
POSTER CONFERENCE, PRAGUE, MAY 2005 1

An Iterative, Turbo-like Approach to
Convolutional Decoding

Laurent SCHMALEN, Marc ADRAT

Institute of Communication Systems and Data Processing, RWTH Aachen University,
Templergraben 55, 52056 Aachen, Germany

laurent@ind.rwth-aachen.de, marc@ind.rwth-aachen.de

Abstract. In this paper we present a new method to decode
convolutional codes. The method is based on the Turbo
principle which was originally proposed to decode parallel
concatenated convolutional codes. It becomes possible
because of a reinterpretation of the encoder structure. The
newly interpreted code is decoded using an iterative
scheme with information exchange between sub-decoders.

In a second part of the paper, the new method is applied to
the decoding of the GSM Full Rate Channel Code. The
simulation results show that each iteration can improve the
decoding performance while the original BCJR algorithm
marks the upper limit.

Keywords
Channel Coding, Convolutional Decoding, GSM Full
Rate Codec, Maximum-A-Posteriori BCJR
Algorithm, Turbo-Decoding, L-Values.

1. Introduction
Whenever in digital mobile communication data

transmission is affected by channel noise, channel coding
is indispensable. In practice, frequently, convolutional
codes are applied to protect the source data and correct
some possibly given transmission errors. The decoding is
usually performed using the Viterbi algorithm [1] or the
BCJR algorithm [2]. The Viterbi decoder determines the
optimal bit sequence in the maximum likelihood sense and
the BCJR algorithm provides the optimal sequence of bits
in the maximum-a-posteriori sense. Recently, the use of
parallel concatenated interleaved convolutional codes,
named Turbo-Codes [3], and their iterative decoding has
allowed further improvements in error correcting coding.
The question arises if the iterative decoding process used in
turbo-decoding will be applicable to the decoding of
“normal” convolutional codes. The goal of this paper will
be to find an answer to that question.

In Section 2 the encoder structure of a conventional
convolutional code is reinterpreted as to allow iterative
decoding subsequently followed by a description of the
decoder. The single elements composing the decoder will
also be presented in this section. The newly presented

decoding scheme will finally be applied to the GSM full
rate channel code [5], [6].

In Section 3 the simulation results are presented. The
simulations are an application of GSM channel decoding.

2. Iterative Decoding of Convolutional
Codes
The iterative decoding system presented in this paper

is explained using the convolutional encoder specified by
the GSM full rate codec [6]. This code is a rate ½ code and
is characterized by the octal generator polynomials
G(23,33). This encoder is depicted in Fig. 1. As can be
seen, the encoder possesses 4 memory elements and has
therefore got a constraint length of 5. This implies a trellis
representation with 24 = 16 states.

T T T T

xk
(2)

xk
(1)

ku

GSM−FR

Fig. 1. Convolutional encoder used in the GSM full rate codec

The encoding process can be represented differently if the
encoder is drawn as in Fig. 2. The input is fed to two
identical encoders. The outputs of these encoders are
punctured so that the upper output of encoder 1 and the
lower output of encoder 2 are used. If an optional
interleaver Π is inserted in front of the input of encoder 2,
this representation is more or less equivalent to the turbo-
coding scheme presented in [3] (except for the used
generator polynomials). In this work however, the
interleaver is omitted so as to decode “normal”
convolutional codes.

Thus, it was shown, that a convolutional code can be
represented by the parallel concatenation of two
appropriate punctured convolutional encoders. In the
following subsections, a decoding method using this
representation is presented.

2 L. SCHMALEN, M. ADRAT, AN ITERATIVE TURBO-LIKE APPROACH TO CONVOLUTIONAL DECODING

xk
(1)

xk
(2)

ku

Convolutional

Convolutional
Sub−Encoder 2

Sub−Encoder 1

Π

GSM−FR

Fig. 2. Reinterpretation of the GSM-FR channel encoder

2.1 The SISO Module
The decoding makes use of a so-called SISO (Soft

Input Soft Output) module [4] which is presented in this
section. The SISO Module presented in Fig. 3 has two
inputs, one accepting the received channel values L(yk) and
one accepting a-priori knowledge about the data bits L(uk).

SISO

module
ku(^)L

L()ku

ykL()

(e)

kuL (^)

Fig. 3. Soft Input Soft Output module used for iterative

decoding

In this paper, the transmission of the code symbols is
performed over an AWGN (Additive White Gaussian
Noise) channel with BPSK (Binary Phase Shift Keying)
mapping. In that case, the received symbols are:

nxay i
k

i
k +⋅=)()(~ (1)

with the bipolar mapped code symbol:

⎩
⎨
⎧

=+
=−

=
0 if1
1 if1~

)(

)(
)(

i
k

i
ki

k x
x

x (2)

In equation (1), the factor a denotes the attenuation of the
channel and n the white Gaussian noise process. In this
case, the L-values of the received code symbol equal [4]:

())()(i
kc

i
k yLyL ⋅= (3)

with

0

4
N
EaL s

c = (4)

In equation (4), Es represents the transmission energy of a
symbol bit and N0/2 is the power density of the channel
noise n. The actual decoding is performed using the BCJR
algorithm [1] that has been adapted to log-likelihood
calculations [4] because of numerical and efficiency
reasons. The a-posteriori L-values of the estimated data
bits ûk are given by the following equations:

)()()()(
k

e
kk ûLuLûL += (5)

∑

∑

−=

−−−

+=

−−−

−

−

=

1
),(

1
)(

11

1
),(

1
)(

11

)(

1

1

)(),()(

)(),()(

log)(

k
kk

k
kk

u
ss

kkkk
e

kkk

u
ss

kkkk
e

kkk

k
e

ssss

ssss

ûL
βγα

βγα

 (6)

The terms sk in equation (6) represent the states in the
trellis-representation and (sk-1, sk) denotes a state transition.
The coefficients αk-1(sk-1) are obtained by the forward
recursion in equation (7) and the βk(sk) are obtained using
the backward recursion in equation (8). The forward
recursion is initialized with α0(s0 = 0) = 1 and
a0(s0 ≠ 0) = 0 whereas the backward recursion is initialized
with βN (sN = 0) = 1 and βN (sN ≠ 0) = 0. N represents the
last state of a transmitted block.

∑
−

−−−=
1

)(),()(111
ks

kkkkkkk ssss αγα (7)

∑ −−− =
ks

kkkkkkk ssss)(),()(111 βγβ (8)

Whenever a branch transition from state sk-1 to state sk
exists, its transition probability is given by

),(),(1
)()(

2
1

1 kk
e

k

uLu

kkk ssess kk

−− = γγ (9)

with the extrinsic transition probability

⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=
−

2

1

)()(
1

)(

2
1exp),(

i

i
k

i
kckk

e
k xyLssγ (10)

Note that equations (9) and (10) are only valid in case of a
rate ½ feed-forward convolutional code.

2.2 Iterative Decoding
The actual iterative decoding is performed using the

system presented in Fig. 4.

Π
kûkuL()^

(e)

kuL (^)

k
(2)yLc

yk
(1)

Lc

Π
−1

Π
−1

SISO

module 1

SISO

module 2

Fig. 4. Iterative convolutional decoder

The received values that have been encoded with the upper
encoder in Fig. 2, i.e. the first bits of the output symbols,
are fed into the first SISO module. The extrinsic output of
that module is used as a-priori input of the second SISO
module which accepts as channel input the received values
of the lower encoder. The extrinsic output of the second
SISO module is then fed back to the a-priori input of the
first module. Note that the extrinsic transition probability
in equation (10) can be simplified to:

⎟
⎠
⎞

⎜
⎝
⎛=−

)()(
1

)(

2
1exp),(i

k
i

kckk
e

k xyLssγ (11)

POSTER CONFERENCE, PRAGUE, MAY 2005 3

with i equals 1 in case of module 1 and i equals 2 in case of
the module 2. Thus only one bit of the code symbol is used
for branch transition calculations.

After a given number of iterations, the output of the
estimated bits of the second decoder is used to perform the
decision on the received bits:

⎩
⎨
⎧

>
≤

=
0)(if0
0)(if1

k

k
k ûL

ûL
û (12)

The decoding scheme is identical to the one used to decode
parallel concatenated convolutional codes (turbo-codes)
but without any interleavers. Though, the interleavers are
drawn in a dashed way in Fig. 4. This is to indicate that
they are not used in this case, but that an already present
turbo-decoding module could also be used to decode
convolutional codes using the presented method.

3. Simulation Results
The simulation was carried out using the rate 1/2

convolutional encoder specified by the GSM full rate
codec [6]. The generator polynomials of the code are
G(23,33) (see Fig. 1) in octal notation. As in GSM, the
block length was chosen to 185 data bits plus 4 zero bits
for termination purposes. Note that in GSM only the 185
most important (class 1) bits are channel encoded. The
remaining 78 less significant bits (class 2) are not
protected.

0 1 2 3 4 5 6 7 8
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0

B
E

R

BCJR Algorithm
Iterative Decoding

Iterations

Fig. 5. Simulation results for I = 1, 2, 3, 5, 7, 9, 11, 13, 15, 21, 30

and 100 decoding iterations

As can be seen in Fig. 5, the iterative decoding presented in
Section 2 yields some interesting results. Each decoding
step improves the decoding performance in terms of BER.
Thus an increasing number of iterations will slowly lead to
a better decoding result. After I = 100 decoding iterations,
the result of the BCJR algorithm is approached by
approximately 1dB. A higher number of iterations may
even further increase the decoding performance as no
convergence can yet be seen. Unfortunately, the
performance of the maximum-a-posteriori (BCJR)

algorithm is not reached. The complexity is increased by
factor 2I, with I representing the number of iterations. The
factor 2 is due to the two SISO operations in each iteration.

4. Conclusions
We have shown that convolutional codes can be

decoded using a turbo-decoder with an omitted interleaver.
The decoding performance approaches the result of the
BCJR algorithm with an increasing number of decoding
iterations. This is an interesting result because the omitted
interleaver is usually a key element in iterative decoding.

The increased complexity may be reduced by the use
of less complex SISO algorithms, e.g. the M-BCJR [7] or
the SOMA [8] algorithms.

Acknowledgements
The authors would like to thank the head of the

Institute of Communication Systems and Data Processing,
Prof. P. Vary. The underlying work of this paper is the
result of a student research project which was carried out at
his institute.

References
[1] FORNEY, G. D. Jr., The viterbi algorithm, Proceedings of IEEE,

vol. 61, p. 268 – 278, Mar. 1973.

[2] BAHL, L. R., COCKE, J., JELINEK, F., RAVIV, J. Optimal
decoding of linear codes for minimizing symbol error rate. IEEE
Trans. Inform. Theory, p. 284 – 287, Mar. 1974.

[3] BERROU, C., GLAVIEUX, A., Near optimum error correcting
coding and decoding: turbo-codes. IEEE Trans. Commun., vol. 44,
no. 10, p. 1261 – 1271, Oct. 1996.

[4] HAGENAUER, J., OFFER, E., PAPKE, L. Iterative decoding of
binary block and convolutional codes. IEEE Trans. Inform. Theory,
vol. 42, p. 429 – 445, Mar. 1996.

[5] ETSI TC-SMG, Recommendation 6.10: GSM Full Rate Speech
Transcoding, 1992.

[6] ETSI TC-SMG, Recommendation 5.03: Digital Cellular
Telecommunications System (Phase 2+); Channel Coding, 1999.

[7] FRANZ, V., ANDERSON, J. B., Concatenated decoding with a
reduced-search BCJR algorithm. IEEE J. Select. Areas Commun.,
vol. 16, no. 2, p. 186 – 195, Feb. 1998.

[8] WONG, K. K. Y., MCLANE, P. J., Bi-directional soft-output M-
algorithm for iterative decoding. IEEE Commun. Soc. Mag., 2004.

