u) + n2))2 · p(u)

· p(n1) · p(n2) du dn1 dn2. (A.12)

As in Section A.2, the integrals can be discretized with ∆n and ∆u as the width of
the integration rectangles of the integration over n and u:

P (g) =1
2 ·
∑

i

(
g1(ui)2 + g2(ui)2) · p(ui) ·∆u, (A.13)

D(g) =
∑

j1

∑

j2

∑

i

(ui − h (g1(ui) + nj1 , g2(ui) + nj2 ))2

· p(ui) · p(nj1 ) · p(nj2 ) ·∆u ·∆2
n. (A.14)
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One possibility to minimize J(g) in (A.10) is using the steepest decent method
[ARR10,BV04] which requires the derivative with respect of each variable which
can be varied to find the optimum solution. After the above discretization, the
compressor function g is defined at the discrete points uk. At each point, the
compressor function for each of the two channel dimensions can be optimized and,
thus, the derivative is taken with respect to all points uk. The derivative of J(g)
with respect to the points of the first compressor function g1 is:

∂J(g)
∂ g1(uk) = ∂

∂ g1(uk)

[∑

j1

∑

j2

∑

i

(ui − h (g1(ui) + nj1 , g2(ui) + nj2 ))2

· p(ui) · p(nj1 ) · p(nj2 ) ·∆u ·∆2
n

]

+ λ
∂

∂ g1(uk)

[
1
2 ·
∑

i

(
g1(ui)2 + g2(ui)2) · p(ui) ·∆u − PT

]

(A.15)

=
∑

j1

∑

j2

∑

i

[
2 · (ui − h (g1(ui) + nj1 , g2(ui) + nj2 )) · (−1)

· h′(1) (g1(ui) + nj1 , g2(ui) + nj2 ) · ∂ g1(ui)
∂ g1(uk)

· p(ui) · p(nj1 ) · p(nj2 ) ·∆u ·∆2
n

]

+ λ · 1
2 ·
∑

i

2 · g1(ui) · ∂ g1(ui)
∂ g1(uk) · p(ui) ·∆u. (A.16)

The term h′(1) is the derivative of h with respect to the first argument. Since

∂ g1(ui)
∂ g1(uk) =

{
1 for i = k

0 for i 6= k
, (A.17)

the above equation can be simplified as:

∂J(g)
∂ g1(uk) =

∑

j1

∑

j2

[
− 2 · (uk − h (g1(uk) + nj1 , g2(uk) + nj2 ))

· h′(1) (g1(uk) + nj1 , g2(uk) + nj2 )

· p(uk) · p(nj1 ) · p(nj2 ) ·∆u ·∆2
n

]

+ λ · g1(uk) · p(uk) ·∆u. (A.18)
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With h′(2) as the derivative of h with respect to the second argument, the derivative
of the derivative of J(g) with respect to the points of the second compressor function
g2 is:

∂J(g)
∂ g2(uk) =

∑

j1

∑

j2

[
− 2 · (uk − h (g1(uk) + nj1 , g2(uk) + nj2 ))

· h′(2) (g1(uk) + nj1 , g2(uk) + nj2 )

· p(uk) · p(nj1 ) · p(nj2 ) ·∆u ·∆2
n

]

+ λ · g2(uk) · p(uk) ·∆u. (A.19)

The steepest decent method updates each variable successively. In each step, the
derivative of the target function with respect to one variable is calculated, weighted
with the step size µ and subtracted from the current variable to yield the updated
variable. For both compressor functions, this can be stated as follows:

gupdated
1 (uk) = gcurrent

1 (uk)− µ · ∂J(gcurrent)
∂ g1(uk) , (A.20)

gupdated
2 (uk) = gcurrent

2 (uk)− µ · ∂J(gcurrent)
∂ g2(uk) . (A.21)

A.3.2 1:1 Dimensional Expander
The above formulas can also be stated for the case of M = 1 and N = 1. The
transmission power and the MSE can be stated in their discretized form as:

P (g) =
∑

i

g(ui)2 · p(ui) ·∆u, (A.22)

D(g) =
∑

j

∑

i

(ui − h (g(ui) + nj))2 · p(ui) · p(nj) ·∆u ·∆n. (A.23)

The derivative of J(g) with respect to the points of the first compressor function g
is:

∂J(g)
∂ g(uk) =

∑

j

[ − 2 · (uk − h (g(uk) + nj)) · h
′
(g(uk) + nj)

· p(uk) · p(nj) ·∆u ·∆n ]
+ 2 · λ · g(uk) · p(uk) ·∆u. (A.24)

The function h′ is again the derivative of h with respect to the argument. The
update formula for the steepest decent method is then:

gupdated(uk) = gcurrent(uk)− µ∂J(gcurrent)
∂ g(uk) . (A.25)
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Appendix B

Joint MMSE Estimator for
HDA transmission

B.1 Derivation of Joint Estimator

The joint MMSE estimator (6.19) of u for the received values zd and za in the digital
and the analog branch, respectively, is derived. The constant C is C = p(za, zd)
and the step from (B.3) to (B.4) is detailed below1.

û = E{u|za, zd} (B.1)

=
∫

u · p(u|za, zd) du

=
∫ ∫

(ud + ua) · p(ua,ud|za, zd) dud dua (B.2)

=
∫

ua
∫
p(ua,ud|za, zd) dud dua +

∫
ud
∫
p(ua,ud|za, zd) dua dud

=
∫

ua · p(ua|za, zd) dua +
∫

ud · p(ud|za, zd) dud

= 1
C

∫
ua · p(za, zd,ua) dua + 1

C

∫
ud · p(zd, za,ud) dud

= 1
C

∫
ua · p(za|zd,ua) · p(zd|ua) · p(ua) dua

+ 1
C

∫
ud · p(zd|za,ud) · p(za|ud) · p(ud) dud (B.3)

= 1
C

∫
ua · p(za|ua) · p(zd|ua) · p(ua) dua

+ 1
C

∑

ud

ud · p(zd|ud) · p(za|ud) · P(ud). (B.4)

1To improve readability, the index H is omitted in this Appendix.
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Changing the integral to the sum from (B.3) to (B.4) is possible, since p(ud) is
composed of a series of diracs weighted by the probability of occurrence of the
quantization levels P(ũd):

p(ud) =
∑

ũd

δ(ũd − ud)P(ũd). (B.5)

The fact that za is independent from zd if ua is given ((B.3) to (B.4)), is detailed
below. The step from (B.6) to (B.7) can be derived using the observation that
some variables are connected by two Markov chains: u→ ud → zd and u→ ua →
za. Then, the local Markov property is satisfied: each variable is conditionally
independent of its non-descendants given its parent variables [NI03].

p(za|zd,ua) = p(za, zd,ua)
p(zd,ua)

=
∫∫

p(zd, za,ud,ua,u) du dud
∫∫∫

p(zd, za,ud,ua,u) du dud dza
(B.6)

=
∫∫

p(u) · p(ua|u) · p(ud|u) · p(za|ua) · p(zd|ud) du dud
∫∫∫

p(u) · p(ua|u) · p(ud|u) · p(za|ua) · p(zd|ud) du dud dza

(B.7)

=
∫∫

p(u) · p(ua|u) · p(ud|u) · p(zd|ud) du dud · p(za|ua)∫ ∫∫
p(u) · p(ua|u) · p(ud|u) · p(zd|ud) du dud · p(za|ua) dza

= p(za|ua)∫
p(za|ua) dza

= p(za|ua). (B.8)

The same can be stated for:

p(zd|za,ud) = . . . = p(zd|ud). (B.9)

B.2 Estimator for Statistical Independence

For statistical independence between quantized values ud and the quantization
error ua the following relation holds (6.20):

p(ua,ud) = p(ua) · p(ud). (B.10)
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Then, the cross terms p(zd|ua) and p(za|ud) in (B.4) simplify to

p(zd|ua) = p(zd,ua)
p(ua)

=
∫∫

p(zd,ua,ud,u) du dud
∫∫∫

p(zd,ua,ud,u) du dud dzd

=
∫∫

p(u) · p(ud|u) · p(ua|u) · p(zd|ud) du dud
∫∫∫

p(u) · p(ud|u) · p(ua|u) · p(zd|ud) du dud dzd

=
∫∫

p(u,ud,ua) · p(zd|ud) du dud
∫∫∫

p(u,ud,ua) · p(zd|ud) du dud dzd

=
∫
p(ud,ua) · p(zd|ud) dud

∫∫
p(ud,ua) · p(zd|ud) dud dzd

(B.10)
=

p(ua)
∫
p(zd,ud) dud

p(ua)
∫∫

p(zd,ud) dud dzd

= p(zd), (B.11)

and

p(za|ud) = . . . = p(za). (B.12)

Due to the independence of ua and ud, the constant C can be split up into two
terms:

C = p(za, zd) = p(za) · p(zd). (B.13)

With (B.11), (B.12) and (B.13), (B.4) can be simplified to:

û = 1
p(za) · p(zd)

∫
ua · p(za|ua) · p(zd) · p(ua) dua

+ 1
p(za) · p(zd)

∑

ud

ud · p(zd|ud) · p(za) · p(ud)

=
∫

ua · p(ua|za) dua +
∑

ud

ud · p(ud|zd)

= E{ua|za}+ E{ud|zd}
=ûa + ûd. (B.14)

Thus, û can be obtained by calculating the MMSE estimates of both branches
independently and adding up the results for statistical independence between
quantized values ud and the quantization error ua.
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Appendix C

Selection of Parameters for HDA and
Purely Digital Simulations

C.1 Prerequisites
In Section 6.3.5 and in the Design Guidelines on page 105 it is derived how
to construct a superior Hybrid Digital-Analog (HDA) transmission system for
every purely digital transmission system. The key is to lower the quantization
fidelity in the HDA system in order to achieve the same channel coding and
modulation rates rccm and rccm in the HDA and in the digital system, respectively
(∆r = rccm − rccm = 0).

The difference in fidelity is defined in (6.30) as

∆F = F − F, (C.1)

and for ∆r = 0 it holds:

∆F = rccm

rmapp = rccm

rmapp . (C.2)

It can be seen that frequently fractional bits per symbol are needed in the quantizer
which can be achieved by vector quantization or by mixing scalar quantizers with
different fidelities. In any case it has to be assured that the right number of input
symbols M is available to yield an integer number of output bits `v = M · F . In
some settings, the total number of quantization bits in the purely digital system is
an integer. But also the case in which the total number of quantization bits in the
HDA system is an integer and the corresponding purely digital system should be
designed.

The transmission system is defined by the overall rate (2.3)

r = M

N
, (C.3)

and the rate of the analog mapper (6.5) in the analog branch of the HDA system:

rmapp = M

N −D = M

A
. (C.4)
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The rate of the channel coding and modulation rccm is of minor importance for the
following derivation. It just has to be assured that for the chosen rate and a given
quantization fidelity the overall rate r can be achieved.

To choose the right M , three requirements can be found:

1. The number of channel symbols N has to be an integer.

2. The number of output bits `v of the quantizer in the HDA system has to be
an integer for a given integer number of quantization bits per symbol F in
the digital system.

3. The number of output bits `v of the quantizer in the digital system has to
be an integer for a given integer number of quantization bits per symbol F
in the HDA system.

The first requirement always has to be met. Depending on the design, one of
the other two requirements may suffice, but for a maximum flexibility in the design
all three requirements should hold.

In any case, a larger M can be chosen to meet further requirements, as, e.g.,
long block lengths for Turbo coding, as long as M is an integer multiple of the
minimum M found here.

C.2 Integer Number of Channel Uses N

The number of channel uses is defined as follows (2.3):

N = M · 1
r
. (C.5)

To obtain an integer N , the denominator of the reduced fraction 1
r
has to be a

divider of M . Thus:
a1

b1
= 1
r

(C.6)

with integers a1 and b1. The greatest common divisor is gcd(a1, b1) = 1. Then

b1 |M, (C.7)

i.e., b1 is a divider of M .

C.3 Integer Total Number of Quantization Bits in
HDA System for Integer F

The channel coding and modulation rate in the purely digital system is (6.28):

rccm = F · r. (C.8)
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The number of quantized bits in the purely digital system `v is an integer anyways,
since M and F are integer values.

For ∆r = rccm − rccm = 0 the number of quantized bits in the HDA system is:

`v = M · F
= M · (F −∆F )

= M ·
(
F − F · r

rmapp

)

= M · F ·
(

1− r

rmapp

)
. (C.9)

Thus, to obtain an integer `v , the denominator of the reduced fraction r
rmapp has

to be a divider of M . Therefore:

a2

b2
= r

rmapp (C.10)

with integers a2 and b2. The greatest common divisor is gcd(a2, b1) = 2. Then

b2 |M, (C.11)

i.e., b2 is a divider of M .

C.4 Integer Total Number of Quantization Bits in
Digital System for Integer F

The channel coding and modulation rate in the purely digital system is (6.29):

rccm = M · F
N −A

= F
N
M
− A

M

= F
1
r
− 1

rmapp
. (C.12)

The number of quantized bits in the HDA system `v is an integer anyways, since
M and F are integer values.

For ∆r = rccm − rccm = 0 the number of quantized bits in the purely digital
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system is:

`v = M · F
= M · (F + ∆F )

= M ·
(
F + rccm

rmapp

)

= M · F ·


1 + 1

rmapp ·
(

1
r
− 1

rmapp

)




= M · F ·
(

1 + 1
rmapp

r
− 1

)

= M · F ·
(

1 + r

rmapp − r
)

= M · F · rmapp

rmapp − r . (C.13)

Thus, to obtain an integer `v , the denominator of the reduced fraction rmapp

rmapp−r has
to be a divider of M . Therefore:

a3

b3
= rmapp

rmapp − r (C.14)

with integers a3 and b3. The greatest common divisor is gcd(a3, b1) = 3. Then

b3 |M, (C.15)

i.e., b3 is a divider of M .

C.5 Example
For different r, the requirements can be found in Table C.1 with lcm denoting the
least common multiple. Thus, for the simulations in Figures 6.11a and 6.11b with
a rate of r = 1/7 and integer number of bits in both, the digital and the HDA
system, M has to be an integer multiple of 42.
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C.5 Example

M is multiple of the lcm of
r rmapp b1 b2 b3 b1 & b2 b1 & b3 b1 & b2 & b3

1/2 1 2 2 1 2 2 2
1/3 1 3 3 2 3 6 6
1/4 1 4 4 3 4 12 12
1/5 1 5 5 4 5 20 20
1/6 1 6 6 5 6 30 30
1/7 1 7 7 6 7 42 42
1/8 1 8 8 7 8 56 56
1/9 1 9 9 8 9 72 72
1/10 1 10 10 9 10 90 90
1/11 1 11 11 10 11 110 110
1/12 1 12 12 11 12 132 132
1/13 1 13 13 12 13 156 156
1/14 1 14 14 13 14 182 182
1/15 1 15 15 14 15 210 210
1/16 1 16 16 15 16 240 240
1/17 1 17 17 16 17 272 272
1/18 1 18 18 17 18 306 306
1/19 1 19 19 18 19 342 342
1/20 1 20 20 19 20 380 380
2/3 1 2 3 1 6 2 6
1/3 1/2 3 3 1 3 3 3
1/4 1/2 4 2 1 4 4 4
1/5 1/2 5 5 3 5 15 15
1/6 1/2 6 3 2 6 6 6
1/7 1/2 7 7 5 7 35 35
1/8 1/2 8 4 3 8 24 24
1/9 1/2 9 9 7 9 63 63
1/10 1/2 10 5 4 10 20 20

Table C.1: Choosing M for different rates r and different requirements.
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Appendix D

Properties of Selected Probability
Density Functions

In Chapter 4, some properties of the different employed probability density functions
(pdfs) are needed. They are listed here for convenience.

−8 −6 −4 −2 0 2 4 6 80

0.2

0.4

0.6

0.8

u

p(
u

)

Gaussian
Laplace
Uniform

Figure D.1: Different source pdfs with E{u2} = 1.

Figure D.1 shows the pdf for uniform, Gaussian and Laplacian source symbols
with a variance of E{u2} = 1. The following table shows the definitions of the pdfs:

Uniform distribution: p(u) =

{
1
2a for − a < u < a

0 else
with a =

√
3σ2,

Gaussian distribution: p(u) = 1√
2πσ2

e−
u2

2σ2 ,

Laplacian distribution: p(u) = 1
2λe−

|u|
λ with λ =

√
σ2

2 .
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List of Abbreviations

AMBC Analog Modulo Block Code
AMR Adaptive Multi Rate
ASI Analog Side Information
ASK Amplitude Shift Keying
AWGN Additive White Gaussian Noise

BIAWGN Binary-Input Additive White Gaussian Noise
BPSK Binary Phase Shift Keying
BSC Binary Symmetric Channel

DCT Discrete Cosine Transform
DCTN Normalized Discrete Cosine Transform
DML Discrete Maximum Likelihood

EXIT Extrinsic Information Transfer

GSV Guo-Shamai-Verdú

HDA Hybrid Digital-Analog

i.i.d. independent identically distributed
ISCD Iterative Source-Channel Decoding

KLD Kullback-Leibler distance
KLT Karhunen-Loève Transform

LABC Linear Analog Block Code
LBG Linde, Buzo and Gray
LMMSE Linear Minimum Mean-Square Error
LMQ Lloyd-Max Quantizer
LS Least Squares
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List of Abbreviations

MAP Maximum a Posteriori
ML Maximum Likelihood
MMSE Minimum Mean-Square Error
MSE Mean-Square Error

OPTA Optimum Performance Theoretically Attainable

pdf probability density function

QPSK Quadrature Phase Shift Keying

SDSD Soft Decision Source Decoder
SNR Signal to Noise Ratio
SPB Sphere Packing Bound
SVD Singular Value Decomposition

ZF Zero-Forcing
ZFLR Zero-Forcing with Lattice Reduction
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List of Symbols

The following list enumerates the most important symbols in this thesis. First the
format, additional indices and labeling which specifies the variables more precisely
is listed. Then special matrices, common variables and at the end signal to noise
ratios are listed.

x scalar symbol
x vector of with elements
x̂ estimated symbol
x̂ estimated vector
X random variable
X random vector
X matrix
x variable in purely digital system
x variable in Hybrid Digital-Analog system
xd variable in digital branch of Hybrid Digital-Analog system
xa variable in analog branch of Hybrid Digital-Analog system
`x length of the vector x

xrot rotated variable in AMBC system
xdis discrete part of variable in AMBC system
xan analog part of variable in AMBC system
Xdis discrete part of matrix in AMBC system
Xan analog part of matrix in AMBC system

O zero matrix
0 zero vector
1 unity matrix
A coding matrix in AMBCs
Ã non-identity part of coding matrix in AMBCs
B base matrix of lattice in discrete part of AMBC
Bred reduced base matrix of lattice in discrete part of AMBC
C covariance matrix in the context of linear analog block codes
G rotation matrix in AMBCs
P encoding matrix for linear analog block codes
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List of Symbols and Notation

P upper triangle matrix in AMBCs
P̃ non-zero part of upper triangle matrix in AMBCs
Q decoding matrix for linear analog block codes
Q Q-matrix of QR decomposition
R R-matrix of QR decomposition
Σ sigma-matrix of singular value decomposition
Σ̃ non-zero part of sigma-matrix of singular value decomposition
T transform matrix for block transform coding
T unimodular matrix to reduced base matrix of lattice in discrete

part of AMBC
U U-matrix of singular value decomposition
V V-matrix of singular value decomposition

A dimension of analog part of channel vector
α factor for power distribution between analog and digital branch

in HDA system
BM bitmapper function
c parameter of amplitude/phase Archimedes spiral
D dimension of digital part of channel vector
D mean-square error distortion in the context of rate-distortion

theory
d parameter of equidistant Archimedes spiral
∆ideal gap in channel quality between system with negligible bit error

probability and capacity achieving system
e Euler’s number
F number of quantization bits per source symbol
F number of quantization bits per source symbol in purely digital

system
F number of quantization bits per source symbol in HDA system
∆F difference between number of quantization bits per symbol of

digital and HDA system
g compressor function and analog mapper in analog branch of

HDA system
g̃ compressor function and analog mapper without normalization
h expander function and analog demapper in analog branch of

HDA system
L dimension of block transform coder
M dimension of source vector
m parameter for symmetric modulo operation parameter for

AMBCs
N dimension of channel vector
n noise symbol
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List of Symbols and Notation

P probability density function of discrete valued variable
p probability density function of continuous-amplitude variable
Pe bit error rate
π interleaver function
Q quantizer function
R information rate in the context of rate-distortion theory
r overall rate of transmission system
rccm rate of channel coding and modulation
rccm rate of channel coding and modulation in purely digital system
rccm rate of channel coding and modulation in digital branch of

HDA system
∆r rate difference of channel coding and modulation in purely

digital system and HDA system
rmapp rate of the analog mapper in HDA system
rsrc rate of source encoder
ρ correlation factor of correlated source symbols
s symbol of real life, e.g., correlated, source symbols
s jump vector in AMBCs
s̃ non-zero part of jump vector in AMBCs
σ standard deviation
u parameter source symbol
ua quantization error in HDA system
ud quantized parameter source symbol in HDA system
v quantization bits
v quantization bits in digital system
v quantization bits in HDA system
y channel symbol
y channel symbol in digital system
y channel symbol in HDA system
ya channel symbol of analog branch in HDA system
ya’ channel symbol in analog branch after power distribution
yd channel symbol of digital branch in HDA system
yd’ channel symbol in digital branch after power distribution
ẏ channel symbol before modulo operation in AMBCs
z received symbol
z received symbol in digital system
z received symbol in HDA system
za received symbol of analog branch in HDA system
za’ received symbol in analog branch before power dedistribution
zd received symbol of digital branch in HDA system
zd’ received symbol in digital branch before power dedistribution
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List of Symbols and Notation

cSNR channel signal to noise ratio
cSNRa channel signal to noise ratio in analog branch
cSNRd channel signal to noise ratio in digital branch
cSNRideal,Pe=0 minimum channel quality at which error-free transmission for

capacity achieving code is possible
cSNRsat.

D minimum channel quality at which transmission with negligible
bit error probability is possible in purely digital system

cSNRsat.
H minimum channel quality at which transmission with negligible

bit error probability is possible in HDA system
pSNR parameter signal to noise ratio - parameters generated in source

encoder
bSNRa parameter signal to noise ratio of symbols in analog branch
bSNRd parameter signal to noise ratio of symbols in digital branch
pSNRsat.

D parameter signal to noise ratio at which purely digital system
saturates

pSNRsat.
H parameter signal to noise ratio at which digital branch in HDA

system saturates
sSNR symbol signal to noise ratio - for real life source symbols
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