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Abstract

We present a system for iterative source-channel decoding (ISCD) using irregular index assignments: The concept

of irregular codes is applied to the index assignment of a scalar quantizer. The optimization performed in the EXIT

chart enables near optimum transmission. The irregular index assignments are constructed by using high-rate block

codes. This construction allows to use a very simple stopping criterion at the receiver and thereby to potentially

reduce the number of iterations. We demonstrate the performance of this system by means of a simulation example

over an AWGN channel with hard decision at the output. Furthermore we present simple yet effective measures for

the case that no channel state information (e.g., instantaneous bit error rate) is available.

1 Introduction
With the discovery of Turbo codes, channel coding

close to the Shannon limit became possible with mod-

erate computational complexity. In the past years, the

Turbo principle of exchanging extrinsic information be-

tween separate channel decoders has also been adapted

to other receiver components.

To exploit the residual redundancy in source coded

parameters such as scale factors or predictor coeffi-

cients for speech, audio, and video signals in a Turbo

process, iterative source-channel decoding (ISCD) has

been presented in [1], [2] as a means to further improve

the quality of soft decision source decoding (SDSD) [3],

[4]. This residual redundancy occurs due to non-ideal

source encoding due to, e.g., delay or complexity

constraints.

Most previous publications on ISCD have been fo-

cusing on the AWGN channel with perfect soft in-

formation available at the receiver. However, in some

transmission scenarios it might not be possible to

transfer soft information from the physical layer to an

upper layer where source-channel decoding may take

place. For this reason, we consider a transmission over

an AWGN channel with binary quantization of the

received values. This channel can be considered as a

binary symmetric channel (BSC).

It is known that the inner channel code of a capacity-

achieving serially concatenated system should be of

rate r = 1 [5]. If this inner channel code is fixed, the

outer code can be matched quite well to the inner

rate-1 code using the principles of irregular codes [6],

[7]. Irregular codes allow a simple optimization of the

outer component by making use of EXIT charts [8]. In

this contribution, we employ the concept of irregular

codes to be used as (redundant) index assignment, i.e.,

the assignment of bit patterns to codebook indices,

of a (scalar) quantizer to get so-called irregular index

assignments (IIA), which extend the concept of redun-

dant index assignments [9], [10], [11]. Additionally, the

utilized IIA design guidelines permit to implement a

very simple stopping criterion at the receiver, limiting

the necessary amount of iterations performed in the case

of good channel conditions. Such a stopping criterion is

extremely important in mobile applications where the

reduction of the power consumption is one of the main

optimization targets.

Often, no channel state information (CSI), such as

the instantaneous bit error rate or the channel signal-

to-noise ratio, is available at the receiver. Without

CSI, the maximum a posteriori (MAP) algorithm, often

employed as channel decoder in ISCD systems, is not

able to successfully decode, even in good channel con-

ditions. By applying several measures to compensate

for the unknown CSI, we show that a performance

can be achieved which is comparable to that of the

corresponding system with full CSI.

The paper is structured as follows: In Section 2 we

give an overview of the system and present the different

modules used. In Section 3, the concept of Irregular

Index Assignments is introduced and explained while

the generation guideline of the index assignments is

used to derive a fairly straightforward stopping crite-

rion in Section 4. In Section 5 we give modification

guidelines for the case that no channel state information

is available at the receiver. The paper concludes with

a simulation example in Section 6 showing the near

optimum performance of the proposed system.

2 System Model
In what follows, we will give a brief review of

the iterative source-channel decoding (ISCD) sys-

tem. In Fig. 1 the baseband model of ISCD is de-

picted. At time instant τ a source encoder generates

a frame uτ = (u1,τ , . . . uKS ,τ ) of KS unquantized

source codec parameters uκ,τ , with κ ∈ {1, . . . , KS}
denoting the position in the frame. The single elements
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Fig. 1. Baseband model of the utilized ISCD system (simplified
notation, e.g., u instead of uκ,τ )

uκ,τ of uτ are assumed to be statistically indepen-

dent from each other. Each value uκ,τ is individu-

ally mapped to a quantizer reproduction level ūκ,τ ,

with ūκ,τ ∈ Uκ = {ū
(0)
κ,τ , . . . , ū

(Qκ−1)
κ,τ }. The set U de-

notes the quantizer codebook with a total number of

|Uκ| = Qκ codebook entries. The number of quantizer

levels is assumed to be Qκ = 2Mκ . A unique bit pattern

xκ,τ of M∗
κ bits (with M∗

κ > Mκ) is assigned to each

quantizer level ūκ,τ selected at time instant τ according

to the index assignment

Γκ : Uκ → F
M∗

κ

2

ūκ,τ �→ xκ,τ

with F2 = {0, 1}. In the following, we assume that all

codec parameters are quantized using the same code-

book, i.e., Uκ = U and Mκ = M,∀κ ∈ {1, . . . , KS}.

Although the number of quantization levels is assumed

to be identical for all parameters, the index assignment

can differ from parameter to parameter. For notational

convenience we omit the time index τ in the following.

The single bits of a bit pattern xκ are indicated by

x
(m)
κ , m ∈ {1, . . . , M∗

κ}. If M∗
κ > M = Mκ, the index

assignment Γκ introduces redundancy and can then be

considered to be the composite function Γκ = ζκ ◦ Γ̆NB

(i.e., Γκ(ū) = (ζκ ◦ Γ̆NB)(ū) = ζκ(Γ̆NB(ū))) with

Γ̆NB : U → F
M
2 and ζκ : F

M
2 → F

M∗

κ

2

ū �→ x̆ x̆ �→ xκ .

The function Γ̆NB performs a natural binary index as-

signment, i.e., the binary representation of the codebook

index of ū is assigned to x̆. The function ζκ can be

regarded as being a (potentially non-linear) block code

of rate rIA
κ = M/M∗

κ . The concept of non-linear block

codes employed as redundant index assignments has

been successfully utilized in, e.g., [12], [11]. In this

paper however, we only consider linear block codes

and refer to Section 3 for a detailed description. After

the index assignment, KS bit patterns are grouped to

a frame of bit patterns x = (x1, . . . ,xKS
) consisting

of
∑KS

κ′=1 M∗

κ′ = KS · M̄∗ bits. The overall rate of the

index assignment is thus

rIA =
KS · M
KS∑

κ′=1

M∗

κ′

=
M

M̄∗
, (1)

with M̄∗ the average number of bits per parameter.

The frame x of bits is re-arranged by a bit interleaver

π in a deterministic, pseudo-random like manner. The

interleaved frame with KS · M̄∗ bits is denoted as x̃.

For channel encoding of a frame x̃, we use a re-

cursive convolutional code of constraint length J + 1
and of rate rC. In this paper, we restrict ourselves to

rate rC = 1 recursive, non-systematic convolutional

codes. The encoded frame is denoted by y. The bits

yk of y are indexed by k ∈ {1, . . . , KS · M̄∗ + J}.

Prior to transmission over the channel, the encoded bits

yk are mapped to bipolar bits ÿk forming a sequence

ÿ ∈ {±1}KS ·M̄∗+J . We only consider BPSK modula-

tion in this paper in order to demonstrate the concept,

which can easily be extended to include higher order

modulation schemes [13] or channel equalization [14].

Note that in Fig. 1 the baseband model is considered.

On the channel, the modulation symbols ÿk (with

symbol energy Es = 1) are subject to additive white

Gaussian noise (AWGN) with known power spectral

density σ2
n = N0/2. After transmission, a hard-

decision is performed on the received symbols zk, i.e.,

z̈k = sign{zk}. This implies that the channel can be

modelled as a binary symmetric channel (BSC) with

bit error probability

Pb = P (z̈k �= ÿk) =
1

2
erfc

(√
Es

N0

)
, (2)

with erfc denoting the complementary error function.

The received symbols z̈k ∈ {±1} are transformed

to L-values [15] prior to being evaluated in a Turbo

process which exchanges extrinsic reliabilities between

channel decoder (CD) and soft decision source decoder

(SDSD). If channel state information (CSI) is available

at the receiver, the L-values of the received symbols

are obtained by [15]

L(z̈k) = loge

(
1 − Pb

Pb

)
· z̈k =: Lc · z̈k (3)

and if no CSI (i.e., Es

N0

or Pb) is available at the receiver,

the L-values are given by

L(z̈k) = Ľc · z̈k , (4)

with Ľc being a receiver parameter. The adjustement of

Ľc will be explained in Section 6. After channel decod-

ing, the L-values at the decoder output can optionally

be scaled by a factor γ(i), where i denotes the iteration

counter, i.e., γ(i) is constant during one iteration.

The channel decoder used in this paper is based

on the LogMAP algorithm [16], [15] or on the

MaxLogMAP approximation [17]. For the equations for

computing the extrinsic probabilities or their respective

L-values of the SDSD, the reader is referred to the

literature, e.g., [2], [3], [18]. Note that the redundancy

of the index assignment, introduced by the function ζκ,

is not explicitly decoded at the receiver but implicitly

used to calculate better estimates of the codebook

indices given the input L-values. For details, we refer

the reader to [9], [11].



3 Irregular Index Assignments
According to [5], a necessary condition for a serially

concatenated system to be capacity achieving is an

inner component with code rate r = 1. For the setup

introduced in Section 2, this means that the channel

code should be of rate rC = 1. For a given channel

code, the goal is to find a perfectly matching outer

component (source code in our case) to the given rate-1
channel code. This task can be solved for example by

the concept of irregular codes [7], [6]. Irregular codes,

originally proposed for convolutional codes, use several

component codes of different rates in one block (e.g.,

by changing the puncturing rule) to obtain an overall

rate-rOuter outer code. As the EXIT characteristic of the

resulting code corresponds to the weighted sum of the

component codes’ characteristics (where the weights

correspond to the fractions of code bits being encoded

by the respective component code), an optimization

algorithm can be formulated [7]. This algorithm allows

to optimize the weights in order to get an (almost)

perfectly matching characteristic.

We extend the concept of irregular codes to the

index assignment in order to obtain irregular index

assignments (IIA). As stated in Section 2, the index

assignment for the parameter uκ comprises a block

code ζκ of rate rIA
κ = M/M∗

κ . Instead of using the

same amount of bit redundancy M∗
κ = M̄∗ for each

parameter in order to achieve an overall rate M/M̄∗

outer encoding, we use the concept of irregular codes

and vary M∗
κ for each parameter. This allows us to use

the optimization algorithm in [7] to optimize the index

assignments and to get an SDSD EXIT characteristic

which matches the channel decoder characteristic con-

siderably well.

In the following, we present a simple design guide-

line in order to generate redundant index assignments

with rates rIA
κ = M/M∗

κ , M∗
κ ∈ {M + 1, . . . , M∗

max}
needed for the optimization of the IIA. The guide-

line starts with an (almost) arbitrary generator matrix

G = (gi,j)M×M∗

max
of size dimG = M × M∗

max and

with elements gi,j ∈ F2. A generator matrix GM∗ for

a rate rIA
κ = M/M∗

κ index assignment is then obtained

by

GM∗ = G ·

(
IM�

0

)
(5)

with IM∗ denoting the M∗ × M∗ identity matrix and

0 the (M∗
max − M∗) × M∗ all-zero matrix. The only

conditions we fix for G are:

a) G is a generator matrix for a systematic linear

block code, i.e., G can be written as

G =

(
IM P

)
. (6)

b) the block code generated by GM+1 has a mini-

mum Hamming distance dHam(GM+1) ≥ 2.

The second condition is necessary for the EXIT char-

acteristic to reach the (1, 1) point [11] and is accom-

plished if GM+1 realizes a parity check code, i.e.,

GM+1 = (IM 1).
We illustrate the generation of irregular index as-

signments by means of an example. KS = 250 source

parameters modelled by KS independent 1st order

Gauss-Markov processes with auto-correlation ρ = 0.9
are quantized using a Q = |U| = 16 level Lloyd-Max

codebook, i.e., Mκ = M = 4. Furthermore, we assume

that the overall coding rate of the index assignment

shall be of rate rIA = 1
2 , which gives an average number

of M̄∗ = 8 bits per source parameter. The channel code

is a memory J = 3, rate-1 recursive convolutional code

with (octal) generator polynomials
(

10
17

)
8
. An exem-

plary generator matrix G for M = 4 and M∗
max = 15,

fulfilling conditions a) and b) and generating redundant

index assignments with rates 4/5, 4/6, . . . , 4/15 could

be

G =

⎛
⎜⎜⎝

1 0 0 0 1 1 1 1 0 1 1 1 0 0 0
0 1 0 0 1 1 1 0 1 0 0 1 1 1 0
0 0 1 0 1 1 0 1 1 0 1 0 1 0 1
0 0 0 1 1 0 1 1 1 1 0 0 0 1 1

⎞
⎟⎟⎠ . (7)

The index assignments generated by using the generator

matrix of (7) with (5) for realizing the Block Code ζκ

are denoted by BC
Q
M∗ .

Example: The block code index assigment BC16
6 is

given by BC16
6 ={x|x=Γ(ū), ū= ū(0), . . . , ū(Q−1)}=

{0, 6, 13, 15, 23, 25, 30, 36, 43, 45, 50, 56, 60, 66,
73, 75} in octal representation with the least significant

bit corresponding to x(M∗). For instance, to the

quantizer reproduction level ū(5), the natural binary

representation x̆ = (0101)2 is assigned, leading to

x = x̆·G6 = (0101)

⎛
⎜⎜⎝

1 0 0 0 1 1
0 1 0 0 1 1
0 0 1 0 1 1
0 0 0 1 1 0

⎞
⎟⎟⎠=(010101)2 =(25)8.

For an overall rate- 1
2 transmission with the given

parameters, it can be observed that a minimum channel

quality of Es/N0 ≈ −2.83 dB is necessary to reach

a reconstruction SNR of the decoded parameters of

≈ 20 dB. This channel quality is obtained by calculat-

ing the optimum performance theoretically attainable

(OPTA) [19], using the capacity of the Hard-Output,

Binary-Input AWGN (HO-BIAWGN) channel [20]

C[HO-BIAWGN] = (8)

1

2
(erfc (λ) log2 erfc (λ) + erfc (−λ) log2 erfc (−λ))

with

λ =

√
Es

N0
=

(
2σ2

n

)− 1

2 . (9)

See Fig. 3 for an illustration of the OPTA limit in this

case. We perform the optimization, however, using a

slightly higher channel quality of Es/N0 = −2.6 dB.

The EXIT characteristics of the channel decoder T CD

and the characteristics of the different index assign-

ments are illustrated in Fig. 2. It can be seen that the
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trajectory of the index assignment BC16
8 , meeting the

rate requirements, has an intersection with the channel

decoder characteristic, resulting in a decoder failure.

The optimization of the irregular index assignment

leads to the characteristic T Irr, matching considerably

well the channel decoder characteristic with an open

decoding tunnel.

The results of the optimization are summarized in

Table I. The optimization determines the weights α�.

The outcome of the algorithm is that not all index

assignments have to be used in order to generate a

good matching irregular index assignment but only

five of them. The α� are the weighting factors of

the EXIT characteristics and they also determine the

fraction of bits to be assigned to each index assignment.

From these fractions α�KSM̄∗ the corresponding KS,�

(number of source parameters assigned to each index

assignment) can be calculated by

KS,� =rnd

[
α�KSM̄∗

rIA
�

M

]
=rnd

[
α�KS

rIA
�

rIA

]
, (10)

with rnd being an appropriate rounding operation such

that
∑

∀i KS,� = KS . Note that the concept of irregular

index assignments introduces no noteworthy additional

computational complexity at the receiver, which mainly

depends on the number of quantization levels per

parameter (which has been fixed to Q = 2M in this

contribution).

The decoding trajectory using the IIA system is

also depicted in Fig. 2. It can be seen that during

the first iterations, the trajectory overshoots the source

decoder characteristic. This behavior has been analyzed

and described in [21]. During the last iterations, the

trajectory overshoots the characteristic of the channel

decoder. This behavior has already been observed in [7]

and is due to the relatively small bit interleaver of size

2000 bits.

TABLE I

RESULT OF THE IRREGULAR INDEX ASSIGNMENT EXAMPLE

Rate rIA
� Γ� α� α�KSM̄∗ KS,�

4/15 BC16
15 0.255 510 K

(4/15)
S = 34

4/14 BC16
14 0.161 322 K

(4/14)
S = 23

4/7 BC16
7 0.189 378 K

(4/7)
S = 54

4/6 BC16
6 0.285 570 K

(4/6)
S = 95

4/5 BC16
5 0.110 220 K

(4/5)
S = 44

rIA = 1
2

P
= 1

P
= KSM̄∗

P
= KS

= 2000 = 250

4 Stopping Criterion
The generation of the (irregular) index assignments

using a generator matrix as presented in Section 3

enables the receiver to apply a simple yet effective

stopping criterion. In good channel conditions, it is

generally not necessary to perform more than only

a few iterations. We use a well-known concept from

low-density parity-check (LDPC) decoding [22], [23]

and evaluate the parity check equations of the index

assignment after each iteration. If all equations are

fulfilled, the iterative process can be aborted.

If the generator matrix G is systematic according

to (6), the parity check matrix HM∗ for the index

assignment generated by GM∗ can easily be determined

by

HM∗ =

⎛
⎝ P ·

(
IM∗−M

0

)
IM∗−M

⎞
⎠

T

(11)

with 0 denoting the (M∗
max−M∗)×(M∗−M) all-zero

matrix.

Hence, a total number of M∗
κ − M parity check

equations can be evaluated for each parameter uκ. The

parity checks are performed based on the hard decisions

of the extrinsic L-values L[ext]
SDSD(x) at the output of the

source decoder. If all parity checks of all parameters in

one block u are fulfilled, the iterations can be stopped

and the parameters ûκ can be estimated, e.g., using an

MMSE estimator [3].

5 Suboptimal Decoding Without

Channel State Information
In certain circumstances, no channel state information

is available at the receiver. Then, MAP (or LogMAP)

decoding fails and the suboptimal MaxLogMAP al-

gorithm becomes an alternative [17]. However, the

application of the suboptimal MaxLogMAP algorithm

in the ISCD framework leads to performance losses

of ≈ 0.7 dB. The reason for these losses is that

the MaxLogMAP decoder overestimates the extrin-

sic information at its output. A simple yet effective

remedy against this overestimation is the “normal-

ized MaxLogMAP” algorithm described for instance

in [23]. After iteration i, the extrinsic output of the

MaxLogMAP decoder is multiplied by an (iteration

dependent) constant γ(i) as indicated in Fig. 1. The



additional computational complexity introduced by this

multiplication is negligible compared to the over-

all complexity of the MaxLogMAP decoder and the

SDSD. The γ(i) are determined once in advance by

measurements as described in [23]: At a channel quality

where the performance of LogMAP and MaxLogMAP

decoding differ the most, the factor γ(i) is obtained

using

γ(i) =
E

{
L[ext]

CD,LogMAP

}
E

{
L[ext]

CD,MaxLogMAP

} (12)

where E{·} denotes expectation. We

only evaluate (12) for the cases where

sign
{

L[ext]
CD,LogMAP

}
= sign

{
L[ext]

CD,MaxLogMAP

}
and∣∣∣L[ext]

CD,LogMAP

∣∣∣ <
∣∣∣L[ext]

CD,MaxLogMAP

∣∣∣. In a first step,

the factor γ(1) is obtained. Using this factor, the

measurement can then be carried out for 2 iterations

to obtain γ(2) etc. For details, we refer the reader

to [23].

6 Simulation Results
The capabilities of the proposed ISCD system with

irregular index assignments scheme are demonstrated

by a simulation example. The parameter signal-to-noise

ratio (SNR) between the originally generated param-

eters u and the reconstructed estimated parameters û
is used for quality evaluation. The parameter SNR is

plotted for different values of Eu/N0, with Eu denoting

the energy per source parameter uκ (Eu = M̄∗ · Es).

Additionally, the bit error probability Pb of the equiv-

alent BSC channel is given on top of Fig. 3. Instead

of using any specific speech, audio, or video encoder,

we use the system setup already introduced in Sec-

tion 3 with KS = 250 statistically independent source

parameters u modelled by KS independent 1st order

Gauss-Markov processes with auto-correlation ρ = 0.9.

These auto-correlation values can be observed in typical

speech and audio codecs, e.g., [24] for the scale factors

in CELP codecs or MP3.

The simulation results are depicted in Fig. 3. A

system with a non-redundant, natural binary index

assignment, a rate 1/2 convolutional code with memory

J = 3, hard-decision Viterbi decoding and source

decoding by table lookup serves as a reference.

While the system utilizing the regular index assign-

ment BC16
8 achieves considerable gains compared to

the reference, additional gains of ≈ 0.5 dB can be

obtained by using the irregular index assignment from

Section 3. If the sphere packing bound (SPB) is used

to approximate the behavior for transmissions with a

finite block length, the proposed system can reach the

OPTA-SPB limit [19].

The number of utilized iterations is depicted in the

lower part of Fig. 3. The maximum number of iterations

for the system utilizing a regular index assignment is

OPTA

OPTA-SPB
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fixed to 20 (as the EXIT chart and simulations show

that only up to 20 iterations are beneficial) while the

system using the irregular index assignment is allowed

to exploit up to 60 iterations due to the narrow decoding

tunnel (see EXIT chart in Fig. 2). The number of

utilized iterations rapidly decreases in the waterfall

region, however, the system utilizing irregular index

assignments (IIA) needs more iterations in the whole

range of channel conditions.

Figure 4 depicts the evaluation of the inverse nor-

malization factors 1/γ(i) for the 20 first iterations in

both systems. The factors have been determined for the

channel quality Eu/N0 = 7.3 dB in the case of the reg-

ular index assignment BC16
8 and for Eu/N0 = 6.9 dB

in the case of the irregular index assignment given in

Section 3. Instead of converging to γ(i) = 1 for large

i as in [23], the γ(i) converge to a value of about

0.65, i.e., the extrinsic information is continuously

overestimated by the MaxLogMAP decoder.

If no CSI is available, the correction factors Ľc

in (4) are determined by using the channel qualities

which have been utilized to determine the normalization

factors γ(i) (as described above and in Section 5).

First the bit error probability of the channel quality is

determined using (2), then the correction factor Ľc can

be determined using

Ľc = loge

(
1 − Pb

Pb

)
. (13)
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Therefore, we get Ľc = 2.13 for the system utilizing

the regular index assignment BC16
8 and Ľc = 2.02 for

the system employing the irregular index assignment.

The number of iterations needed if no CSI is available

is generally higher than for the system without CSI,

especially in the case of the irregular index assignment,

as can be seen in Fig. 3. This could be explained

by the fact that the single iterations only achieve

little improvement in terms of mutual information and

thus many iterations are needed to iterate through the

decoding tunnel.

7 Conclusions
In our contribution, we presented the concept of ir-

regular index assignments (IIA). Starting with a low-

rate systematic generator matrix, the irregular index

assignments are generated by multiplying the natural

binary representation of the quantizer codebook indices

with the first M∗ rows of the generator matrix. Using

the EXIT chart optimization algorithm known from the

technique of irregular codes [7], the iterative source-

channel decoding (ISCD) system can be optimized to

yield near optimum performance. The generation of

irregular index assignments using generator matrices

yields a simple stopping criterion evaluated at the

receiver. The iterative decoder can compute the parity

check equations of the different parameters and if all

parity check equations are fulfilled, decoding can be

stopped. Furthermore, we have shown that in cases

where no channel state information is available at the

receiver, almost the same performance can be obtained

if appropriate measures are taken, at the cost of an

increased number of iterations, however.
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