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Abstract. In this paper we present a new method to decode 
convolutional codes. The method is based on the Turbo 
principle which was originally proposed to decode parallel 
concatenated convolutional codes. It becomes possible 
because of a reinterpretation of the encoder structure. The 
newly interpreted code is decoded using an iterative 
scheme with information exchange between sub-decoders.  

In a second part of the paper, the new method is applied to 
the decoding of the GSM Full Rate Channel Code. The 
simulation results show that each iteration can improve the 
decoding performance while the original BCJR algorithm 
marks the upper limit. 

Keywords 
Channel Coding, Convolutional Decoding, GSM  Full 
Rate Codec, Maximum-A-Posteriori BCJR 
Algorithm, Turbo-Decoding, L-Values. 

1. Introduction 
Whenever in digital mobile communication data 

transmission is affected by channel noise, channel coding 
is indispensable. In practice, frequently, convolutional 
codes are applied to protect the source data and correct 
some possibly given transmission errors. The decoding is 
usually performed using the Viterbi algorithm [1] or the 
BCJR algorithm [2]. The Viterbi decoder determines the 
optimal bit sequence in the maximum likelihood sense and 
the BCJR algorithm provides the optimal sequence of bits 
in the maximum-a-posteriori sense. Recently, the use of 
parallel concatenated interleaved convolutional codes, 
named Turbo-Codes [3], and their iterative decoding has 
allowed further improvements in error correcting coding. 
The question arises if the iterative decoding process used in 
turbo-decoding will be applicable to the decoding of 
“normal” convolutional codes. The goal of this paper will 
be to find an answer to that question.  

In Section 2 the encoder structure of a conventional 
convolutional code is reinterpreted as to allow iterative 
decoding subsequently followed by a description of the 
decoder. The single elements composing the decoder will 
also be presented in this section. The newly presented 

decoding scheme will finally be applied to the GSM full 
rate channel code [5], [6]. 

In Section 3 the simulation results are presented. The 
simulations are an application of GSM channel decoding.  

2. Iterative Decoding of Convolutional 
Codes 
The iterative decoding system presented in this paper 

is explained using the convolutional encoder specified by 
the GSM full rate codec [6]. This code is a rate ½ code and 
is characterized by the octal generator polynomials 
G(23,33). This encoder is depicted in Fig. 1. As can be 
seen, the encoder possesses 4 memory elements and has 
therefore got a constraint length of 5. This implies a trellis 
representation with 24 = 16 states. 
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Fig. 1. Convolutional encoder  used in the GSM full rate codec 

The encoding process can be represented differently if the 
encoder is drawn as in Fig. 2. The input is fed to two 
identical encoders. The outputs of these encoders are 
punctured so that the upper output of encoder 1 and the 
lower output of encoder 2 are used. If an optional 
interleaver Π is inserted in front of the input of encoder 2, 
this representation is more or less equivalent to the turbo-
coding scheme presented in [3] (except for the used 
generator polynomials). In this work however, the 
interleaver is omitted so as to decode “normal” 
convolutional codes. 

Thus, it was shown, that a convolutional code can be 
represented by the parallel concatenation of two 
appropriate punctured convolutional encoders. In the 
following subsections, a decoding method using this 
representation is presented. 
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Fig. 2.  Reinterpretation of the GSM-FR channel encoder 

2.1 The SISO Module 
The decoding makes use of a so-called SISO (Soft 

Input Soft Output) module [4] which is presented in this 
section. The SISO Module presented in Fig. 3 has two 
inputs, one accepting the received channel values L(yk) and 
one accepting a-priori knowledge about the data bits L(uk).  
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Fig. 3. Soft Input Soft Output module used for iterative 

decoding 

In this paper, the transmission of the code symbols is 
performed over an AWGN (Additive White Gaussian 
Noise) channel with BPSK (Binary Phase Shift Keying) 
mapping. In that case, the received symbols are: 
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with the bipolar mapped code symbol: 
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In equation (1), the factor a denotes the attenuation of the 
channel and n the white Gaussian noise process. In this 
case, the L-values of the received code symbol equal [4]: 
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In equation (4), Es represents the transmission energy of a 
symbol bit and N0/2 is the power density of the channel 
noise n. The actual decoding is performed using the BCJR 
algorithm [1] that has been adapted to log-likelihood 
calculations [4] because of numerical and efficiency 
reasons. The a-posteriori L-values of the estimated data 
bits ûk are given by the following equations: 
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The terms sk in equation (6) represent the states in the 
trellis-representation and (sk-1, sk) denotes a state transition. 
The coefficients αk-1(sk-1) are obtained by the forward 
recursion in equation (7) and the βk(sk) are obtained using 
the backward recursion in equation (8). The forward 
recursion is initialized with α0(s0 = 0) = 1 and 
a0(s0 ≠ 0) = 0 whereas the backward recursion is initialized 
with βN (sN = 0) = 1 and βN (sN ≠ 0) = 0. N represents the 
last state of a transmitted block. 
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Whenever a branch transition from state sk-1 to state sk 
exists, its transition probability is given by 
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with the extrinsic transition probability 
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Note that equations (9) and (10) are only valid in case of a 
rate ½ feed-forward convolutional code. 

2.2 Iterative Decoding 
The actual iterative decoding is performed using the 

system presented in Fig. 4. 
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Fig. 4. Iterative convolutional decoder 

The received values that have been encoded with the upper 
encoder in Fig. 2, i.e. the first bits of the output symbols, 
are fed into the first SISO module. The extrinsic output of 
that module is used as a-priori input of the second SISO 
module which accepts as channel input the received values 
of the lower encoder. The extrinsic output of the second 
SISO module is then fed back to the a-priori input of the 
first module. Note that the extrinsic transition probability 
in equation (10) can be simplified to: 
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with i equals 1 in case of module 1 and i equals 2 in case of 
the module 2. Thus only one bit of the code symbol is used 
for branch transition calculations. 

After a given number of iterations, the output of the 
estimated bits of the second decoder is used to perform the 
decision on the received bits: 
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The decoding scheme is identical to the one used to decode 
parallel concatenated convolutional codes (turbo-codes) 
but without any interleavers. Though, the interleavers are 
drawn in a dashed way in Fig. 4. This is to indicate that 
they are not used in this case, but that an already present 
turbo-decoding module could also be used to decode 
convolutional codes using the presented method. 

3. Simulation Results 
The simulation was carried out using the rate 1/2 

convolutional encoder specified by the GSM full rate 
codec [6]. The generator polynomials of the code are 
G(23,33) (see Fig. 1) in octal notation. As in GSM, the 
block length was chosen to 185 data bits plus 4 zero bits 
for termination purposes. Note that in GSM only the 185 
most important (class 1) bits are channel encoded. The 
remaining 78 less significant bits (class 2) are not 
protected. 
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Fig. 5.  Simulation results for I = 1, 2, 3, 5, 7, 9, 11, 13, 15, 21, 30 

and 100 decoding iterations 

As can be seen in Fig. 5, the iterative decoding presented in 
Section 2 yields some interesting results. Each decoding 
step improves the decoding performance in terms of BER. 
Thus an increasing number of iterations will slowly lead to 
a better decoding result. After I = 100 decoding iterations, 
the result of the BCJR algorithm is approached by 
approximately 1dB. A higher number of iterations may 
even further increase the decoding performance as no 
convergence can yet be seen. Unfortunately, the 
performance of the maximum-a-posteriori (BCJR) 

algorithm is not reached. The complexity is increased by 
factor 2I, with I representing the number of iterations. The 
factor 2 is due to the two SISO operations in each iteration.  

4. Conclusions 
We have shown that convolutional codes can be 

decoded using a turbo-decoder with an omitted interleaver. 
The decoding performance approaches the result of the 
BCJR algorithm with an increasing number of decoding 
iterations. This is an interesting result because the omitted 
interleaver is usually a key element in iterative decoding. 

The increased complexity may be reduced by the use 
of less complex SISO algorithms, e.g. the M-BCJR [7] or 
the SOMA [8] algorithms. 
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